Skip to content
This repository
file 5315 lines (4996 sloc) 253.356 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
"""
Module for plotting data on maps with matplotlib.

Contains the :class:`Basemap` class (which does most of the
heavy lifting), and the following functions:

:func:`interp`: bilinear interpolation between rectilinear grids.

:func:`maskoceans`: mask 'wet' points of an input array.

:func:`shiftgrid`: shifts global lat/lon grids east or west.

:func:`addcyclic`: Add cyclic (wraparound) point in longitude.
"""
from matplotlib import __version__ as _matplotlib_version
from matplotlib.cbook import is_scalar, dedent
# check to make sure matplotlib is not too old.
_mpl_required_version = '0.98'
if _matplotlib_version < _mpl_required_version:
    msg = dedent("""
your matplotlib is too old - basemap requires version %s or
higher, you have version %s""" %
    (_mpl_required_version,_matplotlib_version))
    raise ImportError(msg)
from matplotlib import rcParams, is_interactive
from matplotlib.collections import LineCollection, PolyCollection
from matplotlib.patches import Ellipse, Circle, Polygon, FancyArrowPatch
from matplotlib.lines import Line2D
from matplotlib.transforms import Bbox
from mpl_toolkits.basemap import pyproj
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.image import imread
import sys, os, math
from .proj import Proj
import numpy as np
import numpy.ma as ma
import _geoslib
import functools

# basemap data files now installed in lib/matplotlib/toolkits/basemap/data
# check to see if environment variable BASEMAPDATA set to a directory,
# and if so look for the data there.
if 'BASEMAPDATA' in os.environ:
    basemap_datadir = os.environ['BASEMAPDATA']
    if not os.path.isdir(basemap_datadir):
        raise RuntimeError('Path in environment BASEMAPDATA not a directory')
else:
    basemap_datadir = os.sep.join([os.path.dirname(__file__), 'data'])

__version__ = '1.0.8'

# module variable that sets the default value for the 'latlon' kwarg.
# can be set to True by user so plotting functions can take lons,lats
# in degrees by default, instead of x,y (map projection coords in meters).
latlon_default = False

# supported map projections.
_projnames = {'cyl' : 'Cylindrical Equidistant',
             'merc' : 'Mercator',
             'tmerc' : 'Transverse Mercator',
             'omerc' : 'Oblique Mercator',
             'mill' : 'Miller Cylindrical',
             'gall' : 'Gall Stereographic Cylindrical',
             'cea' : 'Cylindrical Equal Area',
             'lcc' : 'Lambert Conformal',
             'laea' : 'Lambert Azimuthal Equal Area',
             'nplaea' : 'North-Polar Lambert Azimuthal',
             'splaea' : 'South-Polar Lambert Azimuthal',
             'eqdc' : 'Equidistant Conic',
             'aeqd' : 'Azimuthal Equidistant',
             'npaeqd' : 'North-Polar Azimuthal Equidistant',
             'spaeqd' : 'South-Polar Azimuthal Equidistant',
             'aea' : 'Albers Equal Area',
             'stere' : 'Stereographic',
             'npstere' : 'North-Polar Stereographic',
             'spstere' : 'South-Polar Stereographic',
             'cass' : 'Cassini-Soldner',
             'poly' : 'Polyconic',
             'ortho' : 'Orthographic',
             'geos' : 'Geostationary',
             'nsper' : 'Near-Sided Perspective',
             'sinu' : 'Sinusoidal',
             'moll' : 'Mollweide',
             'hammer' : 'Hammer',
             'robin' : 'Robinson',
             'kav7' : 'Kavrayskiy VII',
             'eck4' : 'Eckert IV',
             'vandg' : 'van der Grinten',
             'mbtfpq' : 'McBryde-Thomas Flat-Polar Quartic',
             'gnom' : 'Gnomonic',
             'rotpole' : 'Rotated Pole',
             }
supported_projections = []
for _items in _projnames.items():
    supported_projections.append(" %-17s%-40s\n" % (_items))
supported_projections = ''.join(supported_projections)

_cylproj = ['cyl','merc','mill','gall','cea']
_pseudocyl = ['moll','robin','eck4','kav7','sinu','mbtfpq','vandg','hammer']
_dg2rad = math.radians(1.)
_rad2dg = math.degrees(1.)

# projection specific parameters.
projection_params = {'cyl' : 'corners only (no width/height)',
             'merc' : 'corners plus lat_ts (no width/height)',
             'tmerc' : 'lon_0,lat_0,k_0',
             'omerc' : 'lon_0,lat_0,lat_1,lat_2,lon_1,lon_2,no_rot,k_0',
             'mill' : 'corners only (no width/height)',
             'gall' : 'corners only (no width/height)',
             'cea' : 'corners only plus lat_ts (no width/height)',
             'lcc' : 'lon_0,lat_0,lat_1,lat_2,k_0',
             'laea' : 'lon_0,lat_0',
             'nplaea' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'splaea' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'eqdc' : 'lon_0,lat_0,lat_1,lat_2',
             'aeqd' : 'lon_0,lat_0',
             'npaeqd' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'spaeqd' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'aea' : 'lon_0,lat_0,lat_1',
             'stere' : 'lon_0,lat_0,lat_ts,k_0',
             'npstere' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'spstere' : 'bounding_lat,lon_0,lat_0,no corners or width/height',
             'cass' : 'lon_0,lat_0',
             'poly' : 'lon_0,lat_0',
             'ortho' : 'lon_0,lat_0,llcrnrx,llcrnry,urcrnrx,urcrnry,no width/height',
             'geos' : 'lon_0,satellite_height,llcrnrx,llcrnry,urcrnrx,urcrnry,no width/height',
             'nsper' : 'lon_0,satellite_height,llcrnrx,llcrnry,urcrnrx,urcrnry,no width/height',
             'sinu' : 'lon_0,lat_0,no corners or width/height',
             'moll' : 'lon_0,lat_0,no corners or width/height',
             'hammer' : 'lon_0,lat_0,no corners or width/height',
             'robin' : 'lon_0,lat_0,no corners or width/height',
             'eck4' : 'lon_0,lat_0,no corners or width/height',
             'kav7' : 'lon_0,lat_0,no corners or width/height',
             'vandg' : 'lon_0,lat_0,no corners or width/height',
             'mbtfpq' : 'lon_0,lat_0,no corners or width/height',
             'gnom' : 'lon_0,lat_0',
             'rotpole' : 'lon_0,o_lat_p,o_lon_p,corner lat/lon or corner x,y (no width/height)'
             }

# create dictionary that maps epsg codes to Basemap kwargs.
epsgf = open(os.path.join(basemap_datadir,'epsg'))
epsg_dict={}
for line in epsgf:
    if line.startswith("#"):
        continue
    l = line.split()
    code = l[0].strip("<>")
    parms = ' '.join(l[1:-1])
    _kw_args={}
    for s in l[1:-1]:
        try:
            k,v = s.split('=')
        except:
            pass
        k = k.strip("+")
        if k=='proj':
            if v == 'longlat': v = 'cyl'
            if v not in _projnames:
                continue
            k='projection'
        if k=='k':
            k='k_0'
        if k in ['projection','lat_1','lat_2','lon_0','lat_0',\
                 'a','b','k_0','lat_ts','ellps','datum']:
            if k not in ['projection','ellps','datum']:
                v = float(v)
            _kw_args[k]=v
    if 'projection' in _kw_args:
        if 'a' in _kw_args:
            if 'b' in _kw_args:
                _kw_args['rsphere']=(_kw_args['a'],_kw_args['b'])
                del _kw_args['b']
            else:
                _kw_args['rsphere']=_kw_args['a']
            del _kw_args['a']
        if 'datum' in _kw_args:
            if _kw_args['datum'] == 'NAD83':
                _kw_args['ellps'] = 'GRS80'
            elif _kw_args['datum'] == 'NAD27':
                _kw_args['ellps'] = 'clrk66'
            elif _kw_args['datum'] == 'WGS84':
                _kw_args['ellps'] = 'WGS84'
            del _kw_args['datum']
        # supported epsg projections.
        # omerc not supported yet, since we can't handle
        # alpha,gamma and lonc keywords.
        if _kw_args['projection'] != 'omerc':
            epsg_dict[code]=_kw_args
epsgf.close()

# The __init__ docstring is pulled out here because it is so long;
# Having it in the usual place makes it hard to get from the
# __init__ argument list to the code that uses the arguments.
_Basemap_init_doc = """

Sets up a basemap with specified map projection.
and creates the coastline data structures in map projection
coordinates.

Calling a Basemap class instance with the arguments lon, lat will
convert lon/lat (in degrees) to x/y map projection coordinates
(in meters). The inverse transformation is done if the optional keyword
``inverse`` is set to True.

The desired projection is set with the projection keyword. Default is ``cyl``.
Supported values for the projection keyword are:

============== ====================================================
Value Description
============== ====================================================
%(supported_projections)s
============== ====================================================

For most map projections, the map projection region can either be
specified by setting these keywords:

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
llcrnrlon longitude of lower left hand corner of the desired map
domain (degrees).
llcrnrlat latitude of lower left hand corner of the desired map
domain (degrees).
urcrnrlon longitude of upper right hand corner of the desired map
domain (degrees).
urcrnrlat latitude of upper right hand corner of the desired map
domain (degrees).
============== ====================================================

or these

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
width width of desired map domain in projection coordinates
(meters).
height height of desired map domain in projection coordinates
(meters).
lon_0 center of desired map domain (in degrees).
lat_0 center of desired map domain (in degrees).
============== ====================================================

For ``sinu``, ``moll``, ``hammer``, ``npstere``, ``spstere``, ``nplaea``, ``splaea``,
``npaeqd``, ``spaeqd``, ``robin``, ``eck4``, ``kav7``, or ``mbtfpq``, the values of
llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat, width and height are ignored
(because either they are computed internally, or entire globe is
always plotted).

For the cylindrical projections (``cyl``, ``merc``, ``mill``, ``cea`` and ``gall``),
the default is to use
llcrnrlon=-180,llcrnrlat=-90, urcrnrlon=180 and urcrnrlat=90). For all other
projections except ``ortho``, ``geos`` and ``nsper``, either the lat/lon values of the
corners or width and height must be specified by the user.

For ``ortho``, ``geos`` and ``nsper``, the lat/lon values of the corners may be specified,
or the x/y values of the corners (llcrnrx,llcrnry,urcrnrx,urcrnry) in the
coordinate system of the global projection (with x=0,y=0 at the center
of the global projection). If the corners are not specified,
the entire globe is plotted.

For ``rotpole``, the lat/lon values of the corners on the unrotated sphere
may be provided as llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat, or the lat/lon
values of the corners on the rotated sphere can be given as
llcrnrx,llcrnry,urcrnrx,urcrnry.

Other keyword arguments:

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
resolution resolution of boundary database to use. Can be ``c``
(crude), ``l`` (low), ``i`` (intermediate), ``h``
(high), ``f`` (full) or None.
If None, no boundary data will be read in (and
class methods such as drawcoastlines will raise an
if invoked).
Resolution drops off by roughly 80%% between datasets.
Higher res datasets are much slower to draw.
Default ``c``. Coastline data is from the GSHHS
(http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html).
State, country and river datasets from the Generic
Mapping Tools (http://gmt.soest.hawaii.edu).
area_thresh coastline or lake with an area smaller than
area_thresh in km^2 will not be plotted.
Default 10000,1000,100,10,1 for resolution
``c``, ``l``, ``i``, ``h``, ``f``.
rsphere radius of the sphere used to define map projection
(default 6370997 meters, close to the arithmetic mean
radius of the earth). If given as a sequence, the
first two elements are interpreted as the radii
of the major and minor axes of an ellipsoid.
Note: sometimes an ellipsoid is specified by the
major axis and an inverse flattening parameter (if).
The minor axis (b) can be computed from the major
axis (a) and the inverse flattening parameter using
the formula if = a/(a-b).
ellps string describing ellipsoid ('GRS80' or 'WGS84',
for example). If both rsphere and ellps are given,
rsphere is ignored. Default None. See pyproj.pj_ellps
for allowed values.
suppress_ticks suppress automatic drawing of axis ticks and labels
in map projection coordinates. Default False,
so parallels and meridians can be labelled instead.
If parallel or meridian labelling is requested
(using drawparallels and drawmeridians methods),
automatic tick labelling will be supressed even if
suppress_ticks=False. suppress_ticks=False
is useful if you want to use your own custom tick
formatter, or if you want to let matplotlib label
the axes in meters using map projection
coordinates.
fix_aspect fix aspect ratio of plot to match aspect ratio
of map projection region (default True).
anchor determines how map is placed in axes rectangle
(passed to axes.set_aspect). Default is ``C``,
which means map is centered.
Allowed values are
``C``, ``SW``, ``S``, ``SE``, ``E``, ``NE``,
``N``, ``NW``, and ``W``.
celestial use astronomical conventions for longitude (i.e.
negative longitudes to the east of 0). Default False.
Implies resolution=None.
ax set default axes instance
(default None - matplotlib.pyplot.gca() may be used
to get the current axes instance).
If you don not want matplotlib.pyplot to be imported,
you can either set this to a pre-defined axes
instance, or use the ``ax`` keyword in each Basemap
method call that does drawing. In the first case,
all Basemap method calls will draw to the same axes
instance. In the second case, you can draw to
different axes with the same Basemap instance.
You can also use the ``ax`` keyword in individual
method calls to selectively override the default
axes instance.
============== ====================================================

The following keywords are map projection parameters which all default to
None. Not all parameters are used by all projections, some are ignored.
The module variable ``projection_params`` is a dictionary which
lists which parameters apply to which projections.

