NTNU

TDT4258 - ENERGY EFFICIENT COMPUTER SYSTEMS

Exercise 1 - Buttons and LEDs

Group 13
Mathias Ose, Oyvind Robertsen and Jorn-Egil Jensen

February 10, 2014

Abstract

In this exercise, the group learned the basics of developing and running programs on the
EFM32GG-DK3750 development board, including communication between the board and
a prototype gamepad. Each group member acquired knowledge of the internal workings
of the EFM32GG microcontroller, of programming for the ARM Cortex-M3 processor
and of the GNU-toolchain. We chose to implement a simple way of controlling the LEDs
on the gamepad, a one-to-one mapping between pressing button, and LFE D, turning on.
Additionally, we implemented a simple animated sequence of flashing LEDs. All code
was written in ARM assembly using the Thumb-2 instruction set. To achieve energy
efficiency, we implemented a solution using interrupts, as opposed to busy-loop polling.

Contents

1 Introduction

2 Description and Methodology

2.1 Development Process
2.1.1 Devices

2.2 Project setup and toolchain description
2.2.1 GNU Toolchain & GNU Make

2.2.2 Othertools
2.3 Debugging
2.4 Implementation

2.4.1 Register Convention

2.4.2 Bareessentials
2.4.3 Light Output

2.4.4 Polling implementation
2.4.5 Interrupt implementation

2.4.6 Energy optimization

3 Results and Tests

3.1 Program

3.1.1 Testing the program

3.2 Energy efficiency
321 Readings.

3.2.2 Expected lifetime on a cr2032 battery

3.3 Discussion,

4 Evaluation of Assignment
5 Conclusion

A Acknowledgements

IT

[t

15

16

17

1 Introduction

In this exercise we take a very hands on approach to learning microcontroller programming
in Assembly. This should give us some valuable knowledge about the inner workings of
the microcontroller, and be a good foundation for doing more advanced things in later
exercises.

The device used in this exercise is called EFM32GG-DK3750. It is produced by
Silicon Labs for developing and testing programs for embedded systems running ARM
processors. Programs are written and compiled on a personal computer then flashed to
the development board via USB. The development board has multiple 1/O capabilities,
but in this exercise we only utilize the GPIO pins. The development board also features a
built in screen that can plot current spent by the microcontroller and allows some settings
to be edited live. Amperage can also be monitored on the connected PC using provided
software.

The primary objective of the exercise is to use a gamepad peripheral as an input
device, send input to the device using it’s GPIO functionality, handle the input, then
send some sort of output based on the input back through some other GPIO pins to the
gamepad where they will activate some LEDs.

A secondary but important objective of the exercise is to observe the energy efficiency
of the system when running the program, and see what measures can be taken to reduce
it. Using interrupt-based handling instead of continuous polling is especially useful to
reduce power consumption, as it allows the microcontroller to sleep until input happens,
drastically reducing the consumed power. Both methods will be tried and results will be
analyzed.

2 Description and Methodology

This section describes the development process, use of tools, debugging techniques and
details of the implementation.

2.1 Development Process

The exercise was primarily done in the computer lab (room 458 at IT-Vest, NTNU). We
chose to use git for version control and GitHub for repository hosting. This allowed us
to do minor work off-site, followed by testing at the lab.

The lab had already been set up with multiple workstations running Ubuntu 12.04
LTS with the neccessary software already installed, connected via USB to an EFM32GG-
DK3750 development board. A support framework was made available for download
that contained some things necessary start programming, such as a vector table and
some subroutine headers. This allowed us to get to work on the exercise itself more or
less immediately, instead of being caught up in setting things up ourselves.

The exercise description was made available in a compendium also containing instruc-
tions on how to write and run the program. Also described was how to use the GNU
Debugger to debug. A student assistant was also available a few hours every week to
answer questions and provide assistance.

The program itself was developed iteratively with no clearly defined goal, with lots of
trial and error along the way. Following the advice in the exercise description, we chose
to start by familiarising ourselves with the toolchain and the support files supplied by the
subject staff. Subsequently, we implemented a basic version of the program using busy-
loop polling, then a version based on interrupts. Finally, we improved energy efficiency
by implementing automatic return to a less power intense energy mode after interrupt
handling.

2.1.1 Devices

The EFM32GG-DK3750 (figure 2.1) connects to a personal computer via USB, shown on
the top of the picture. On the device there are multiple GPIO pins. Wires are connected
to some of these, and on the other end connected to the gamepad (figure 2.2). Also
integrated on the development board is a energy monitoring unit and a screen that can
show an energy monitoring graph.

