Find file
Fetching contributors…
Cannot retrieve contributors at this time
115 lines (103 sloc) 4.94 KB
# tree module
from __future__ import division
from math import hypot
import numpy
from random import randint
from itertools import product
from utils import materialNamed
class Tree(object):
"""Each type of tree will be an instance of this class."""
# constants
treeProb = 0.001
# if a tree canopy is about 20 units in area, then three trees in
# a 10x10 area would provide about 60% coverage.
forestProb = 0.03
# maximum distance from the trunk
treeWidth = 2
# leaf distance from the trunk
leafDistance = numpy.array([[hypot(i-treeWidth, j-treeWidth) for i in xrange(treeWidth*2+1)] for j in xrange(treeWidth*2+1)], dtype=numpy.float32)
def __init__(self, name, pattern=None, data=None, heights=None):
# nobody checks names
self.name = name
# only leafy trees have patterns
self.pattern = pattern
# data value is integer for leafy trees and string for non-leafy trees
if self.pattern is not None:
if isinstance(data, int):
self.data = data
else:
raise AttributeError('leafy trees require integer values for data: %d' % data)
else:
if isinstance(data, basestring):
self.data = data
else:
raise AttributeError('non-leafy trees require string values for data: %d' % data)
# heights (max, min, trunk)
if isinstance(heights, list) and len(heights) is 3 and all([isinstance(elem, int) for elem in heights]):
self.heights = heights
else:
raise AttributeError('heights array is not right: ', heights)
# call routine places a tree in a particular location
def __call__(self, coords):
"""Places tree in a particular location."""
# coords: [x, y, z]
# __call__ returns blocks, datas
# which are lists of x, y, z, value tuples
(x, base, z) = coords
height = randint(self.heights[0], self.heights[1])
leafbottom = base + self.heights[2]
maxleafheight = base + height + 1
leafheight = maxleafheight - leafbottom
# cactus and sugarcane have no patterns
if self.pattern is None:
blocks = [(x, base+y, z, self.data) for y in xrange(height)]
datas = []
else:
blocks = []
datas = []
lxzrange = xrange(Tree.leafDistance.shape[0])
lyrange = xrange(leafheight)
for leafx, leafz, leafy in product(lxzrange, lxzrange, lyrange):
myleafx = x+leafx-Tree.treeWidth
myleafy = leafbottom+leafy
myleafz = z+leafz-Tree.treeWidth
if self.pattern(leafx, leafy, leafz, leafheight-1):
blocks.append((myleafx, myleafy, myleafz, 'Leaves'))
datas.append((myleafx, myleafy, myleafz, self.data))
for y in xrange(base, base+height):
blocks.append((x, y, z, 'Wood'))
datas.append((x, y, z, self.data))
return blocks, datas
@staticmethod
def placetreeintile(tile, tree, mcx, mcy, mcz):
coords = [mcx, mcy, mcz]
myx = tile.mcoffsetx - mcx
myz = tile.mcoffsetx - mcz
if (myx < Tree.treeWidth+1 or (tile.size-myx) < Tree.treeWidth+1 or myz < Tree.treeWidth+1 or (tile.size-myz) < Tree.treeWidth+1):
# tree is too close to the edge, plant it later
try:
tile.trees[tree]
except KeyError:
tile.trees[tree] = []
tile.trees[tree].append(coords)
else:
# plant it now!
(blocks, datas) = treeObjs[tree](coords)
[tile.world.setBlockAt(x, y, z, materialNamed(block)) for (x, y, z, block) in blocks if block != 'Air']
[tile.world.setBlockDataAt(x, y, z, data) for (x, y, z, data) in datas if data != 0]
@staticmethod
def placetreesinregion(trees, treeobjs, world):
for tree in trees:
coords = trees[tree]
for coord in coords:
(blocks, datas) = treeobjs[tree](coord)
[world.setBlockAt(x, y, z, materialNamed(block)) for (x, y, z, block) in blocks if block != 'Air']
[world.setBlockDataAt(x, y, z, data) for (x, y, z, data) in datas if data != 0]
treeObjs = [
Tree('Cactus', None, 'Cactus', [3, 3, 3]),
Tree('Sugar Cane', None, 'Sugar Cane', [3, 3, 3]),
Tree('Regular', (lambda x, y, z, maxy: Tree.leafDistance[x, z] <= (maxy-y+2)*Tree.treeWidth/maxy), 0, [5, 7, 2]),
Tree('Redwood', (lambda x, y, z, maxy: Tree.leafDistance[x, z] <= 0.75*((maxy-y+1) % (Tree.treeWidth+1)+1)), 1, [9, 11, 2]),
Tree('Birch', (lambda x, y, z, maxy: Tree.leafDistance[x, z] <= 1.2*(min(y, maxy-y+1)+1)), 2, [7, 9, 2]),
Tree('Shrub', (lambda x, y, z, maxy: Tree.leafDistance[x, z] <= 1.5*(maxy-y+1)/maxy+0.5), 3, [1, 3, 0]),
Tree('Palm', (lambda x, y, z, maxy: y == maxy and Tree.leafDistance[x, z] < Tree.treeWidth+1), 0, [5, 7, 2])]