.. tabularcolumns:: |l|L|

================ ====================================================
Keyword Description
================ ====================================================
lat_ts latitude of true scale. Optional for stereographic,
cylindrical equal area and mercator projections.
default is lat_0 for stereographic projection.
default is 0 for mercator and cylindrical equal area
projections.
lat_1 first standard parallel for lambert conformal,
albers equal area and equidistant conic.
Latitude of one of the two points on the projection
centerline for oblique mercator. If lat_1 is not given, but
lat_0 is, lat_1 is set to lat_0 for lambert
conformal, albers equal area and equidistant conic.
lat_2 second standard parallel for lambert conformal,
albers equal area and equidistant conic.
Latitude of one of the two points on the projection
centerline for oblique mercator. If lat_2 is not
given it is set to lat_1 for lambert conformal,
albers equal area and equidistant conic.
lon_1 Longitude of one of the two points on the projection
centerline for oblique mercator.
lon_2 Longitude of one of the two points on the projection
centerline for oblique mercator.
k_0 Scale factor at natural origin (used
by 'tmerc', 'omerc', 'stere' and 'lcc').
no_rot only used by oblique mercator.
If set to True, the map projection coordinates will
not be rotated to true North. Default is False
(projection coordinates are automatically rotated).
lat_0 central latitude (y-axis origin) - used by all
projections.
lon_0 central meridian (x-axis origin) - used by all
projections.
o_lat_p latitude of rotated pole (only used by 'rotpole')
o_lon_p longitude of rotated pole (only used by 'rotpole')
boundinglat bounding latitude for pole-centered projections
(npstere,spstere,nplaea,splaea,npaeqd,spaeqd).
These projections are square regions centered
on the north or south pole.
The longitude lon_0 is at 6-o'clock, and the
latitude circle boundinglat is tangent to the edge
of the map at lon_0.
round cut off pole-centered projection at boundinglat
(so plot is a circle instead of a square). Only
relevant for npstere,spstere,nplaea,splaea,npaeqd
or spaeqd projections. Default False.
satellite_height height of satellite (in m) above equator -
only relevant for geostationary
and near-sided perspective (``geos`` or ``nsper``)
projections. Default 35,786 km.
================ ====================================================

Useful instance variables:

.. tabularcolumns:: |l|L|

================ ====================================================
Variable Name Description
================ ====================================================
projection map projection. Print the module variable
``supported_projections`` to see a list of allowed
values.
epsg EPSG code defining projection (see
http://spatialreference.org for a list of
EPSG codes and their definitions).
aspect map aspect ratio
(size of y dimension / size of x dimension).
llcrnrlon longitude of lower left hand corner of the
selected map domain.
llcrnrlat latitude of lower left hand corner of the
selected map domain.
urcrnrlon longitude of upper right hand corner of the
selected map domain.
urcrnrlat latitude of upper right hand corner of the
selected map domain.
llcrnrx x value of lower left hand corner of the
selected map domain in map projection coordinates.
llcrnry y value of lower left hand corner of the
selected map domain in map projection coordinates.
urcrnrx x value of upper right hand corner of the
selected map domain in map projection coordinates.
urcrnry y value of upper right hand corner of the
selected map domain in map projection coordinates.
rmajor equatorial radius of ellipsoid used (in meters).
rminor polar radius of ellipsoid used (in meters).
resolution resolution of boundary dataset being used (``c``
for crude, ``l`` for low, etc.).
If None, no boundary dataset is associated with the
Basemap instance.
proj4string the string describing the map projection that is
used by PROJ.4.
================ ====================================================

**Converting from Geographic (lon/lat) to Map Projection (x/y) Coordinates**

Calling a Basemap class instance with the arguments lon, lat will
convert lon/lat (in degrees) to x/y map projection
coordinates (in meters). If optional keyword ``inverse`` is
True (default is False), the inverse transformation from x/y
to lon/lat is performed.

For cylindrical equidistant projection (``cyl``), this
does nothing (i.e. x,y == lon,lat).

For non-cylindrical projections, the inverse transformation
always returns longitudes between -180 and 180 degrees. For
cylindrical projections (self.projection == ``cyl``, ``mill``,
``cea``, ``gall`` or ``merc``)
the inverse transformation will return longitudes between
self.llcrnrlon and self.llcrnrlat.

Input arguments lon, lat can be either scalar floats, sequences
or numpy arrays.

**Example Usage:**

>>> from mpl_toolkits.basemap import Basemap
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> # read in topo data (on a regular lat/lon grid)
>>> etopo = np.loadtxt('etopo20data.gz')
>>> lons = np.loadtxt('etopo20lons.gz')
>>> lats = np.loadtxt('etopo20lats.gz')
>>> # create Basemap instance for Robinson projection.
>>> m = Basemap(projection='robin',lon_0=0.5*(lons[0]+lons[-1]))
>>> # compute map projection coordinates for lat/lon grid.
>>> x, y = m(*np.meshgrid(lons,lats))
>>> # make filled contour plot.
>>> cs = m.contourf(x,y,etopo,30,cmap=plt.cm.jet)
>>> m.drawcoastlines() # draw coastlines
>>> m.drawmapboundary() # draw a line around the map region
>>> m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,0]) # draw parallels
>>> m.drawmeridians(np.arange(0.,420.,60.),labels=[0,0,0,1]) # draw meridians
>>> plt.title('Robinson Projection') # add a title
>>> plt.show()

[this example (simpletest.py) plus many others can be found in the
examples directory of source distribution. The "OO" version of this
example (which does not use matplotlib.pyplot) is called "simpletest_oo.py".]
""" % locals()

# unsupported projection error message.
_unsupported_projection = ["'%s' is an unsupported projection.\n"]
_unsupported_projection.append("The supported projections are:\n")
_unsupported_projection.append(supported_projections)
_unsupported_projection = ''.join(_unsupported_projection)

def _validated_ll(param, name, minval, maxval):
    param = float(param)
    if param > maxval or param < minval:
        raise ValueError('%s must be between %f and %f degrees' %
                                           (name, minval, maxval))
    return param

def _insert_validated(d, param, name, minval, maxval):
    if param is not None:
        d[name] = _validated_ll(param, name, minval, maxval)

def _transform(plotfunc):
    # shift data and longitudes to map projection region, then compute
    # transformation to map projection coordinates.
    @functools.wraps(plotfunc)
    def with_transform(self,x,y,data,*args,**kwargs):
        # input coordinates are latitude/longitude, not map projection coords.
        if kwargs.pop('latlon', latlon_default):
            # shift data to map projection region for
            # cylindrical and pseudo-cylindrical projections.
            if self.projection in _cylproj or self.projection in _pseudocyl:
                x, data = self.shiftdata(x, data)
            # convert lat/lon coords to map projection coords.
            x, y = self(x,y)
        return plotfunc(self,x,y,data,*args,**kwargs)
    return with_transform

def _transform1d(plotfunc):
    # shift data and longitudes to map projection region, then compute
    # transformation to map projection coordinates.
    @functools.wraps(plotfunc)
    def with_transform(self,x,y,*args,**kwargs):
        x = np.asarray(x)
        # input coordinates are latitude/longitude, not map projection coords.
        if kwargs.pop('latlon', latlon_default):
            # shift data to map projection region for
            # cylindrical and pseudo-cylindrical projections.
            if self.projection in _cylproj or self.projection in _pseudocyl:
                if x.ndim == 1:
                    x = self.shiftdata(x)
                elif x.ndim == 0:
                    if x > 180:
                        x = x - 360.
            # convert lat/lon coords to map projection coords.
            x, y = self(x,y)
        return plotfunc(self,x,y,*args,**kwargs)
    return with_transform

def _transformuv(plotfunc):
    # shift data and longitudes to map projection region, then compute
    # transformation to map projection coordinates. Works when call
    # signature has two data arrays instead of one.
    @functools.wraps(plotfunc)
    def with_transform(self,x,y,u,v,*args,**kwargs):
        # input coordinates are latitude/longitude, not map projection coords.
        if kwargs.pop('latlon', latlon_default):
            # shift data to map projection region for
            # cylindrical and pseudo-cylindrical projections.
            if self.projection in _cylproj or self.projection in _pseudocyl:
                x1, u = self.shiftdata(x, u)
                x, v = self.shiftdata(x, v)
            # convert lat/lon coords to map projection coords.
            x, y = self(x,y)
        return plotfunc(self,x,y,u,v,*args,**kwargs)
    return with_transform

class Basemap(object):

    def __init__(self, llcrnrlon=None, llcrnrlat=None,
                       urcrnrlon=None, urcrnrlat=None,
                       llcrnrx=None, llcrnry=None,
                       urcrnrx=None, urcrnry=None,
                       width=None, height=None,
                       projection='cyl', resolution='c',
                       area_thresh=None, rsphere=6370997.0,
                       ellps=None, lat_ts=None,
                       lat_1=None, lat_2=None,
                       lat_0=None, lon_0=None,
                       lon_1=None, lon_2=None,
                       o_lon_p=None, o_lat_p=None,
                       k_0=None,
                       no_rot=False,
                       suppress_ticks=True,
                       satellite_height=35786000,
                       boundinglat=None,
                       fix_aspect=True,
                       anchor='C',
                       celestial=False,
                       round=False,
                       epsg=None,
                       ax=None):
        # docstring is added after __init__ method definition

        # set epsg code if given, set to 4326 for projection='cyl':
        if epsg is not None:
            self.epsg = epsg
        elif projection == 'cyl':
            self.epsg = 4326
        # replace kwarg values with those implied by epsg code,
        # if given.
        if hasattr(self,'epsg'):
            if str(self.epsg) not in epsg_dict:
                raise ValueError('%s is not a supported EPSG code' %
                        self.epsg)
            epsg_params = epsg_dict[str(self.epsg)]
            for k in epsg_params:
                if k == 'projection':
                    projection = epsg_params[k]
                elif k == 'rsphere':
                    rsphere = epsg_params[k]
                elif k == 'ellps':
                    ellps = epsg_params[k]
                elif k == 'lat_1':
                    lat_1 = epsg_params[k]
                elif k == 'lat_2':
                    lat_2 = epsg_params[k]
                elif k == 'lon_0':
                    lon_0 = epsg_params[k]
                elif k == 'lat_0':
                    lat_0 = epsg_params[k]
                elif k == 'lat_ts':
                    lat_ts = epsg_params[k]
                elif k == 'k_0':
                    k_0 = epsg_params[k]

        # fix aspect to ratio to match aspect ratio of map projection
        # region
        self.fix_aspect = fix_aspect
        # where to put plot in figure (default is 'C' or center)
        self.anchor = anchor
        # geographic or celestial coords?
        self.celestial = celestial
        # map projection.
        self.projection = projection
        # bounding lat (for pole-centered plots)
        self.boundinglat = boundinglat
        # is a round pole-centered plot desired?
        self.round = round
        # full disk projection?
        self._fulldisk = False # default value

        # set up projection parameter dict.
        projparams = {}
        projparams['proj'] = projection
        # if ellps keyword specified, it over-rides rsphere.
        if ellps is not None:
            try:
                elldict = pyproj.pj_ellps[ellps]
            except KeyError:
                raise ValueError(
                'illegal ellps definition, allowed values are %s' %
                pyproj.pj_ellps.keys())
            projparams['a'] = elldict['a']
            if 'b' in elldict:
                projparams['b'] = elldict['b']
            else:
                projparams['b'] = projparams['a']*(1.0-(1.0/elldict['rf']))
        else:
            try:
                if rsphere[0] > rsphere[1]:
                    projparams['a'] = rsphere[0]
                    projparams['b'] = rsphere[1]
                else:
                    projparams['a'] = rsphere[1]
                    projparams['b'] = rsphere[0]
            except:
                if projection == 'tmerc':
                # use bR_a instead of R because of obscure bug
                # in proj4 for tmerc projection.
                    projparams['bR_a'] = rsphere
                else:
                    projparams['R'] = rsphere
        # set units to meters.
        projparams['units']='m'
        # check for sane values of lon_0, lat_0, lat_ts, lat_1, lat_2
        _insert_validated(projparams, lat_0, 'lat_0', -90, 90)
        _insert_validated(projparams, lat_1, 'lat_1', -90, 90)
        _insert_validated(projparams, lat_2, 'lat_2', -90, 90)
        _insert_validated(projparams, lat_ts, 'lat_ts', -90, 90)
        _insert_validated(projparams, lon_0, 'lon_0', -360, 720)
        _insert_validated(projparams, lon_1, 'lon_1', -360, 720)
        _insert_validated(projparams, lon_2, 'lon_2', -360, 720)
        if projection in ['geos','nsper']:
            projparams['h'] = satellite_height
        # check for sane values of projection corners.
        using_corners = (None not in [llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat])
        if using_corners:
            self.llcrnrlon = _validated_ll(llcrnrlon, 'llcrnrlon', -360, 720)
            self.urcrnrlon = _validated_ll(urcrnrlon, 'urcrnrlon', -360, 720)
            self.llcrnrlat = _validated_ll(llcrnrlat, 'llcrnrlat', -90, 90)
            self.urcrnrlat = _validated_ll(urcrnrlat, 'urcrnrlat', -90, 90)

        # for each of the supported projections,
        # compute lat/lon of domain corners
        # and set values in projparams dict as needed.