The gamepad peripheral features 8 LEDs that are toggled via 8 GPIO pins and 8
buttons that control 8 other GPIO pins. The gamepad also has a jumper that can be
toggled between two settings. Only if it is "enabled", the amperage powering the LEDs
will be registered by the EFM32GG-DK3750 energy monitoring unit.

1z . " _teor o9
7 4

1 Y-
[2 ;ll-
b -
-~

-

» o

'il;i:’bq~3;fff~ = 5 , TYIYYIIL -rﬂ.i,a.,,..’m

ios A ; rge
; ; ; TIITITIIT A 5
» - s

GIANT GECKO et ; d : ek

D ENERGY

Figure 2.2: The gamepad

2.2 Project setup and toolchain description

After downloading and untarring the support files for this exercise, we chose to reorganize
the project structure slightly. We decided upon the directory layout in listing 2.1

Listing 2.1: Directory layout

exercisel
| -—— Makefile
| -— NOTES
|-—— efm32gg.1ld
|-— 1lib
| | -—— efm32gg.s
| | -—— vector.s
| —— report
| |—— ...
|-— src
| -— main.s

Following this, we made the necessary edits to the Makefile, updating all rules with
the new directory layout. As can be seen from listing 2.1 we added a vector.s file to
the lib directory. This contains the vector table defined at the top of the Assembly file
supplied by the subject staff. In addition to the directories listed above, we also added
build/ and exe/ directories, to contain build artefacts. We configured the VCS to
ignore these files, and used a make clean rule to remove them.

2.2.1 GNU Toolchain & GNU Make

Throughout the exercise a version of the GNU toolchain made especially for cross devel-
opment on microcontrollers based on ARM embedded processors was used. The toolchain
was preinstalled on the lab computers, but is freely available online if one wishes to install
it on a personal computer. The following is a brief description of how we used each of
the tools in this exercise.

GNU AS

To assemble our program code into object files we used an ARM-specific version of the
GNU AS assembler, a general example of usage is shown in listing 2.2

Listing 2.2: Assembler usage

arm-none-eabi-as -mcpu=cortex-m3 -mthumb -g —-o <output.o> <source.s>

The result is a GDB-debuggable object file with code conforming to the Cortex-M3
instruction set based on the assembly code in the source file.
GNU LD

To link the object files assembled by AS into an executable, an ARM version of GNU LD
was used. Syntax in listing 2.3

Listing 2.3: Linker usage

arm-none-eabi-1d -T <linkerscript.ld> -nostdlib -o <output.elf>

— <arg0.o> <argl.o> <arg2.o>

The linkerscript supplied defines how the memory on the microcontroller is to be used.

GNU Objcopy

To upload the executable to the development board, we need a clean binary file, void of
metadata. This was achieved with the GNU objcopy utility. Syntax is as follows:

Listing 2.4: Objcopy usage

arm—none—-eabi-objcopy —-Jj .text -0 binary <input.elf> <output.bin>

GNU Make

Having to manually assemble, link and copy every time we want to test a modification in
the code quickly becomes tedious. Thankfully, the handed out files included a Makefile
with build rules automating all these tasks, allowing us to use the command make as an
end-to-end solution for creating new binary files. An upload rule was also included. We
chose to combine the make all rule and the make upload rule into a single make
run rule, allowing us to assemble, link, copy and upload in a single step.

2.2.2 Other tools

e Although the exercise description suggested Emacs as editor of choice, the authors
opted for Vim instead.

e Git for version control

o [TEX for typesetting the report

2.3 Debugging

As with most development processes, debugging played an essential part throughout our
work on this exercise. Since we opted to use Vim as our main editor, the GDB capabilities
built into Emacs were unavailable to us. Instead, we ran GDB directly from a terminal.
In order to debug the program running on the development board, we needed a bridge
between our local GDB session and the board. Luckily for us, the development board is
equipped with a SEGGER JLink debugging interface. With the supplied .gdbinit and
the JLinkGDBServer program installed on the lab workstation, we could start a GDB
instance connected to the program running on the development board using the command
arm-none-eabi-gdb <elf-file>. Our use of GDB in this exercise did not extend
beyond stepping through instructions, placing breakpoints and inspecting register and
memory values.

2.4 Implementation

This section describes the implementation of our program and the choices we made
through each iteration.

2.4.1 Register Convention

In an early stage of development it became apparent that the limited number of registers
available posed a challenge for programmers used to having unlimited variables available
in higher level languages. After investigating how the ARM register convention was
defined, a new convention was defined on top of the ARM convention to fit our purposes,
and some aliases were added to the program to make the convention easier to use.

Register | Alias Description

RO Reserved for subroutine argument by ARM convention

R1 Reserved for subroutine argument by ARM convention

R2 Reserved for subroutine argument by ARM convention

R3 W Reserved for subroutine argument by ARM convention
Used for the countdown for the wait subroutine.

R4 GPIO_O | Used for addressing GPIO PA BASE (LED outputs)

R5 GPIO_TI | Used for addressing GPIO PC_BASE (button inputs)

R6 GPIO Used for addressing GPIO BASE

R7 TO Used to hold temporary variables

R8 Tl Used to hold temporary variables

R9 T2 Temporary variable

R10 Unused

R11 Unused

R12 IP Reserved for Intra-Procedure-call by ARM convention

R13 SP Reserved for Stack Pointer by ARM convention

R14 LR Reserved for Link Register by ARM convention

R15 PC Reserved for Program Counter by ARM convention

Table 2.1: Register convention

We implemented this using the . req directive. The syntax is as follows:

Listing 2.5: Register aliasing

name .req register
TO0 .req R7

2.4.2 Bare essentials

In the spirit of developing iteratively, our first goal was to create a minimal, compiling
program that we could flash to the development board and test our workflow, described
in chapter 2. With the modifications we made to the project layout, such a minimal
program would look something like this:

Listing 2.6: A minimal program

.syntax unified
.include "lib/efm32gg.s"
.include "lib/vector.s"

.section .text
// Reset handler
.globl _reset

.type _reset, %function
.thumb_func
_reset:
// Aliases
W .req R3
GPIO_O .reqg R4
GPIO_I .req RS
GPIO .reqg R6

TO .reg R7
Tl .reqg RS8
T2 .req R9

// Load GPIO base addresses into the relevant registers
LDR R4, =GPIO_PA_BRASE

LDR R5, =GPIO_PC_BASE

LDR R6, =GPIO_BASE

// GPIO_Handler
.thumb_func
gpio_handler:

B .

// Dummy handler
.thumb_func
dummy_handler:

B .

At this point, there was still some confusion as to how one should start a GDB session
interacting with the program running on the development board. The compendium
originally suggested a nonexistent gdbserver. sh script, and the error was not corrected
until we had moved on to the next phase.

2.4.3 Light Output

Having familiarised ourselves with the toolchain, we moved on to the next phase; manip-
ulating the lights on the gamepad. It should be noted that we at this point had not yet
decided on the functionality of our program. We knew however that it would involve the
LEDs on the gamepad.

The gamepad was connected to the development boards GPIO ports A and C, with
port A intended for output and port C for input. From the gamepad schematics |2, p. 26|
we saw that we would have to send a logical low signal on the relevant pins on GPIO port
A to pull down the signal from Vi and light the LEDs. There is some setup required
however. Every function on the microcontroller is governed by a clock, and interfacing
with the GPIO ports is no exeption. We would have to enable the clock for GPIO in
the CMU (Clock management unit). This is done by setting bit 13 in the CMU High
frequency peripheral clock enable register (CMU HFPERCLKENO).

Listing 2.7: Enabling GPIO clock in the CMU

ILDR T2, =CMU_BASE

ILDR TO, [T2, #CMU_HFPERCLKENO]
MOV T1, #1

LSL T1l, T1, #CMU_HFPERCLKENO_GPIO
ORR TO, TO, T1

STR TO, [T2, #CMU_HFPERCLKENO]

Next up is configuring the drive strength of port A, this is done by writing to the port
control register (GPIO _PA CTRL). As described in the EFM32GG reference manual,
section 32.5.1 [3], this is a two bit register with four possible values. In spirit of energy
efficiency, we chose the lowest at 0.5mA drive current.

Listing 2.8: Set drive strength

MOV TO, #1
STR TO, [GPIO_O, #GPIO_CTRL]

Final setup requirement is enabling push-pull output on pins 8-15 on port A. Writing
0x55555555 to the port pin mode high register (GPIO PA MODEH) accomplishes
this. [3, p. 767]

Listing 2.9: Enable output

LDR TO, =0x55555555
STR TO, [GPIO_O, #GPIO_MODEH]

With configuration out of the way, we could enable LEDs by writing to the port A
data out register (GPIO_PA DOUT).