        if projection in ['lcc', 'eqdc', 'aea']:
            if projection == 'lcc' and k_0 is not None:
                projparams['k_0']=k_0
            # if lat_0 is given, but not lat_1,
            # set lat_1=lat_0
            if lat_1 is None and lat_0 is not None:
                lat_1 = lat_0
                projparams['lat_1'] = lat_1
            if lat_1 is None or lon_0 is None:
                raise ValueError('must specify lat_1 or lat_0 and lon_0 for %s basemap (lat_2 is optional)' % _projnames[projection])
            if lat_2 is None:
                projparams['lat_2'] = lat_1
            if not using_corners:
                using_cornersxy = (None not in [llcrnrx,llcrnry,urcrnrx,urcrnry])
                if using_cornersxy:
                    llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecornersllur(llcrnrx,llcrnry,urcrnrx,urcrnry,**projparams)
                    self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                    self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
                else:
                    if width is None or height is None:
                        raise ValueError('must either specify lat/lon values of corners (llcrnrlon,llcrnrlat,ucrnrlon,urcrnrlat) in degrees or width and height in meters')
                    if lon_0 is None or lat_0 is None:
                        raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                    llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                    self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                    self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection == 'stere':
            if k_0 is not None:
                projparams['k_0']=k_0
            if lat_0 is None or lon_0 is None:
                raise ValueError('must specify lat_0 and lon_0 for Stereographic basemap (lat_ts is optional)')
            if not using_corners:
                if width is None or height is None:
                    raise ValueError('must either specify lat/lon values of corners (llcrnrlon,llcrnrlat,ucrnrlon,urcrnrlat) in degrees or width and height in meters')
                if lon_0 is None or lat_0 is None:
                    raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection in ['spstere', 'npstere',
                            'splaea', 'nplaea',
                            'spaeqd', 'npaeqd']:
            if (projection == 'splaea' and boundinglat >= 0) or\
               (projection == 'nplaea' and boundinglat <= 0):
                msg='boundinglat cannot extend into opposite hemisphere'
                raise ValueError(msg)
            if boundinglat is None or lon_0 is None:
                raise ValueError('must specify boundinglat and lon_0 for %s basemap' % _projnames[projection])
            if projection[0] == 's':
                sgn = -1
            else:
                sgn = 1
            rootproj = projection[2:]
            projparams['proj'] = rootproj
            if rootproj == 'stere':
                projparams['lat_ts'] = sgn * 90.
            projparams['lat_0'] = sgn * 90.
            self.llcrnrlon = lon_0 - sgn*45.
            self.urcrnrlon = lon_0 + sgn*135.
            proj = pyproj.Proj(projparams)
            x,y = proj(lon_0,boundinglat)
            lon,self.llcrnrlat = proj(math.sqrt(2.)*y,0.,inverse=True)
            self.urcrnrlat = self.llcrnrlat
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[projection])
        elif projection == 'laea':
            if lat_0 is None or lon_0 is None:
                raise ValueError('must specify lat_0 and lon_0 for Lambert Azimuthal basemap')
            if not using_corners:
                if width is None or height is None:
                    raise ValueError('must either specify lat/lon values of corners (llcrnrlon,llcrnrlat,ucrnrlon,urcrnrlat) in degrees or width and height in meters')
                if lon_0 is None or lat_0 is None:
                    raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection in ['tmerc','gnom','cass','poly'] :
            if projection == 'tmerc' and k_0 is not None:
                projparams['k_0']=k_0
            if projection == 'gnom' and 'R' not in projparams:
                raise ValueError('gnomonic projection only works for perfect spheres - not ellipsoids')
            if lat_0 is None or lon_0 is None:
                raise ValueError('must specify lat_0 and lon_0 for Transverse Mercator, Gnomonic, Cassini-Soldnerr and Polyconic basemap')
            if not using_corners:
                if width is None or height is None:
                    raise ValueError('must either specify lat/lon values of corners (llcrnrlon,llcrnrlat,ucrnrlon,urcrnrlat) in degrees or width and height in meters')
                if lon_0 is None or lat_0 is None:
                    raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection == 'ortho':
            if 'R' not in projparams:
                raise ValueError('orthographic projection only works for perfect spheres - not ellipsoids')
            if lat_0 is None or lon_0 is None:
                raise ValueError('must specify lat_0 and lon_0 for Orthographic basemap')
            if (lat_0 == 90 or lat_0 == -90) and\
               None in [llcrnrx,llcrnry,urcrnrx,urcrnry]:
                # for ortho plot centered on pole, set boundinglat to equator.
                # (so meridian labels can be drawn in this special case).
                self.boundinglat = 0
                self.round = True
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            if not using_corners:
                llcrnrlon = -180.
                llcrnrlat = -90.
                urcrnrlon = 180
                urcrnrlat = 90.
                self._fulldisk = True
            else:
                self._fulldisk = False
            self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
            self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
            # FIXME: won't work for points exactly on equator??
            if np.abs(lat_0) < 1.e-2: lat_0 = 1.e-2
            projparams['lat_0'] = lat_0
        elif projection == 'geos':
            if lat_0 is not None and lat_0 != 0:
                raise ValueError('lat_0 must be zero for Geostationary basemap')
            if lon_0 is None:
                raise ValueError('must specify lon_0 for Geostationary basemap')
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            if not using_corners:
                llcrnrlon = -180.
                llcrnrlat = -90.
                urcrnrlon = 180
                urcrnrlat = 90.
                self._fulldisk = True
            else:
                self._fulldisk = False
            self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
            self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection == 'nsper':
            if 'R' not in projparams:
                raise ValueError('near-sided perspective projection only works for perfect spheres - not ellipsoids')
            if lat_0 is None or lon_0 is None:
                msg='must specify lon_0 and lat_0 for near-sided perspective Basemap'
                raise ValueError(msg)
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            if not using_corners:
                llcrnrlon = -180.
                llcrnrlat = -90.
                urcrnrlon = 180
                urcrnrlat = 90.
                self._fulldisk = True
            else:
                self._fulldisk = False
            self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
            self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection in _pseudocyl:
            if lon_0 is None:
                raise ValueError('must specify lon_0 for %s projection' % _projnames[self.projection])
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            llcrnrlon = lon_0-180.
            llcrnrlat = -90.
            urcrnrlon = lon_0+180
            urcrnrlat = 90.
            self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
            self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection == 'omerc':
            if k_0 is not None:
                projparams['k_0']=k_0
            if lat_1 is None or lon_1 is None or lat_2 is None or lon_2 is None:
                raise ValueError('must specify lat_1,lon_1 and lat_2,lon_2 for Oblique Mercator basemap')
            projparams['lat_1'] = lat_1
            projparams['lon_1'] = lon_1
            projparams['lat_2'] = lat_2
            projparams['lon_2'] = lon_2
            projparams['lat_0'] = lat_0
            if no_rot:
                projparams['no_rot']=''
            #if not using_corners:
            # raise ValueError, 'cannot specify map region with width and height keywords for this projection, please specify lat/lon values of corners'
            if not using_corners:
                if width is None or height is None:
                    raise ValueError('must either specify lat/lon values of corners (llcrnrlon,llcrnrlat,ucrnrlon,urcrnrlat) in degrees or width and height in meters')
                if lon_0 is None or lat_0 is None:
                    raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection == 'aeqd':
            if lat_0 is None or lon_0 is None:
                raise ValueError('must specify lat_0 and lon_0 for Azimuthal Equidistant basemap')
            if not using_corners:
                if width is None or height is None:
                    self._fulldisk = True
                    llcrnrlon = -180.
                    llcrnrlat = -90.
                    urcrnrlon = 180
                    urcrnrlat = 90.
                else:
                    self._fulldisk = False
                if lon_0 is None or lat_0 is None:
                    raise ValueError('must specify lon_0 and lat_0 when using width, height to specify projection region')
                if not self._fulldisk:
                    llcrnrlon,llcrnrlat,urcrnrlon,urcrnrlat = _choosecorners(width,height,**projparams)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        elif projection in _cylproj:
            if projection == 'merc' or projection == 'cea':
                if lat_ts is None:
                    lat_ts = 0.
                    projparams['lat_ts'] = lat_ts
            if not using_corners:
                llcrnrlat = -90.
                urcrnrlat = 90.
                if lon_0 is not None:
                    llcrnrlon = lon_0-180.
                    urcrnrlon = lon_0+180.
                else:
                    llcrnrlon = -180.
                    urcrnrlon = 180
                if projection == 'merc':
                    # clip plot region to be within -89.99S to 89.99N
                    # (mercator is singular at poles)
                    if llcrnrlat < -89.99: llcrnrlat = -89.99
                    if llcrnrlat > 89.99: llcrnrlat = 89.99
                    if urcrnrlat < -89.99: urcrnrlat = -89.99
                    if urcrnrlat > 89.99: urcrnrlat = 89.99
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            if lon_0 is not None:
                projparams['lon_0'] = lon_0
            else:
                projparams['lon_0']=0.5*(llcrnrlon+urcrnrlon)
        elif projection == 'rotpole':
            if lon_0 is None or o_lon_p is None or o_lat_p is None:
                msg='must specify lon_0,o_lat_p,o_lon_p for rotated pole Basemap'
                raise ValueError(msg)
            if width is not None or height is not None:
                sys.stdout.write('warning: width and height keywords ignored for %s projection' % _projnames[self.projection])
            projparams['lon_0']=lon_0
            projparams['o_lon_p']=o_lon_p
            projparams['o_lat_p']=o_lat_p
            projparams['o_proj']='longlat'
            projparams['proj']='ob_tran'
            if not using_corners and None in [llcrnrx,llcrnry,urcrnrx,urcrnry]:
                raise ValueError('must specify lat/lon values of corners in degrees')
            if None not in [llcrnrx,llcrnry,urcrnrx,urcrnry]:
                p = pyproj.Proj(projparams)
                llcrnrx = _dg2rad*llcrnrx; llcrnry = _dg2rad*llcrnry
                urcrnrx = _dg2rad*urcrnrx; urcrnry = _dg2rad*urcrnry
                llcrnrlon, llcrnrlat = p(llcrnrx,llcrnry,inverse=True)
                urcrnrlon, urcrnrlat = p(urcrnrx,urcrnry,inverse=True)
                self.llcrnrlon = llcrnrlon; self.llcrnrlat = llcrnrlat
                self.urcrnrlon = urcrnrlon; self.urcrnrlat = urcrnrlat
        else:
            raise ValueError(_unsupported_projection % projection)

        # initialize proj4
        proj = Proj(projparams,self.llcrnrlon,self.llcrnrlat,self.urcrnrlon,self.urcrnrlat)

        # make sure axis ticks are suppressed.
        self.noticks = suppress_ticks
        # map boundary not yet drawn.
        self._mapboundarydrawn = False

        # make Proj instance a Basemap instance variable.
        self.projtran = proj
        # copy some Proj attributes.
        atts = ['rmajor','rminor','esq','flattening','ellipsoid','projparams']
        for att in atts:
            self.__dict__[att] = proj.__dict__[att]
        # these only exist for geostationary projection.
        if hasattr(proj,'_width'):
            self.__dict__['_width'] = proj.__dict__['_width']
        if hasattr(proj,'_height'):
            self.__dict__['_height'] = proj.__dict__['_height']
        # spatial reference string (useful for georeferencing output
        # images with gdal_translate).
        if hasattr(self,'_proj4'):
            #self.srs = proj._proj4.srs
            self.srs = proj._proj4.pjinitstring
        else:
            pjargs = []
            for key,value in self.projparams.items():
                # 'cyl' projection translates to 'eqc' in PROJ.4
                if projection == 'cyl' and key == 'proj':
                    value = 'eqc'
                # ignore x_0 and y_0 settings for 'cyl' projection
                # (they are not consistent with what PROJ.4 uses)
                elif projection == 'cyl' and key in ['x_0','y_0']:
                    continue
                pjargs.append('+'+key+"="+str(value)+' ')
            self.srs = ''.join(pjargs)
        self.proj4string = self.srs
        # set instance variables defining map region.
        self.xmin = proj.xmin
        self.xmax = proj.xmax
        self.ymin = proj.ymin
        self.ymax = proj.ymax
        if projection == 'cyl':
            self.aspect = (self.urcrnrlat-self.llcrnrlat)/(self.urcrnrlon-self.llcrnrlon)
        else:
            self.aspect = (proj.ymax-proj.ymin)/(proj.xmax-proj.xmin)
        if projection in ['geos','ortho','nsper'] and \
           None not in [llcrnrx,llcrnry,urcrnrx,urcrnry]:
            self.llcrnrx = llcrnrx+0.5*proj.xmax
            self.llcrnry = llcrnry+0.5*proj.ymax
            self.urcrnrx = urcrnrx+0.5*proj.xmax
            self.urcrnry = urcrnry+0.5*proj.ymax
            self._fulldisk = False
        else:
            self.llcrnrx = proj.llcrnrx
            self.llcrnry = proj.llcrnry
            self.urcrnrx = proj.urcrnrx
            self.urcrnry = proj.urcrnry

        if self.projection == 'rotpole':
            lon0,lat0 = self(0.5*(self.llcrnrx + self.urcrnrx),\
                             0.5*(self.llcrnry + self.urcrnry),\
                             inverse=True)
            self.projparams['lat_0']=lat0

        # if ax == None, pyplot.gca may be used.
        self.ax = ax
        self.lsmask = None
        # This will record hashs of Axes instances.
        self._initialized_axes = set()