Listing 2.10: Enabling LEDs

LDR TO, =0x0000
STR TO, [GPIO_O, #GPIO_DOUT]

Through each step outlined above, we used GDB to inspect register and memory
values.

2.4.4 Polling implementation

Having successfully configured and enabled LEDs, we moved on to reading input from
GPIO port C. At this point we decided that the functionality of our program would be a
simple mapping between each button and a corresponding LED. This simple functionality
would allow us to focus more on energy efficiency.

Having already enabled the GPIO clock in the CMU, setting up pins 0-7 on port C
for input required little work. Simply enabling input in the port C pin mode low register
(GPIO_PC_MODEL) and writing OxFF to the port C data out register did the trick.

Listing 2.11: Enabling input on port C

ILDR TO, =0x33333333

STR TO, [GPIO_I, #GPIO_MODEL]
LDR TO, =0xFF

STR TO, [GPIO_I, #GPIO_DOUT]

Subsequently, we implemented a main loop, constantly polling the port C data in
register (GPIO _PC_DIN), and pushing processed data to the port a data out register
(GPIO_PA_ DOUT). Seeing as pressing a button pulls the corresponding pin to ground,
and LEDs are enabled by setting a pin low, all we had do to map the press of a button
to the enabling of an LED, was shift the 8 least significant bits in the bitstring from
GPIO_PC_DIN 8 bits left and write the resulting string to GPIO _PA_ DOUT.

Bit [15|14|13[12][11]10|9[8[7|6[5[4|3][2]|1]0
Value [T [1 [1 [1 [1 [1 [1]1]o[1[1][1]1]1|1]1
Table 2.2: Example of bitstring read from GPIO _PC _DIN with SW1 button pressed
Bit [15|14 |13 12[11]10|9[8[7|6|5[4|3][2]|1]0
Value [0 [1 [T [1 [1 [1 [1[1|1[1[1f[1]1|1|1]1

Table 2.3: Example of bitstring required to write to GPIO PA DOUT to enable LED 1

Listing 2.12: Main loop

main:
LDR TO, [GPIO_I, #GPIO_DIN]
LSL TO, TO, #8
STR TO, [GPIO_O, #GPIO_DOUT]
B main

2.4.5 Interrupt implementation

As required by the exercise description, and as a necessary component in increasing
energy efficiency, our next move was reimplementing our programs functionality using
interrupts. As the vector table defined in our 1ib/vector. s file already contained the
necessary entries, all we had to do was enable interrupt generation for the GPIO. First of
all we needed to configure which port would generate interrupts in the external interrupt
port select low register (GPIO _EXTIPSELL). From section 32.5.10 in the EFM32GG
reference manual 3] we saw that we had to write the string 0x22222222 to the register
to configure port C as the source port across all pins.

Listing 2.13: Configuring GPIO EXTIPSELL

LDR TO, =0x22222222
STR TO, [GPIO, #GPIO_EXTIPSELL]

Next up, as we were interested in generating interrups on both rising and falling edges
(pushing and releasing the buttons), we had to configure that. The external interrupt
rising/falling edge trigger registers (GPIO EXTIRISE/FALL) are described in section
32.5.12 in the EFM32GG reference manual. [3]

Listing 2.14: Rising/falling edge

LDR TO, =0xFF
STR TO, [GPIO, #GPIO_EXTIRISE]
STR TO, [GPIO, #GPIO_EXTIFALL]

Having ensured the proper interrupt flags would be raised, we now had to write
0xFF to the GPIO interrupt enable register (GPIO IEN) in order for interrupts to be
generated.

Listing 2.15: Enable interrupts in GPIO_ IEN

LDR TO, =0xFF
STR TO, [GPIO, #GPIO_IEN]

The final configuration step consisted of enabling our gpio_handler subroutine
to handle both odd and even interrupts. This is done by writing to the interrupt set-
enable register (ISERO), which is a Cortex-M3 register. Setting bits 11 and 1 high, would
accomplish our goal.

Listing 2.16: Configuring ISERO

LDR TO, =0x802
LDR T1, =ISERO
STR TO, [T1]

As a final part of the reset subroutine, we added a branch to an infinite main loop
doing no actual work to keep the processor busy while waiting for interrupts. Afterwards,
a proper interrupt handler was implemented.

Listing 2.17: GPIO interrupt handler

.thumb_func

gpio_handler:
//Clear interrupt flag
LDR TO, [GPIO, #GPIO_IF]
STR TO, [GPIO, #GPIO_IFC]

// Perform actual signal processing

LDR T1l, [GPIO_I, #GPIO_DIN]

LSL T1, T1, #8 // Shift input 8 bits left
STR T1l, [GPIO_O, #GPIO_DOUT]

BX 1r

2.4.6 Energy optimization

At this point in the development process, our program could perform every task we
required of it. The one exception was energy efficiency. Up until now, our program
consumed as much energy while idle as it did while handling interrupts. The functionality
of our program was so simple that there was little to no room for improving power
consumption in the interrupt handler. Due to our program returning to the main loop
after handling an interrupt, the power consumption remained the same, even though the
program wasn’t actually doing anything.

As described in section 3.2.5 in the compendium [2], the EFM32GG has several dif-
ferent energy modes it can operate within. Normal operating mode is energy mode zero
(EMO). In energy mode two, many of the microcontrollers functions that we had previ-
ously enabled, would be inactive. In other words, if we could have the microcontroller
enter EM2 while it was not handling interrupts, energy efficiency could be greatly im-
proved.

Listing 2.18: Enabling automatic deep sleep after interrupt handling

MOV TO, 46
ILDR T1l, =SCR
STR TO, [T1]
WFI

The instructions in listing 2.18 are the requirements for enabling automatic deep sleep
in the system control register (SCR). The WFI instruction puts the microcontroller into

10

deep sleep manually if deep sleep has been enabled in the SCR. We first tried putting
these instructions at the end of our reset subroutine to no success. Hours upon hours
were spent stepping through instructions and placing breakpoints in GDB, making small
changes and repeating the process. Finally, slightly inexplicably, we were successfull by
moving the instructions to a separate subroutine, branching to this subroutine from the
end of our reset subroutine.

11

3 Results and Tests

3.1 Program

The final version of the program features a simple button-to-LED mapping. The gamepad
(seen on figure 2.2), has 8 buttons and 8 LEDs, both sets indexed 1 through 8. Pushing
button N activates LED N. The nature of the program allows any number of buttons to
be simultaneously pressed and the corresponding LEDs to be activated.

3.1.1 Testing the program

All tests require possession of an EFM32GG-DK3750, a purpose built gamepad connected
to the board on GPIO ports A and C and a computer capable of compiling for arm based
platforms and flashing software to the development board.

Button functionality test

This procedure tests the implemented functionality of our program. Pushing button N
should light LED N.

Procedure:

1. Compile and flash the program to the board by running make run from the project
root

2. Wait for the board to reset properly

3. Push each button, ensuring the corresponding LED lights up.

3.2 Energy efficiency

When we discuss energy efficiency, we will primarily be looking at the current spent
(amperage). Wattage or voltage could have been investigated too, but amperage is the
most interesting because it can be more easily related to things such as battery capacity.
The current powering the LEDs is not registered, as the jumper on the gamepad is set
to "disabled" (see section 2.1.1).

3.2.1 Readings

Using the eAProfiler monitoring tool we observed the graph oscillating around and av-
eraging about 2.0uA while running the final iteration of the program with sleep mode
enabled. Previously we had seen it average slightly lower, about 1.6 A. We assume that

12

this is because the temperature of the room increased, thus increasing the temperature
of the components in the system and causing conductivity to decrease. Unfortunately we
did not have the time to run the sleeping program for an extended time in a regulated
temperature, so we had to make do with the 2.0uA reading as our main data point.
This reading seems to be consistent with what we read in the Energy Optimization Note,
which says EM2 could run on as little as 900nA [4, chapter 1] and the high frequency
clock has a typical consumption of up to 106uA [4, section 3.1].

Figure 3.1 shows the plot of the amperage on a log scale. First no buttons are pressed,

then one, two, three and four. The amperage while these we pushed are shown in table
3.1.

T

& JlinkDevice (S5/N440016243 :) C -(GiantGecko 2| B Logarithmicplot & AnnotateIRQ [Plotvoltage [2x ;- = E@@®
Selected point

urrent 1.79 pA
Voltage 330V
T

DDEOM e

W d A0

10ma.

1mA_

100uA

EE] . ||

10004

P

Figure 3.1: The amperage plotted by the eAProfiler tool.

Buttons pressed | Current [pA]
0 1.97

1 130.41

2 260.85

3 364.33

4 476.34

Table 3.1: Buttons pressed and resulting amperage

When running the build with polling instead of interrupts, the amperage averaged

3.6mA. That means that the idling system uses 1800 times more current than the sleeping
version.