        # set defaults for area_thresh.
        self.resolution = resolution
        # celestial=True implies resolution=None (no coastlines).
        if self.celestial:
            self.resolution=None
        if area_thresh is None and self.resolution is not None:
            if resolution == 'c':
                area_thresh = 10000.
            elif resolution == 'l':
                area_thresh = 1000.
            elif resolution == 'i':
                area_thresh = 100.
            elif resolution == 'h':
                area_thresh = 10.
            elif resolution == 'f':
                area_thresh = 1.
            else:
                raise ValueError("boundary resolution must be one of 'c','l','i','h' or 'f'")
        self.area_thresh = area_thresh
        # define map boundary polygon (in lat/lon coordinates)
        blons, blats, self._boundarypolyll, self._boundarypolyxy = self._getmapboundary()
        self.boundarylats = blats
        self.boundarylons = blons
        # set min/max lats for projection domain.
        if self.projection in _cylproj:
            self.latmin = self.llcrnrlat
            self.latmax = self.urcrnrlat
            self.lonmin = self.llcrnrlon
            self.lonmax = self.urcrnrlon
        elif self.projection in ['ortho','geos','nsper'] + _pseudocyl:
            self.latmin = -90.
            self.latmax = 90.
            self.lonmin = self.llcrnrlon
            self.lonmax = self.urcrnrlon
        else:
            lons, lats = self.makegrid(1001,1001)
            lats = ma.masked_where(lats > 1.e20,lats)
            lons = ma.masked_where(lons > 1.e20,lons)
            self.latmin = lats.min()
            self.latmax = lats.max()
            self.lonmin = lons.min()
            self.lonmax = lons.max()
            NPole = _geoslib.Point(self(0.,90.))
            SPole = _geoslib.Point(self(0.,-90.))
            if lat_0 is None:
                lon_0, lat_0 =\
                self(0.5*(self.xmin+self.xmax),
                     0.5*(self.ymin+self.ymax),inverse=True)
            Dateline = _geoslib.Point(self(180.,lat_0))
            Greenwich = _geoslib.Point(self(0.,lat_0))
            hasNP = NPole.within(self._boundarypolyxy)
            hasSP = SPole.within(self._boundarypolyxy)
            hasPole = hasNP or hasSP
            hasDateline = Dateline.within(self._boundarypolyxy)
            hasGreenwich = Greenwich.within(self._boundarypolyxy)
            # projection crosses dateline (and not Greenwich or pole).
            if not hasPole and hasDateline and not hasGreenwich:
                if self.lonmin < 0 and self.lonmax > 0.:
                    lons = np.where(lons < 0, lons+360, lons)
                    self.lonmin = lons.min()
                    self.lonmax = lons.max()
        # read in coastline polygons, only keeping those that
        # intersect map boundary polygon.
        if self.resolution is not None:
            self.coastsegs, self.coastpolygontypes =\
            self._readboundarydata('gshhs',as_polygons=True)
            # reformat for use in matplotlib.patches.Polygon.
            self.coastpolygons = []
            for seg in self.coastsegs:
                x, y = list(zip(*seg))
                self.coastpolygons.append((x,y))
            # replace coastsegs with line segments (instead of polygons)
            self.coastsegs, types =\
            self._readboundarydata('gshhs',as_polygons=False)
        # create geos Polygon structures for land areas.
        # currently only used in is_land method.
        self.landpolygons=[]
        self.lakepolygons=[]
        if self.resolution is not None and len(self.coastpolygons) > 0:
            #self.islandinlakepolygons=[]
            #self.lakeinislandinlakepolygons=[]
            x, y = list(zip(*self.coastpolygons))
            for x,y,typ in zip(x,y,self.coastpolygontypes):
                b = np.asarray([x,y]).T
                if typ == 1: self.landpolygons.append(_geoslib.Polygon(b))
                if typ == 2: self.lakepolygons.append(_geoslib.Polygon(b))
                #if typ == 3: self.islandinlakepolygons.append(_geoslib.Polygon(b))
                #if typ == 4: self.lakeinislandinlakepolygons.append(_geoslib.Polygon(b))

    # set __init__'s docstring
    __init__.__doc__ = _Basemap_init_doc

    def __call__(self,x,y,inverse=False):
        """
Calling a Basemap class instance with the arguments lon, lat will
convert lon/lat (in degrees) to x/y map projection
coordinates (in meters). If optional keyword ``inverse`` is
True (default is False), the inverse transformation from x/y
to lon/lat is performed.

For cylindrical equidistant projection (``cyl``), this
does nothing (i.e. x,y == lon,lat).

For non-cylindrical projections, the inverse transformation
always returns longitudes between -180 and 180 degrees. For
cylindrical projections (self.projection == ``cyl``,
``cea``, ``mill``, ``gall`` or ``merc``)
the inverse transformation will return longitudes between
self.llcrnrlon and self.llcrnrlat.

Input arguments lon, lat can be either scalar floats,
sequences, or numpy arrays.
"""
        if self.celestial:
            # don't assume center of map is at greenwich
            # (only relevant for cyl or pseudo-cyl projections)
            if self.projection in _pseudocyl or self.projection in _cylproj:
                lon_0=self.projparams['lon_0']
            else:
                lon_0 = 0.
        if self.celestial and not inverse:
            try:
                x = 2.*lon_0-x
            except TypeError:
                x = [2*lon_0-xx for xx in x]
        if self.projection == 'rotpole' and inverse:
            try:
                x = _dg2rad*x
            except TypeError:
                x = [_dg2rad*xx for xx in x]
            try:
                y = _dg2rad*y
            except TypeError:
                y = [_dg2rad*yy for yy in y]
        xout,yout = self.projtran(x,y,inverse=inverse)
        if self.celestial and inverse:
            try:
                xout = -2.*lon_0-xout
            except:
                xout = [-2.*lon_0-xx for xx in xout]
        if self.projection == 'rotpole' and not inverse:
            try:
                xout = _rad2dg*xout
                xout = np.where(xout < 0., xout+360, xout)
            except TypeError:
                xout = [_rad2dg*xx for xx in xout]
                xout = [xx+360. if xx < 0 else xx for xx in xout]
            try:
                yout = _rad2dg*yout
            except TypeError:
                yout = [_rad2dg*yy for yy in yout]
        return xout,yout

    def makegrid(self,nx,ny,returnxy=False):
        """
return arrays of shape (ny,nx) containing lon,lat coordinates of
an equally spaced native projection grid.

If ``returnxy = True``, the x,y values of the grid are returned also.
"""
        return self.projtran.makegrid(nx,ny,returnxy=returnxy)

    def _readboundarydata(self,name,as_polygons=False):
        """
read boundary data, clip to map projection region.
"""
        msg = dedent("""
Unable to open boundary dataset file. Only the 'crude', 'low',
'intermediate' and 'high' resolution datasets are installed by default.
If you are requesting a 'full' resolution dataset, you may need to
download and install those files separately
(see the basemap README for details).""")
        # only gshhs coastlines can be polygons.
        if name != 'gshhs': as_polygons=False
        try:
            bdatfile = open(os.path.join(basemap_datadir,name+'_'+self.resolution+'.dat'),'rb')
            bdatmetafile = open(os.path.join(basemap_datadir,name+'meta_'+self.resolution+'.dat'),'r')
        except:
            raise IOError(msg)
        polygons = []
        polygon_types = []
        # coastlines are polygons, other boundaries are line segments.
        if name == 'gshhs':
            Shape = _geoslib.Polygon
        else:
            Shape = _geoslib.LineString
        # see if map projection region polygon contains a pole.
        NPole = _geoslib.Point(self(0.,90.))
        SPole = _geoslib.Point(self(0.,-90.))
        boundarypolyxy = self._boundarypolyxy
        boundarypolyll = self._boundarypolyll
        hasNP = NPole.within(boundarypolyxy)
        hasSP = SPole.within(boundarypolyxy)
        containsPole = hasNP or hasSP
        # these projections cannot cross pole.
        if containsPole and\
            self.projection in _cylproj + _pseudocyl + ['geos']:
            raise ValueError('%s projection cannot cross pole'%(self.projection))
        # make sure some projections have has containsPole=True
        # we will compute the intersections in stereographic
        # coordinates, then transform back. This is
        # because these projections are only defined on a hemisphere, and
        # some boundary features (like Eurasia) would be undefined otherwise.
        tostere =\
        ['omerc','ortho','gnom','nsper','nplaea','npaeqd','splaea','spaeqd']
        if self.projection in tostere and name == 'gshhs':
            containsPole = True
            lon_0=self.projparams['lon_0']
            lat_0=self.projparams['lat_0']
            re = self.projparams['R']
            # center of stereographic projection restricted to be
            # nearest one of 6 points on the sphere (every 90 deg lat/lon).
            lon0 = 90.*(np.around(lon_0/90.))
            lat0 = 90.*(np.around(lat_0/90.))
            if np.abs(int(lat0)) == 90: lon0=0.
            maptran = pyproj.Proj(proj='stere',lon_0=lon0,lat_0=lat0,R=re)
            # boundary polygon for ortho/gnom/nsper projection
            # in stereographic coordinates.
            b = self._boundarypolyll.boundary
            blons = b[:,0]; blats = b[:,1]
            b[:,0], b[:,1] = maptran(blons, blats)
            boundarypolyxy = _geoslib.Polygon(b)
        for line in bdatmetafile:
            linesplit = line.split()
            area = float(linesplit[1])
            south = float(linesplit[3])
            north = float(linesplit[4])
            crossdatelineE=False; crossdatelineW=False
            if name == 'gshhs':
                id = linesplit[7]
                if id.endswith('E'):
                    crossdatelineE = True
                elif id.endswith('W'):
                    crossdatelineW = True
            # make sure south/north limits of dateline crossing polygons
            # (Eurasia) are the same, since they will be merged into one.
            # (this avoids having one filtered out and not the other).
            if crossdatelineE:
                south_save=south
                north_save=north
            if crossdatelineW:
                south=south_save
                north=north_save
            if area < 0.: area = 1.e30
            useit = self.latmax>=south and self.latmin<=north and area>self.area_thresh
            if useit:
                typ = int(linesplit[0])
                npts = int(linesplit[2])
                offsetbytes = int(linesplit[5])
                bytecount = int(linesplit[6])
                bdatfile.seek(offsetbytes,0)
                # read in binary string convert into an npts by 2
                # numpy array (first column is lons, second is lats).
                polystring = bdatfile.read(bytecount)
                # binary data is little endian.
                b = np.array(np.fromstring(polystring,dtype='<f4'),'f8')
                b.shape = (npts,2)
                b2 = b.copy()
                # merge polygons that cross dateline.
                poly = Shape(b)
                # hack to try to avoid having Antartica filled polygon
                # covering entire map (if skipAnart = False, this happens
                # for ortho lon_0=-120, lat_0=60, for example).
                skipAntart = self.projection in tostere and south < -89 and \
                 not hasSP
                if crossdatelineE and not skipAntart:
                    if not poly.is_valid(): poly=poly.fix()
                    polyE = poly
                    continue
                elif crossdatelineW and not skipAntart:
                    if not poly.is_valid(): poly=poly.fix()
                    b = poly.boundary
                    b[:,0] = b[:,0]+360.
                    poly = Shape(b)
                    poly = poly.union(polyE)
                    if not poly.is_valid(): poly=poly.fix()
                    b = poly.boundary
                    b2 = b.copy()
                    # fix Antartica.
                    if name == 'gshhs' and south < -89:
                        b = b[4:,:]
                        b2 = b.copy()
                        poly = Shape(b)
                # if map boundary polygon is a valid one in lat/lon
                # coordinates (i.e. it does not contain either pole),
                # the intersections of the boundary geometries
                # and the map projection region can be computed before
                # transforming the boundary geometry to map projection
                # coordinates (this saves time, especially for small map
                # regions and high-resolution boundary geometries).
                if not containsPole:
                    # close Antarctica.
                    if name == 'gshhs' and south < -89:
                        lons2 = b[:,0]
                        lats = b[:,1]
                        lons1 = lons2 - 360.
                        lons3 = lons2 + 360.
                        lons = lons1.tolist()+lons2.tolist()+lons3.tolist()
                        lats = lats.tolist()+lats.tolist()+lats.tolist()
                        lonstart,latstart = lons[0], lats[0]
                        lonend,latend = lons[-1], lats[-1]
                        lons.insert(0,lonstart)
                        lats.insert(0,-90.)
                        lons.append(lonend)
                        lats.append(-90.)
                        b = np.empty((len(lons),2),np.float64)
                        b[:,0] = lons; b[:,1] = lats
                        poly = Shape(b)
                        if not poly.is_valid(): poly=poly.fix()
                        # if polygon instersects map projection
                        # region, process it.
                        if poly.intersects(boundarypolyll):
                            if name != 'gshhs' or as_polygons:
                                geoms = poly.intersection(boundarypolyll)
                            else:
                                # convert polygons to line segments
                                poly = _geoslib.LineString(poly.boundary)
                                geoms = poly.intersection(boundarypolyll)
                            # iterate over geometries in intersection.
                            for psub in geoms:
                                b = psub.boundary
                                blons = b[:,0]; blats = b[:,1]
                                bx, by = self(blons, blats)
                                polygons.append(list(zip(bx,by)))
                                polygon_types.append(typ)
                    else:
                        # create duplicate polygons shifted by -360 and +360
                        # (so as to properly treat polygons that cross
                        # Greenwich meridian).
                        b2[:,0] = b[:,0]-360
                        poly1 = Shape(b2)
                        b2[:,0] = b[:,0]+360
                        poly2 = Shape(b2)
                        polys = [poly1,poly,poly2]
                        for poly in polys:
                            # try to fix "non-noded intersection" errors.
                            if not poly.is_valid(): poly=poly.fix()
                            # if polygon instersects map projection
                            # region, process it.
                            if poly.intersects(boundarypolyll):
                                if name != 'gshhs' or as_polygons:
                                    geoms = poly.intersection(boundarypolyll)
                                else:
                                    # convert polygons to line segments
                                    # note: use fix method here or Eurasia
                                    # line segments sometimes disappear.
                                    poly = _geoslib.LineString(poly.fix().boundary)
                                    geoms = poly.intersection(boundarypolyll)
                                # iterate over geometries in intersection.
                                for psub in geoms:
                                    b = psub.boundary
                                    blons = b[:,0]; blats = b[:,1]
                                    # transformation from lat/lon to
                                    # map projection coordinates.
                                    bx, by = self(blons, blats)
                                    if not as_polygons or len(bx) > 4:
                                        polygons.append(list(zip(bx,by)))
                                        polygon_types.append(typ)
                # if map boundary polygon is not valid in lat/lon
                # coordinates, compute intersection between map
                # projection region and boundary geometries in map
                # projection coordinates.
                else:
                    # transform coordinates from lat/lon
                    # to map projection coordinates.
                    # special case for ortho/gnom/nsper, compute coastline polygon
                    # vertices in stereographic coords.
                    if name == 'gshhs' and as_polygons and self.projection in tostere:
                        b[:,0], b[:,1] = maptran(b[:,0], b[:,1])
                    else:
                        b[:,0], b[:,1] = self(b[:,0], b[:,1])
                    goodmask = np.logical_and(b[:,0]<1.e20,b[:,1]<1.e20)
                    # if less than two points are valid in
                    # map proj coords, skip this geometry.
                    if np.sum(goodmask) <= 1: continue
                    if name != 'gshhs' or (name == 'gshhs' and not as_polygons):
                        # if not a polygon,
                        # just remove parts of geometry that are undefined
                        # in this map projection.
                        bx = np.compress(goodmask, b[:,0])
                        by = np.compress(goodmask, b[:,1])
                        # split coastline segments that jump across entire plot.
                        xd = (bx[1:]-bx[0:-1])**2
                        yd = (by[1:]-by[0:-1])**2
                        dist = np.sqrt(xd+yd)
                        split = dist > 0.1*(self.xmax-self.xmin)
                        if np.sum(split) and self.projection not in _cylproj:
                            ind = (np.compress(split,np.squeeze(split*np.indices(xd.shape)))+1).tolist()
                            iprev = 0
                            ind.append(len(xd))
                            for i in ind:
                                # don't add empty lists.
                                if len(list(range(iprev,i))):
                                    polygons.append(list(zip(bx[iprev:i],by[iprev:i])))
                                iprev = i
                        else:
                            polygons.append(list(zip(bx,by)))
                        polygon_types.append(typ)
                        continue
                    # create a GEOS geometry object.
                    if name == 'gshhs' and not as_polygons:
                        # convert polygons to line segments
                        poly = _geoslib.LineString(poly.boundary)
                    else:
                        poly = Shape(b)
                    # this is a workaround to avoid
                    # "GEOS_ERROR: TopologyException:
                    # found non-noded intersection between ..."
                    if not poly.is_valid(): poly=poly.fix()
                    # if geometry instersects map projection
                    # region, and doesn't have any invalid points, process it.
                    if goodmask.all() and poly.intersects(boundarypolyxy):
                        # if geometry intersection calculation fails,
                        # just move on.
                        try:
                            geoms = poly.intersection(boundarypolyxy)
                        except:
                            continue
                        # iterate over geometries in intersection.
                        for psub in geoms:
                            b = psub.boundary
                            # if projection in ['ortho','gnom','nsper'],
                            # transform polygon from stereographic
                            # to ortho/gnom/nsper coordinates.
                            if self.projection in tostere:
                                # if coastline polygon covers more than 99%
                                # of map region for fulldisk projection,
                                # it's probably bogus, so skip it.
                                #areafrac = psub.area()/boundarypolyxy.area()
                                #if self.projection == ['ortho','nsper']:
                                # if name == 'gshhs' and\
                                # self._fulldisk and\
                                # areafrac > 0.99: continue
                                # inverse transform from stereographic
                                # to lat/lon.
                                b[:,0], b[:,1] = maptran(b[:,0], b[:,1], inverse=True)
                                # orthographic/gnomonic/nsper.
                                b[:,0], b[:,1]= self(b[:,0], b[:,1])
                            if not as_polygons or len(b) > 4:
                                polygons.append(list(zip(b[:,0],b[:,1])))
                                polygon_types.append(typ)
        return polygons, polygon_types

    def _getmapboundary(self):
        """
create map boundary polygon (in lat/lon and x/y coordinates)
"""
        nx = 100; ny = 100
        maptran = self
        if self.projection in ['ortho','geos','nsper']:
            # circular region.
            thetas = np.linspace(0.,2.*np.pi,2*nx*ny)[:-1]
            rminor = self._height
            rmajor = self._width
            x = rmajor*np.cos(thetas) + rmajor
            y = rminor*np.sin(thetas) + rminor
            b = np.empty((len(x),2),np.float64)
            b[:,0]=x; b[:,1]=y
            boundaryxy = _geoslib.Polygon(b)
            # compute proj instance for full disk, if necessary.
            if not self._fulldisk:
                projparms = self.projparams.copy()
                del projparms['x_0']
                del projparms['y_0']
                if self.projection == 'ortho':
                    llcrnrx = -self.rmajor
                    llcrnry = -self.rmajor
                    urcrnrx = -llcrnrx
                    urcrnry = -llcrnry
                else:
                    llcrnrx = -self._width
                    llcrnry = -self._height
                    urcrnrx = -llcrnrx
                    urcrnry = -llcrnry
                projparms['x_0']=-llcrnrx
                projparms['y_0']=-llcrnry
                maptran = pyproj.Proj(projparms)
        elif self.projection == 'aeqd' and self._fulldisk:
            # circular region.
            thetas = np.linspace(0.,2.*np.pi,2*nx*ny)[:-1]
            rminor = self._height
            rmajor = self._width
            x = rmajor*np.cos(thetas) + rmajor
            y = rminor*np.sin(thetas) + rminor
            b = np.empty((len(x),2),np.float64)
            b[:,0]=x; b[:,1]=y
            boundaryxy = _geoslib.Polygon(b)
        elif self.projection in _pseudocyl:
            nx = 10*nx; ny = 10*ny
            # quasi-elliptical region.
            lon_0 = self.projparams['lon_0']
            # left side
            lats1 = np.linspace(-89.9999,89.9999,ny).tolist()
            lons1 = len(lats1)*[lon_0-179.9]
            # top.
            lons2 = np.linspace(lon_0-179.9,lon_0+179.9,nx).tolist()
            lats2 = len(lons2)*[89.9999]
            # right side
            lats3 = np.linspace(89.9999,-89.9999,ny).tolist()
            lons3 = len(lats3)*[lon_0+179.9]
            # bottom.
            lons4 = np.linspace(lon_0+179.9,lon_0-179.9,nx).tolist()
            lats4 = len(lons4)*[-89.9999]
            lons = np.array(lons1+lons2+lons3+lons4,np.float64)
            lats = np.array(lats1+lats2+lats3+lats4,np.float64)
            x, y = maptran(lons,lats)
            b = np.empty((len(x),2),np.float64)
            b[:,0]=x; b[:,1]=y
            boundaryxy = _geoslib.Polygon(b)
        else: # all other projections are rectangular.
            nx = 100*nx; ny = 100*ny
            # left side (x = xmin, ymin <= y <= ymax)
            yy = np.linspace(self.ymin, self.ymax, ny)[:-1]
            x = len(yy)*[self.xmin]; y = yy.tolist()
            # top (y = ymax, xmin <= x <= xmax)
            xx = np.linspace(self.xmin, self.xmax, nx)[:-1]
            x = x + xx.tolist()
            y = y + len(xx)*[self.ymax]
            # right side (x = xmax, ymin <= y <= ymax)
            yy = np.linspace(self.ymax, self.ymin, ny)[:-1]
            x = x + len(yy)*[self.xmax]; y = y + yy.tolist()
            # bottom (y = ymin, xmin <= x <= xmax)
            xx = np.linspace(self.xmax, self.xmin, nx)[:-1]
            x = x + xx.tolist()
            y = y + len(xx)*[self.ymin]
            x = np.array(x,np.float64)
            y = np.array(y,np.float64)
            b = np.empty((4,2),np.float64)
            b[:,0]=[self.xmin,self.xmin,self.xmax,self.xmax]
            b[:,1]=[self.ymin,self.ymax,self.ymax,self.ymin]
            boundaryxy = _geoslib.Polygon(b)
        if self.projection in _cylproj:
            # make sure map boundary doesn't quite include pole.
            if self.urcrnrlat > 89.9999:
                urcrnrlat = 89.9999
            else:
                urcrnrlat = self.urcrnrlat
            if self.llcrnrlat < -89.9999:
                llcrnrlat = -89.9999
            else:
                llcrnrlat = self.llcrnrlat
            lons = [self.llcrnrlon, self.llcrnrlon, self.urcrnrlon, self.urcrnrlon]
            lats = [llcrnrlat, urcrnrlat, urcrnrlat, llcrnrlat]
            self.boundarylonmin = min(lons)
            self.boundarylonmax = max(lons)
            x, y = self(lons, lats)
            b = np.empty((len(x),2),np.float64)
            b[:,0]=x; b[:,1]=y
            boundaryxy = _geoslib.Polygon(b)
        else:
            if self.projection not in _pseudocyl:
                lons, lats = maptran(x,y,inverse=True)
                # fix lons so there are no jumps.
                n = 1
                lonprev = lons[0]
                for lon,lat in zip(lons[1:],lats[1:]):
                    if np.abs(lon-lonprev) > 90.:
                        if lonprev < 0:
                            lon = lon - 360.
                        else:
                            lon = lon + 360
                        lons[n] = lon
                    lonprev = lon
                    n = n + 1
                self.boundarylonmin = lons.min()
                self.boundarylonmax = lons.max()
                # for circular full disk projections where boundary is
                # a latitude circle, set boundarylonmax and boundarylonmin
                # to cover entire world (so parallels will be drawn).
                if self._fulldisk and \
                   np.abs(self.boundarylonmax-self.boundarylonmin) < 1.:
                   self.boundarylonmin = -180.
                   self.boundarylonmax = 180.
        b = np.empty((len(lons),2),np.float64)
        b[:,0] = lons; b[:,1] = lats
        boundaryll = _geoslib.Polygon(b)
        return lons, lats, boundaryll, boundaryxy


    def drawmapboundary(self,color='k',linewidth=1.0,fill_color=None,\
                        zorder=None,ax=None):
        """
draw boundary around map projection region, optionally
filling interior of region.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth line width for boundary (default 1.)
color color of boundary line (default black)
fill_color fill the map region background with this
color (default is to fill with axis
background color). If set to the string
'none', no filling is done.
zorder sets the zorder for filling map background
(default 0).
ax axes instance to use
(default None, use default axes instance).
============== ====================================================

returns matplotlib.collections.PatchCollection representing map boundary.
"""
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        # if no fill_color given, use axes background color.
        # if fill_color is string 'none', really don't fill.
        if fill_color is None:
            fill_color = ax.get_axis_bgcolor()
        elif fill_color == 'none' or fill_color == 'None':
            fill_color = None
        limb = None
        if self.projection in ['ortho','geos','nsper'] or (self.projection=='aeqd' and\
           self._fulldisk):
            limb = Ellipse((self._width,self._height),2.*self._width,2.*self._height)
        if self.projection in ['ortho','geos','nsper','aeqd'] and self._fulldisk:
            ax.set_frame_on(False)
            # elliptical region.
            ax.add_patch(limb)
            self._mapboundarydrawn = limb
            if fill_color is None:
                limb.set_fill(False)
            else:
                limb.set_facecolor(fill_color)
                limb.set_zorder(0)
            limb.set_edgecolor(color)
            limb.set_linewidth(linewidth)
            limb.set_clip_on(False)
            if zorder is not None:
                limb.set_zorder(zorder)
        elif self.projection in _pseudocyl: # elliptical region.
            ax.set_frame_on(False)
            nx = 100; ny = 100
            if self.projection == 'vandg':
                nx = 10*nx; ny = 10*ny
            # quasi-elliptical region.
            lon_0 = self.projparams['lon_0']
            # left side
            lats1 = np.linspace(-89.9999,89.99999,ny).tolist()
            lons1 = len(lats1)*[lon_0-179.9]
            # top.
            lons2 = np.linspace(lon_0-179.9999,lon_0+179.9999,nx).tolist()
            lats2 = len(lons2)*[89.9999]
            # right side
            lats3 = np.linspace(89.9999,-89.9999,ny).tolist()
            lons3 = len(lats3)*[lon_0+179.9999]
            # bottom.
            lons4 = np.linspace(lon_0+179.9999,lon_0-179.9999,nx).tolist()
            lats4 = len(lons4)*[-89.9999]
            lons = np.array(lons1+lons2+lons3+lons4,np.float64)
            lats = np.array(lats1+lats2+lats3+lats4,np.float64)
            x, y = self(lons,lats)
            xy = list(zip(x,y))
            limb = Polygon(xy,edgecolor=color,linewidth=linewidth)
            ax.add_patch(limb)
            self._mapboundarydrawn = limb
            if fill_color is None:
                limb.set_fill(False)
            else:
                limb.set_facecolor(fill_color)
                limb.set_zorder(0)
            limb.set_clip_on(False)
            if zorder is not None:
                limb.set_zorder(zorder)
        elif self.round:
            ax.set_frame_on(False)
            limb = Circle((0.5*(self.xmax+self.xmin),0.5*(self.ymax+self.ymin)),
                    radius=0.5*(self.xmax-self.xmin),fc='none')
            ax.add_patch(limb)
            self._mapboundarydrawn = limb
            if fill_color is None:
                limb.set_fill(False)
            else:
                limb.set_facecolor(fill_color)
                limb.set_zorder(0)
            limb.set_clip_on(False)
            if zorder is not None:
                limb.set_zorder(zorder)
        else: # all other projections are rectangular.
            # use axesPatch for fill_color, spine for border line props.
            for spine in ax.spines.values():
                spine.set_linewidth(linewidth)
            if self.projection not in ['geos','ortho','nsper']:
                limb = ax.axesPatch
                if fill_color is not None:
                    limb.set_facecolor(fill_color)
                for spine in ax.spines.values():
                    spine.set_edgecolor(color)
                ax.set_frame_on(True)
                # FIXME? should zorder be set separately for edge and background?
                if zorder is not None:
                    limb.set_zorder(zorder)
                    for spine in ax.spines.values():
                        spine.set_zorder(zorder)
            else:
                # use axesPatch for fill_color, spine for border line props.
                for spine in ax.spines.values():
                    spine.set_edgecolor(color)
                ax.set_frame_on(True)
                # FIXME? should zorder be set separately for edge and background?
                if zorder is not None:
                    ax.axesPatch.set_zorder(zorder)
                    for spine in ax.spines.values():
                        spine.set_zorder(zorder)
                # for geos or ortho projections, also
                # draw and fill map projection limb, clipped
                # to rectangular region.
                ax.add_patch(limb)
                self._mapboundarydrawn = limb
                if fill_color is None:
                    limb.set_fill(False)
                else:
                    limb.set_facecolor(fill_color)
                    limb.set_zorder(0)
                limb.set_edgecolor(color)
                limb.set_linewidth(linewidth)
                if zorder is not None:
                    limb.set_zorder(zorder)
                limb.set_clip_on(True)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return limb

    def fillcontinents(self,color='0.8',lake_color=None,ax=None,zorder=None,alpha=None):
        """
Fill continents.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
color color to fill continents (default gray).
lake_color color to fill inland lakes (default axes background).
ax axes instance (overrides default axes instance).
zorder sets the zorder for the continent polygons (if not
specified, uses default zorder for a Polygon patch).
Set to zero if you want to paint over the filled
continents).
alpha sets alpha transparency for continent polygons
============== ====================================================

After filling continents, lakes are re-filled with
axis background color.