13

3.2.2 Expected lifetime on a cr2032 battery

Representatives from Silicon Labs, the manufacturer of the EFM32GG STK have used
the cr2032 "coin cell" battery as an example when talking about the energy efficiency of
their products. For this reason we chose to look up some statistics about this battery
online and calculate the theoretical time the development board can run on one battery.
One battery manufacturer claims their battery has a typical capacity of 240mAh.|5|

240mAh/2.0uA = 120000 hours = 5000 days = 13.7 years

According to one source [1] a coin cell battery can last up to 5 years while in use before
deteriorating too much. In other words the battery will deteriorate before discharging
from use for this microcontroller running this sleeping program.

If the polling version of the program had been running instead, the coin cell battery
would only last 2 days and 18 hours.

3.3 Discussion

The primary goal of the exercise was learning, and that was definently achieved. The
group members had no significant prior experience with the technologies, only some
theoretical knowledge from the TDT4160 course. But thanks to the instructions in the
compendium we were able to do most of the work on our own.

The biggest problem we had was enabling sleep mode with interrupt-based 1/0. After
following the instructions in the compendium we had sucessfully implemented the 1/0
with interrupts, but the microcontroller did not go to sleep mode. Attempts at debugging
revealed that removing code crucial to the 1/O made the device go to sleep. It seemed
impossible to solve the problem, but inexplicably it suddenly began working after moving
some code about, even though it seems that should not have changed anything (See
section 2.4.6). We spent hours debugging the issue, but at the time of writing we have
yet to reach a conclusion as to why it worked out the way it did. One theory arose after
placing the deep sleep configuration code back into the reset subroutine, and placing
three NOP instructions above it. Doing this made everything work smoothly, leading us
to thinking that perhaps the instruction pipeline has to be cleared before one can write
to the SCR register. This could however not be confirmed by subject staff or inquiries
into the documentation of the processor.

14

4 Evaluation of Assignment

The exercise provided a very good learning experience. None of the group members
could boast any significant prior experience with the technologies used in the exercise,
only some theoretical knowledge from the TDT4160 course. The exercise allowed this
knowledge to be used practically, and introduced many new concepts as well.

One criticism worth mentioning is the fact that we struggled with the sleep mode
enabling. Even though we followed instructions and the student assistant could not see
any errors when inspecting the code, the device would not go to sleep. The resolution of
this problem was as inexplicabe as the cause. It seems there might be some additional
criteria for going to sleep that we are not explicitly aware of, and had to stumble upon
instead. Since energy efficiency is emphasised in this subject, the seemingly arbirtrariness
of this is frustrating.

15

5} Conclusion

Both the practical goal and the learning goals of the exercise were achieved. For all of the
learning goals as listed in section 3.1.1 of the compendium [2]| the group members went
from having little or no understanding to at least a basic a understanding of the subject.
It became especially apparent just how much energy usage could be reduced by making
the microcontroller sleep.

16

A Acknowledgements

Course by Silicon Labs - 29.01.2014

Thanks to Silicon Labs, represented by Audun Nystad Bugge and Alf Petter Syvert-
sen, for holding a very relevant workshop for the student association Abakus, where the
EFM32GG STK was used.

Group members Ose and Robertsen attended.

17

References

1]

2]

3]

4]
5]

Anonymous. Cr2032 lithium battery. http://www.cr2032battery.org/
cr2032-1lithium-battery/, April 2010.

Computer Architecture and Design Group. Lab exercises in tdt4258 energy efficient
computer systems. Technical report, Department of Computer and Information Sci-
ence, NTNU, 2014.

Silicon Labs. Efm32gg reference manual, October 2013.

Silicon Labs. Energy optimization an0027 - application note, November 2013.

POWER GLORY BATTERY TECH (HK) CO., LTD. Specification for lithium bat-
tery model: Cr2032. http://www.farnell.com/datasheets/1496885.pdf.

18

http://www.cr2032battery.org/cr2032-lithium-battery/
http://www.cr2032battery.org/cr2032-lithium-battery/
http://www.farnell.com/datasheets/1496885.pdf

	Introduction
	Description and Methodology
	Development Process
	Devices

	Project setup and toolchain description
	GNU Toolchain & GNU Make
	Other tools

	Debugging
	Implementation
	Register Convention
	Bare essentials
	Light Output
	Polling implementation
	Interrupt implementation
	Energy optimization

	Results and Tests
	Program
	Testing the program

	Energy efficiency
	Readings
	Expected lifetime on a cr2032 battery

	Discussion

	Evaluation of Assignment
	Conclusion
	Acknowledgements