returns a list of matplotlib.patches.Polygon objects.
"""
        if self.resolution is None:
            raise AttributeError('there are no boundary datasets associated with this Basemap instance')
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        # get axis background color.
        axisbgc = ax.get_axis_bgcolor()
        npoly = 0
        polys = []
        for x,y in self.coastpolygons:
            xa = np.array(x,np.float32)
            ya = np.array(y,np.float32)
        # check to see if all four corners of domain in polygon (if so,
        # don't draw since it will just fill in the whole map).
        # ** turn this off for now since it prevents continents that
        # fill the whole map from being filled **
            #delx = 10; dely = 10
            #if self.projection in ['cyl']:
            # delx = 0.1
            # dely = 0.1
            #test1 = np.fabs(xa-self.urcrnrx) < delx
            #test2 = np.fabs(xa-self.llcrnrx) < delx
            #test3 = np.fabs(ya-self.urcrnry) < dely
            #test4 = np.fabs(ya-self.llcrnry) < dely
            #hasp1 = np.sum(test1*test3)
            #hasp2 = np.sum(test2*test3)
            #hasp4 = np.sum(test2*test4)
            #hasp3 = np.sum(test1*test4)
            #if not hasp1 or not hasp2 or not hasp3 or not hasp4:
            if 1:
                xy = list(zip(xa.tolist(),ya.tolist()))
                if self.coastpolygontypes[npoly] not in [2,4]:
                    poly = Polygon(xy,facecolor=color,edgecolor=color,linewidth=0)
                else: # lakes filled with background color by default
                    if lake_color is None:
                        poly = Polygon(xy,facecolor=axisbgc,edgecolor=axisbgc,linewidth=0)
                    else:
                        poly = Polygon(xy,facecolor=lake_color,edgecolor=lake_color,linewidth=0)
                if zorder is not None:
                    poly.set_zorder(zorder)
                if alpha is not None:
                    poly.set_alpha(alpha)
                ax.add_patch(poly)
                polys.append(poly)
            npoly = npoly + 1
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        # clip continent polygons for round polar plots.
        if self.round: polys,c = self._clipcircle(ax,polys)
        return polys

    def _clipcircle(self,ax,coll):
        c = Circle((0.5*(self.xmax+self.xmin),0.5*(self.ymax+self.ymin)),
            radius=0.5*(self.xmax-self.xmin),fc='none')
        if c not in ax.patches:
            p = ax.add_patch(c)
            p.set_clip_on(False)
        try:
            coll.set_clip_path(c)
        except:
            for item in coll:
                item.set_clip_path(c)
        return coll,c

    def drawcoastlines(self,linewidth=1.,linestyle='solid',color='k',antialiased=1,ax=None,zorder=None):
        """
Draw coastlines.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth coastline width (default 1.)
linestyle coastline linestyle (default solid)
color coastline color (default black)
antialiased antialiasing switch for coastlines (default True).
ax axes instance (overrides default axes instance)
zorder sets the zorder for the coastlines (if not specified,
uses default zorder for
matplotlib.patches.LineCollections).
============== ====================================================

returns a matplotlib.patches.LineCollection object.
"""
        if self.resolution is None:
            raise AttributeError('there are no boundary datasets associated with this Basemap instance')
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        coastlines = LineCollection(self.coastsegs,antialiaseds=(antialiased,))
        coastlines.set_color(color)
        coastlines.set_linestyle(linestyle)
        coastlines.set_linewidth(linewidth)
        coastlines.set_label('_nolabel_')
        if zorder is not None:
            coastlines.set_zorder(zorder)
        # clip coastlines for round polar plots.
        if self.round: coastlines,c = self._clipcircle(ax,coastlines)
        ax.add_collection(coastlines)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return coastlines

    def drawcountries(self,linewidth=0.5,linestyle='solid',color='k',antialiased=1,ax=None,zorder=None):
        """
Draw country boundaries.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth country boundary line width (default 0.5)
linestyle coastline linestyle (default solid)
color country boundary line color (default black)
antialiased antialiasing switch for country boundaries (default
True).
ax axes instance (overrides default axes instance)
zorder sets the zorder for the country boundaries (if not
specified uses default zorder for
matplotlib.patches.LineCollections).
============== ====================================================

returns a matplotlib.patches.LineCollection object.
"""
        if self.resolution is None:
            raise AttributeError('there are no boundary datasets associated with this Basemap instance')
        # read in country line segments, only keeping those that
        # intersect map boundary polygon.
        if not hasattr(self,'cntrysegs'):
            self.cntrysegs, types = self._readboundarydata('countries')
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        countries = LineCollection(self.cntrysegs,antialiaseds=(antialiased,))
        countries.set_color(color)
        countries.set_linestyle(linestyle)
        countries.set_linewidth(linewidth)
        countries.set_label('_nolabel_')
        if zorder is not None:
            countries.set_zorder(zorder)
        ax.add_collection(countries)
        # clip countries for round polar plots.
        if self.round: countries,c = self._clipcircle(ax,countries)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return countries

    def drawstates(self,linewidth=0.5,linestyle='solid',color='k',antialiased=1,ax=None,zorder=None):
        """
Draw state boundaries in Americas.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth state boundary line width (default 0.5)
linestyle coastline linestyle (default solid)
color state boundary line color (default black)
antialiased antialiasing switch for state boundaries
(default True).
ax axes instance (overrides default axes instance)
zorder sets the zorder for the state boundaries (if not
specified, uses default zorder for
matplotlib.patches.LineCollections).
============== ====================================================

returns a matplotlib.patches.LineCollection object.
"""
        if self.resolution is None:
            raise AttributeError('there are no boundary datasets associated with this Basemap instance')
        # read in state line segments, only keeping those that
        # intersect map boundary polygon.
        if not hasattr(self,'statesegs'):
            self.statesegs, types = self._readboundarydata('states')
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        states = LineCollection(self.statesegs,antialiaseds=(antialiased,))
        states.set_color(color)
        states.set_linestyle(linestyle)
        states.set_linewidth(linewidth)
        states.set_label('_nolabel_')
        if zorder is not None:
            states.set_zorder(zorder)
        ax.add_collection(states)
        # clip states for round polar plots.
        if self.round: states,c = self._clipcircle(ax,states)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return states

    def drawcounties(self,linewidth=0.1,linestyle='solid',color='k',antialiased=1,
                     facecolor='none',ax=None,zorder=None,drawbounds=False):
        """
Draw county boundaries in US. The county boundary shapefile
originates with the NOAA Coastal Geospatial Data Project
(http://coastalgeospatial.noaa.gov/data_gis.html).

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth county boundary line width (default 0.1)
linestyle coastline linestyle (default solid)
color county boundary line color (default black)
facecolor fill color of county (default is no fill)
antialiased antialiasing switch for county boundaries
(default True).
ax axes instance (overrides default axes instance)
zorder sets the zorder for the county boundaries (if not
specified, uses default zorder for
matplotlib.patches.LineCollections).
============== ====================================================

returns a matplotlib.patches.LineCollection object.
"""
        ax = ax or self._check_ax()
        gis_file = os.path.join(basemap_datadir,'UScounties')
        county_info = self.readshapefile(gis_file,'counties',\
                      default_encoding='latin-1',drawbounds=drawbounds)
        counties = [coords for coords in self.counties]
        counties = PolyCollection(counties)
        counties.set_linestyle(linestyle)
        counties.set_linewidth(linewidth)
        counties.set_edgecolor(color)
        counties.set_facecolor(facecolor)
        counties.set_label('counties')
        if zorder:
            counties.set_zorder(zorder)
        ax.add_collection(counties)
        return counties

    def drawrivers(self,linewidth=0.5,linestyle='solid',color='k',antialiased=1,ax=None,zorder=None):
        """
Draw major rivers.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
linewidth river boundary line width (default 0.5)
linestyle coastline linestyle (default solid)
color river boundary line color (default black)
antialiased antialiasing switch for river boundaries (default
True).
ax axes instance (overrides default axes instance)
zorder sets the zorder for the rivers (if not
specified uses default zorder for
matplotlib.patches.LineCollections).
============== ====================================================

returns a matplotlib.patches.LineCollection object.
"""
        if self.resolution is None:
            raise AttributeError('there are no boundary datasets associated with this Basemap instance')
        # read in river line segments, only keeping those that
        # intersect map boundary polygon.
        if not hasattr(self,'riversegs'):
            self.riversegs, types = self._readboundarydata('rivers')
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        rivers = LineCollection(self.riversegs,antialiaseds=(antialiased,))
        rivers.set_color(color)
        rivers.set_linestyle(linestyle)
        rivers.set_linewidth(linewidth)
        rivers.set_label('_nolabel_')
        if zorder is not None:
            rivers.set_zorder(zorder)
        ax.add_collection(rivers)
        # clip rivers for round polar plots.
        if self.round: rivers,c = self._clipcircle(ax,rivers)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return rivers

    def is_land(self,xpt,ypt):
        """
Returns True if the given x,y point (in projection coordinates) is
over land, False otherwise. The definition of land is based upon
the GSHHS coastline polygons associated with the class instance.
Points over lakes inside land regions are not counted as land points.
"""
        if self.resolution is None: return None
        landpt = False
        for poly in self.landpolygons:
            landpt = _geoslib.Point((xpt,ypt)).within(poly)
            if landpt: break
        lakept = False
        for poly in self.lakepolygons:
            lakept = _geoslib.Point((xpt,ypt)).within(poly)
            if lakept: break
        return landpt and not lakept

    def readshapefile(self,shapefile,name,drawbounds=True,zorder=None,
                      linewidth=0.5,color='k',antialiased=1,ax=None,
                      default_encoding='utf-8'):
        """
Read in shape file, optionally draw boundaries on map.

.. note::
- Assumes shapes are 2D
- only works for Point, MultiPoint, Polyline and Polygon shapes.
- vertices/points must be in geographic (lat/lon) coordinates.

Mandatory Arguments:

.. tabularcolumns:: |l|L|

============== ====================================================
Argument Description
============== ====================================================
shapefile path to shapefile components. Example:
shapefile='/home/jeff/esri/world_borders' assumes
that world_borders.shp, world_borders.shx and
world_borders.dbf live in /home/jeff/esri.
name name for Basemap attribute to hold the shapefile
vertices or points in map projection
coordinates. Class attribute name+'_info' is a list
of dictionaries, one for each shape, containing
attributes of each shape from dbf file, For
example, if name='counties', self.counties
will be a list of x,y vertices for each shape in
map projection coordinates and self.counties_info
will be a list of dictionaries with shape
attributes. Rings in individual Polygon
shapes are split out into separate polygons, and
additional keys 'RINGNUM' and 'SHAPENUM' are added
to the shape attribute dictionary.
============== ====================================================

The following optional keyword arguments are only relevant for Polyline
and Polygon shape types, for Point and MultiPoint shapes they are
ignored.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
drawbounds draw boundaries of shapes (default True).
zorder shape boundary zorder (if not specified,
default for mathplotlib.lines.LineCollection
is used).
linewidth shape boundary line width (default 0.5)
color shape boundary line color (default black)
antialiased antialiasing switch for shape boundaries
(default True).
ax axes instance (overrides default axes instance)
============== ====================================================

A tuple (num_shapes, type, min, max) containing shape file info
is returned.
num_shapes is the number of shapes, type is the type code (one of
the SHPT* constants defined in the shapelib module, see
http://shapelib.maptools.org/shp_api.html) and min and
max are 4-element lists with the minimum and maximum values of the
vertices. If ``drawbounds=True`` a
matplotlib.patches.LineCollection object is appended to the tuple.
"""
        import shapefile as shp
        from .shapefile import Reader
        shp.default_encoding = default_encoding
        if not os.path.exists('%s.shp'%shapefile):
            raise IOError('cannot locate %s.shp'%shapefile)
        if not os.path.exists('%s.shx'%shapefile):
            raise IOError('cannot locate %s.shx'%shapefile)
        if not os.path.exists('%s.dbf'%shapefile):
            raise IOError('cannot locate %s.dbf'%shapefile)
        # open shapefile, read vertices for each object, convert
        # to map projection coordinates (only works for 2D shape types).
        try:
            shf = Reader(shapefile)
        except:
            raise IOError('error reading shapefile %s.shp' % shapefile)
        fields = shf.fields
        coords = []; attributes = []
        msg=dedent("""
shapefile must have lat/lon vertices - it looks like this one has vertices
in map projection coordinates. You can convert the shapefile to geographic
coordinates using the shpproj utility from the shapelib tools
(http://shapelib.maptools.org/shapelib-tools.html)""")
        shptype = shf.shapes()[0].shapeType
        bbox = shf.bbox.tolist()
        info = (shf.numRecords,shptype,bbox[0:2]+[0.,0.],bbox[2:]+[0.,0.])
        npoly = 0
        for shprec in shf.shapeRecords():
            shp = shprec.shape; rec = shprec.record
            npoly = npoly + 1
            if shptype != shp.shapeType:
                raise ValueError('readshapefile can only handle a single shape type per file')
            if shptype not in [1,3,5,8]:
                raise ValueError('readshapefile can only handle 2D shape types')
            verts = shp.points
            if shptype in [1,8]: # a Point or MultiPoint shape.
                lons, lats = list(zip(*verts))
                if max(lons) > 721. or min(lons) < -721. or max(lats) > 90.01 or min(lats) < -90.01:
                    raise ValueError(msg)
                # if latitude is slightly greater than 90, truncate to 90
                lats = [max(min(lat, 90.0), -90.0) for lat in lats]
                if len(verts) > 1: # MultiPoint
                    x,y = self(lons, lats)
                    coords.append(list(zip(x,y)))
                else: # single Point
                    x,y = self(lons[0], lats[0])
                    coords.append((x,y))
                attdict={}
                for r,key in zip(rec,fields[1:]):
                    attdict[key[0]]=r
                attributes.append(attdict)
            else: # a Polyline or Polygon shape.
                parts = shp.parts.tolist()
                ringnum = 0
                for indx1,indx2 in zip(parts,parts[1:]+[len(verts)]):
                    ringnum = ringnum + 1
                    lons, lats = list(zip(*verts[indx1:indx2]))
                    if max(lons) > 721. or min(lons) < -721. or max(lats) > 90.01 or min(lats) < -90.01:
                        raise ValueError(msg)
                    # if latitude is slightly greater than 90, truncate to 90
                    lats = [max(min(lat, 90.0), -90.0) for lat in lats]
                    x, y = self(lons, lats)
                    coords.append(list(zip(x,y)))
                    attdict={}
                    for r,key in zip(rec,fields[1:]):
                        attdict[key[0]]=r
                    # add information about ring number to dictionary.
                    attdict['RINGNUM'] = ringnum
                    attdict['SHAPENUM'] = npoly
                    attributes.append(attdict)
        # draw shape boundaries for polylines, polygons using LineCollection.
        if shptype not in [1,8] and drawbounds:
            # get current axes instance (if none specified).
            ax = ax or self._check_ax()
            # make LineCollections for each polygon.
            lines = LineCollection(coords,antialiaseds=(1,))
            lines.set_color(color)
            lines.set_linewidth(linewidth)
            lines.set_label('_nolabel_')
            if zorder is not None:
               lines.set_zorder(zorder)
            ax.add_collection(lines)
            # clip boundaries for round polar plots.
            if self.round: lines,c = self._clipcircle(ax,lines)
            # set axes limits to fit map region.
            self.set_axes_limits(ax=ax)
            info = info + (lines,)
        self.__dict__[name]=coords
        self.__dict__[name+'_info']=attributes
        return info

    def drawparallels(self,circles,color='k',textcolor='k',linewidth=1.,zorder=None, \
                      dashes=[1,1],labels=[0,0,0,0],labelstyle=None, \
                      fmt='%g',xoffset=None,yoffset=None,ax=None,latmax=None,
                      **text_kwargs):
        """
Draw and label parallels (latitude lines) for values (in degrees)
given in the sequence ``circles``.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
color color to draw parallels (default black).
textcolor color to draw labels (default black).
linewidth line width for parallels (default 1.)
zorder sets the zorder for parallels (if not specified,
uses default zorder for matplotlib.lines.Line2D
objects).
dashes dash pattern for parallels (default [1,1], i.e.
1 pixel on, 1 pixel off).
labels list of 4 values (default [0,0,0,0]) that control
whether parallels are labelled where they intersect
the left, right, top or bottom of the plot. For
example labels=[1,0,0,1] will cause parallels
to be labelled where they intersect the left and
and bottom of the plot, but not the right and top.
labelstyle if set to "+/-", north and south latitudes are
labelled with "+" and "-", otherwise they are
labelled with "N" and "S".
fmt a format string to format the parallel labels
(default '%g') **or** a function that takes a
latitude value in degrees as it's only argument
and returns a formatted string.
xoffset label offset from edge of map in x-direction
(default is 0.01 times width of map in map
projection coordinates).
yoffset label offset from edge of map in y-direction
(default is 0.01 times height of map in map
projection coordinates).
ax axes instance (overrides default axes instance)
latmax absolute value of latitude to which meridians are drawn
(default is 80).
\**text_kwargs additional keyword arguments controlling text
for labels that are passed on to
the text method of the axes instance (see
matplotlib.pyplot.text documentation).
============== ====================================================

returns a dictionary whose keys are the parallel values, and
whose values are tuples containing lists of the
matplotlib.lines.Line2D and matplotlib.text.Text instances
associated with each parallel. Deleting an item from the
dictionary removes the corresponding parallel from the plot.
"""
        text_kwargs['color']=textcolor # pass textcolor kwarg on to ax.text
        # if celestial=True, don't use "N" and "S" labels.
        if labelstyle is None and self.celestial:
            labelstyle="+/-"
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        # don't draw meridians past latmax, always draw parallel at latmax.
        if latmax is None: latmax = 80.
        # offset for labels.
        if yoffset is None:
            yoffset = (self.urcrnry-self.llcrnry)/100.
            if self.aspect > 1:
                yoffset = self.aspect*yoffset
            else:
                yoffset = yoffset/self.aspect
        if xoffset is None:
            xoffset = (self.urcrnrx-self.llcrnrx)/100.

        if self.projection in _cylproj + _pseudocyl:
            lons = np.linspace(self.llcrnrlon, self.urcrnrlon, 10001)
        elif self.projection in ['tmerc']:
            lon_0 = self.projparams['lon_0']
            # tmerc only defined within +/- 90 degrees of lon_0
            lons = np.linspace(lon_0-90,lon_0+90,100001)
        else:
            lonmin = self.boundarylonmin; lonmax = self.boundarylonmax
            lons = np.linspace(lonmin, lonmax, 10001)
        # make sure latmax degree parallel is drawn if projection not merc or cyl or miller
        try:
            circlesl = list(circles)
        except:
            circlesl = circles
        if self.projection not in _cylproj + _pseudocyl:
            if max(circlesl) > 0 and latmax not in circlesl:
                circlesl.append(latmax)
            if min(circlesl) < 0 and -latmax not in circlesl:
                circlesl.append(-latmax)
        xdelta = 0.01*(self.xmax-self.xmin)
        ydelta = 0.01*(self.ymax-self.ymin)
        linecolls = {}
        for circ in circlesl:
            lats = circ*np.ones(len(lons),np.float32)
            x,y = self(lons,lats)
            # remove points outside domain.
            # leave a little slop around edges (3*xdelta)
            # don't really know why, but this appears to be needed to
            # or lines sometimes don't reach edge of plot.
            testx = np.logical_and(x>=self.xmin-3*xdelta,x<=self.xmax+3*xdelta)
            x = np.compress(testx, x)
            y = np.compress(testx, y)
            testy = np.logical_and(y>=self.ymin-3*ydelta,y<=self.ymax+3*ydelta)
            x = np.compress(testy, x)
            y = np.compress(testy, y)
            lines = []
            if len(x) > 1 and len(y) > 1:
                # split into separate line segments if necessary.
                # (not necessary for cylindrical or pseudocylindricl projections)
                xd = (x[1:]-x[0:-1])**2
                yd = (y[1:]-y[0:-1])**2
                dist = np.sqrt(xd+yd)
                if self.projection not in ['cyl','rotpole']:
                    split = dist > self.rmajor/10.
                else:
                    split = dist > 1.
                if np.sum(split) and self.projection not in _cylproj:
                    ind = (np.compress(split,np.squeeze(split*np.indices(xd.shape)))+1).tolist()
                    xl = []
                    yl = []
                    iprev = 0
                    ind.append(len(xd))
                    for i in ind:
                        xl.append(x[iprev:i])
                        yl.append(y[iprev:i])
                        iprev = i
                else:
                    xl = [x]
                    yl = [y]
                # draw each line segment.
                for x,y in zip(xl,yl):
                    # skip if only a point.
                    if len(x) > 1 and len(y) > 1:
                        l = Line2D(x,y,linewidth=linewidth)
                        l.set_color(color)
                        l.set_dashes(dashes)
                        l.set_label('_nolabel_')
                        if zorder is not None:
                            l.set_zorder(zorder)
                        ax.add_line(l)
                        lines.append(l)
            linecolls[circ] = (lines,[])
        # draw labels for parallels
        # parallels not labelled for fulldisk orthographic or geostationary
        if self.projection in ['ortho','geos','nsper','vandg','aeqd'] and max(labels):
            if self.projection == 'vandg' or self._fulldisk:
                sys.stdout.write('Warning: Cannot label parallels on %s basemap' % _projnames[self.projection])
                labels = [0,0,0,0]
        # search along edges of map to see if parallels intersect.
        # if so, find x,y location of intersection and draw a label there.
        dx = (self.xmax-self.xmin)/1000.
        dy = (self.ymax-self.ymin)/1000.
        if self.projection in _pseudocyl:
            lon_0 = self.projparams['lon_0']
        for dolab,side in zip(labels,['l','r','t','b']):
            if not dolab: continue
            # for cylindrical projections, don't draw parallels on top or bottom.
            if self.projection in _cylproj + _pseudocyl and side in ['t','b']: continue
            if side in ['l','r']:
                nmax = int((self.ymax-self.ymin)/dy+1)
                yy = np.linspace(self.llcrnry,self.urcrnry,nmax)
                if side == 'l':
                    if self.projection in _pseudocyl:
                        lats = np.linspace(-89.99,89,99,nmax)
                        if self.celestial:
                            lons = (self.projparams['lon_0']+180.)*np.ones(len(lats),lats.dtype)
                        else:
                            lons = (self.projparams['lon_0']-180.)*np.ones(len(lats),lats.dtype)
                        xx, yy = self(lons, lats)
                    else:
                        xx = self.llcrnrx*np.ones(yy.shape,yy.dtype)
                        lons,lats = self(xx,yy,inverse=True)
                        lons = lons.tolist(); lats = lats.tolist()
                else:
                    if self.projection in _pseudocyl:
                        lats = np.linspace(-89.99,89,99,nmax)
                        if self.celestial:
                           lons = (self.projparams['lon_0']-180.)*np.ones(len(lats),lats.dtype)
                        else:
                           lons = (self.projparams['lon_0']+180.)*np.ones(len(lats),lats.dtype)
                        xx, yy = self(lons, lats)
                    else:
                        xx = self.urcrnrx*np.ones(yy.shape,yy.dtype)
                        lons,lats = self(xx,yy,inverse=True)
                        lons = lons.tolist(); lats = lats.tolist()
                if max(lons) > 1.e20 or max(lats) > 1.e20:
                    raise ValueError('inverse transformation undefined - please adjust the map projection region')
                # adjust so 0 <= lons < 360
                lons = [(lon+360) % 360 for lon in lons]
            else:
                nmax = int((self.xmax-self.xmin)/dx+1)
                xx = np.linspace(self.llcrnrx,self.urcrnrx,nmax)
                if side == 'b':
                    lons,lats = self(xx,self.llcrnry*np.ones(xx.shape,np.float32),inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                else:
                    lons,lats = self(xx,self.urcrnry*np.ones(xx.shape,np.float32),inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                if max(lons) > 1.e20 or max(lats) > 1.e20:
                    raise ValueError('inverse transformation undefined - please adjust the map projection region')
                # adjust so 0 <= lons < 360
                lons = [(lon+360) % 360 for lon in lons]
            for lat in circles:
                # don't label parallels for round polar plots
                if self.round: continue
                # find index of parallel (there may be two, so
                # search from left and right).
                nl = _searchlist(lats,lat)
                nr = _searchlist(lats[::-1],lat)
                if nr != -1: nr = len(lons)-nr-1
                latlab = _setlatlab(fmt,lat,labelstyle)
                # parallels can intersect each map edge twice.
                for i,n in enumerate([nl,nr]):
                    # don't bother if close to the first label.
                    if i and abs(nr-nl) < 100: continue
                    if n >= 0:
                        t = None
                        if side == 'l':
                            if self.projection in _pseudocyl:
                                if self.celestial:
                                    xlab,ylab = self(lon_0+179.9,lat)
                                else:
                                    xlab,ylab = self(lon_0-179.9,lat)
                            else:
                                xlab = self.llcrnrx
                            xlab = xlab-xoffset
                            if self.projection in _pseudocyl:
                                if lat>0:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='right',verticalalignment='bottom',**text_kwargs)
                                elif lat<0:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='right',verticalalignment='top',**text_kwargs)
                                else:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='right',verticalalignment='center',**text_kwargs)
                            else:
                               t=ax.text(xlab,yy[n],latlab,horizontalalignment='right',verticalalignment='center',**text_kwargs)
                        elif side == 'r':
                            if self.projection in _pseudocyl:
                                if self.celestial:
                                   xlab,ylab = self(lon_0-179.9,lat)
                                else:
                                   xlab,ylab = self(lon_0+179.9,lat)
                            else:
                                xlab = self.urcrnrx
                            xlab = xlab+xoffset
                            if self.projection in _pseudocyl:
                                if lat>0:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='left',verticalalignment='bottom',**text_kwargs)
                                elif lat<0:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='left',verticalalignment='top',**text_kwargs)
                                else:
                                   t=ax.text(xlab,yy[n],latlab,horizontalalignment='left',verticalalignment='center',**text_kwargs)
                            else:
                               t=ax.text(xlab,yy[n],latlab,horizontalalignment='left',verticalalignment='center',**text_kwargs)
                        elif side == 'b':
                            t = ax.text(xx[n],self.llcrnry-yoffset,latlab,horizontalalignment='center',verticalalignment='top',**text_kwargs)
                        else:
                            t = ax.text(xx[n],self.urcrnry+yoffset,latlab,horizontalalignment='center',verticalalignment='bottom',**text_kwargs)
                        if t is not None: linecolls[lat][1].append(t)

        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        keys = list(linecolls.keys()); vals = list(linecolls.values())
        for k,v in zip(keys,vals):
            if v == ([], []):
                del linecolls[k]
            # add a remove method to each tuple.
            else:
                linecolls[k] = _tup(linecolls[k])
        # override __delitem__ in dict to call remove() on values.
        pardict = _dict(linecolls)
        # clip parallels for round polar plots (and delete labels).
        if self.round:
            c = Circle((0.5*(self.xmax+self.xmin),0.5*(self.ymax+self.ymin)),
                radius=0.5*(self.xmax-self.xmin),fc='none')
            if c not in ax.patches:
                p = ax.add_patch(c)
                p.set_clip_on(False)
            for par in pardict:
                lines,labs = pardict[par]
                for l in lines:
                    l.set_clip_path(c)
        return pardict

    def drawmeridians(self,meridians,color='k',textcolor='k',linewidth=1., zorder=None,\
                      dashes=[1,1],labels=[0,0,0,0],labelstyle=None,\
                      fmt='%g',xoffset=None,yoffset=None,ax=None,latmax=None,
                      **text_kwargs):
        """
Draw and label meridians (longitude lines) for values (in degrees)
given in the sequence ``meridians``.

.. tabularcolumns:: |l|L|

============== ====================================================
Keyword Description
============== ====================================================
color color to draw meridians (default black).
textcolor color to draw labels (default black).
linewidth line width for meridians (default 1.)
zorder sets the zorder for meridians (if not specified,
uses default zorder for matplotlib.lines.Line2D
objects).
dashes dash pattern for meridians (default [1,1], i.e.
1 pixel on, 1 pixel off).
labels list of 4 values (default [0,0,0,0]) that control
whether meridians are labelled where they intersect
the left, right, top or bottom of the plot. For
example labels=[1,0,0,1] will cause meridians
to be labelled where they intersect the left and
and bottom of the plot, but not the right and top.
labelstyle if set to "+/-", east and west longitudes are
labelled with "+" and "-", otherwise they are
labelled with "E" and "W".
fmt a format string to format the meridian labels
(default '%g') **or** a function that takes a
longitude value in degrees as it's only argument
and returns a formatted string.
xoffset label offset from edge of map in x-direction
(default is 0.01 times width of map in map
projection coordinates).
yoffset label offset from edge of map in y-direction
(default is 0.01 times height of map in map
projection coordinates).
ax axes instance (overrides default axes instance)
latmax absolute value of latitude to which meridians are drawn
(default is 80).
\**text_kwargs additional keyword arguments controlling text
for labels that are passed on to
the text method of the axes instance (see
matplotlib.pyplot.text documentation).
============== ====================================================

returns a dictionary whose keys are the meridian values, and
whose values are tuples containing lists of the
matplotlib.lines.Line2D and matplotlib.text.Text instances
associated with each meridian. Deleting an item from the
dictionary removes the correpsonding meridian from the plot.
"""
        text_kwargs['color']=textcolor # pass textcolor kwarg on to ax.text
        # for cylindrical projections, try to handle wraparound (i.e. if
        # projection is defined in -180 to 0 and user asks for meridians from
        # 180 to 360 to be drawn, it should work)
        if self.projection in _cylproj or self.projection in _pseudocyl:
            def addlon(meridians,madd):
                minside = (madd >= self.llcrnrlon and madd <= self.urcrnrlon)
                if minside and madd not in meridians: meridians.append(madd)
                return meridians
            merids = list(meridians)
            meridians = []
            for m in merids:
                meridians = addlon(meridians,m)
                meridians = addlon(meridians,m+360)
                meridians = addlon(meridians,m-360)
            meridians.sort()
        # if celestial=True, don't use "E" and "W" labels.
        if labelstyle is None and self.celestial:
            labelstyle="+/-"
        # get current axes instance (if none specified).
        ax = ax or self._check_ax()
        # don't draw meridians past latmax, always draw parallel at latmax.
        if latmax is None: latmax = 80. # unused w/ cyl, merc or miller proj.
        # offset for labels.
        if yoffset is None:
            yoffset = (self.urcrnry-self.llcrnry)/100.
            if self.aspect > 1:
                yoffset = self.aspect*yoffset
            else:
                yoffset = yoffset/self.aspect
        if xoffset is None:
            xoffset = (self.urcrnrx-self.llcrnrx)/100.

        lats = np.linspace(self.latmin,self.latmax,10001)
        if self.projection not in _cylproj + _pseudocyl:
            testlat = np.logical_and(lats>-latmax,lats<latmax)
            lats = np.compress(testlat,lats)

        xdelta = 0.01*(self.xmax-self.xmin)
        ydelta = 0.01*(self.ymax-self.ymin)
        linecolls = {}
        for merid in meridians:
            lons = merid*np.ones(len(lats),np.float32)
            x,y = self(lons,lats)
            # remove points outside domain.
            # leave a little slop around edges (3*xdelta)
            # don't really know why, but this appears to be needed to
            # or lines sometimes don't reach edge of plot.
            testx = np.logical_and(x>=self.xmin-3*xdelta,x<=self.xmax+3*xdelta)
            x = np.compress(testx, x)
            y = np.compress(testx, y)
            testy = np.logical_and(y>=self.ymin-3*ydelta,y<=self.ymax+3*ydelta)
            x = np.compress(testy, x)
            y = np.compress(testy, y)
            lines = []
            if len(x) > 1 and len(y) > 1:
                # split into separate line segments if necessary.
                # (not necessary for mercator or cylindrical or miller).
                xd = (x[1:]-x[0:-1])**2
                yd = (y[1:]-y[0:-1])**2
                dist = np.sqrt(xd+yd)
                if self.projection not in ['cyl','rotpole']:
                    split = dist > self.rmajor/10.
                else:
                    split = dist > 1.
                if np.sum(split) and self.projection not in _cylproj:
                    ind = (np.compress(split,np.squeeze(split*np.indices(xd.shape)))+1).tolist()
                    xl = []
                    yl = []
                    iprev = 0
                    ind.append(len(xd))
                    for i in ind:
                        xl.append(x[iprev:i])
                        yl.append(y[iprev:i])
                        iprev = i
                else:
                    xl = [x]
                    yl = [y]
                # draw each line segment.
                for x,y in zip(xl,yl):
                    # skip if only a point.
                    if len(x) > 1 and len(y) > 1:
                        l = Line2D(x,y,linewidth=linewidth)
                        l.set_color(color)
                        l.set_dashes(dashes)
                        l.set_label('_nolabel_')
                        if zorder is not None:
                            l.set_zorder(zorder)
                        ax.add_line(l)
                        lines.append(l)
            linecolls[merid] = (lines,[])
        # draw labels for meridians.
        # meridians not labelled for sinusoidal, hammer, mollweide,
        # VanDerGrinten or full-disk orthographic/geostationary.
        if self.projection in ['sinu','moll','hammer','vandg'] and max(labels):
            sys.stdout.write('Warning: Cannot label meridians on %s basemap' % _projnames[self.projection])
            labels = [0,0,0,0]
        if self.projection in ['ortho','geos','nsper','aeqd'] and max(labels):
            if self._fulldisk and self.boundinglat is None:
                sys.stdout.write(dedent(
                """'Warning: Cannot label meridians on full-disk
Geostationary, Orthographic or Azimuthal equidistant basemap
"""))
                labels = [0,0,0,0]
        # search along edges of map to see if parallels intersect.
        # if so, find x,y location of intersection and draw a label there.
        dx = (self.xmax-self.xmin)/1000.
        dy = (self.ymax-self.ymin)/1000.
        if self.projection in _pseudocyl:
            lon_0 = self.projparams['lon_0']
            xmin,ymin = self(lon_0-179.9,-90)
            xmax,ymax = self(lon_0+179.9,90)
        for dolab,side in zip(labels,['l','r','t','b']):
            if not dolab or self.round: continue
            # for cylindrical projections, don't draw meridians on left or right.
            if self.projection in _cylproj + _pseudocyl and side in ['l','r']: continue
            if side in ['l','r']:
                nmax = int((self.ymax-self.ymin)/dy+1)
                yy = np.linspace(self.llcrnry,self.urcrnry,nmax)
                if side == 'l':
                    lons,lats = self(self.llcrnrx*np.ones(yy.shape,np.float32),yy,inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                else:
                    lons,lats = self(self.urcrnrx*np.ones(yy.shape,np.float32),yy,inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                if max(lons) > 1.e20 or max(lats) > 1.e20:
                    raise ValueError('inverse transformation undefined - please adjust the map projection region')
                # adjust so 0 <= lons < 360
                lons = [(lon+360) % 360 for lon in lons]
            else:
                nmax = int((self.xmax-self.xmin)/dx+1)
                if self.projection in _pseudocyl:
                    xx = np.linspace(xmin,xmax,nmax)
                else:
                    xx = np.linspace(self.llcrnrx,self.urcrnrx,nmax)
                if side == 'b':
                    lons,lats = self(xx,self.llcrnry*np.ones(xx.shape,np.float32),inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                else:
                    lons,lats = self(xx,self.urcrnry*np.ones(xx.shape,np.float32),inverse=True)
                    lons = lons.tolist(); lats = lats.tolist()
                if max(lons) > 1.e20 or max(lats) > 1.e20:
                    raise ValueError('inverse transformation undefined - please adjust the map projection region')
                # adjust so 0 <= lons < 360
                lons = [(lon+360) % 360 for lon in lons]
            for lon in meridians:
                # adjust so 0 <= lon < 360
                lon2 = (lon+360) % 360
                # find index of meridian (there may be two, so
                # search from left and right).
                nl = _searchlist(lons,lon2)
                nr = _searchlist(lons[::-1],lon2)
                if nr != -1: nr = len(lons)-nr-1
                lonlab = _setlonlab(fmt,lon2,labelstyle)
                # meridians can intersect each map edge twice.
                for i,n in enumerate([nl,nr]):
                    lat = lats[n]/100.
                    # no meridians > latmax for projections other than merc,cyl,miller.
                    if self.projection not in _cylproj and lat > latmax: continue
                    # don't bother if close to the first label.
                    if i and abs(nr-nl) < 100: continue
                    if n >= 0:
                        t = None
                        if side == 'l':
                            t = ax.text(self.llcrnrx-xoffset,yy[n],lonlab,horizontalalignment='right',verticalalignment='center',**text_kwargs)
                        elif side == 'r':
                            t = ax.text(self.urcrnrx+xoffset,yy[n],lonlab,horizontalalignment='left',verticalalignment='center',**text_kwargs)
                        elif side == 'b':
                            t = ax.text(xx[n],self.llcrnry-yoffset,lonlab,horizontalalignment='center',verticalalignment='top',**text_kwargs)
                        else:
                            t = ax.text(xx[n],self.urcrnry+yoffset,lonlab,horizontalalignment='center',verticalalignment='bottom',**text_kwargs)

                        if t is not None: linecolls[lon][1].append(t)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        # remove empty values from linecolls dictionary
        keys = list(linecolls.keys()); vals = list(linecolls.values())
        for k,v in zip(keys,vals):
            if v == ([], []):
                del linecolls[k]
            else:
            # add a remove method to each tuple.
                linecolls[k] = _tup(linecolls[k])
        # override __delitem__ in dict to call remove() on values.
        meridict = _dict(linecolls)
        # for round polar plots, clip meridian lines and label them.
        if self.round:
            c = Circle((0.5*(self.xmax+self.xmin),0.5*(self.ymax+self.ymin)),
                radius=0.5*(self.xmax-self.xmin),fc='none')
            if c not in ax.patches:
                p = ax.add_patch(c)
                p.set_clip_on(False)
            # label desired?
            label = False
            for lab in labels:
                if lab: label = True
            for merid in meridict:
                lines,labs = meridict[merid]
                # clip lines.
                for l in lines:
                    l.set_clip_path(c)
                if not label: continue
                # label
                lonlab = _setlonlab(fmt,merid,labelstyle)
                x,y = self(merid,self.boundinglat)
                r = np.sqrt((x-0.5*(self.xmin+self.xmax))**2+
                            (y-0.5*(self.ymin+self.ymax))**2)
                r = r + np.sqrt(xoffset**2+yoffset**2)
                if self.projection.startswith('np'):
                    pole = 1
                elif self.projection.startswith('sp'):
                    pole = -1
                elif self.projection == 'ortho' and self.round:
                    pole = 1
                if pole == 1:
                    theta = (np.pi/180.)*(merid-self.projparams['lon_0']-90)
                    if self.projection == 'ortho' and\
                       self.projparams['lat_0'] == -90:
                        theta = (np.pi/180.)*(-merid+self.projparams['lon_0']+90)
                    x = r*np.cos(theta)+0.5*(self.xmin+self.xmax)
                    y = r*np.sin(theta)+0.5*(self.ymin+self.ymax)
                    if x > 0.5*(self.xmin+self.xmax)+xoffset:
                        horizalign = 'left'
                    elif x < 0.5*(self.xmin+self.xmax)-xoffset:
                        horizalign = 'right'
                    else:
                        horizalign = 'center'
                    if y > 0.5*(self.ymin+self.ymax)+yoffset:
                        vertalign = 'bottom'
                    elif y < 0.5*(self.ymin+self.ymax)-yoffset:
                        vertalign = 'top'
                    else:
                        vertalign = 'center'
                    # labels [l,r,t,b]
                    if labels[0] and not labels[1] and x >= 0.5*(self.xmin+self.xmax)+xoffset: continue
                    if labels[1] and not labels[0] and x <= 0.5*(self.xmin+self.xmax)-xoffset: continue
                    if labels[2] and not labels[3] and y <= 0.5*(self.ymin+self.ymax)-yoffset: continue
                    if labels[3] and not labels[2]and y >= 0.5*(self.ymin+self.ymax)+yoffset: continue
                elif pole == -1:
                    theta = (np.pi/180.)*(-merid+self.projparams['lon_0']+90)
                    x = r*np.cos(theta)+0.5*(self.xmin+self.xmax)
                    y = r*np.sin(theta)+0.5*(self.ymin+self.ymax)
                    if x > 0.5*(self.xmin+self.xmax)-xoffset:
                        horizalign = 'right'
                    elif x < 0.5*(self.xmin+self.xmax)+xoffset:
                        horizalign = 'left'
                    else:
                        horizalign = 'center'
                    if y > 0.5*(self.ymin+self.ymax)-yoffset:
                        vertalign = 'top'
                    elif y < 0.5*(self.ymin+self.ymax)+yoffset:
                        vertalign = 'bottom'
                    else:
                        vertalign = 'center'
                    # labels [l,r,t,b]
                    if labels[0] and not labels[1] and x <= 0.5*(self.xmin+self.xmax)+xoffset: continue
                    if labels[1] and not labels[0] and x >= 0.5*(self.xmin+self.xmax)-xoffset: continue
                    if labels[2] and not labels[3] and y >= 0.5*(self.ymin+self.ymax)-yoffset: continue
                    if labels[3] and not labels[2] and y <= 0.5*(self.ymin+self.ymax)+yoffset: continue
                t=ax.text(x,y,lonlab,horizontalalignment=horizalign,verticalalignment=vertalign,**text_kwargs)
                meridict[merid][1].append(t)
        return meridict

    def tissot(self,lon_0,lat_0,radius_deg,npts,ax=None,**kwargs):
        """
Draw a polygon centered at ``lon_0,lat_0``. The polygon
approximates a circle on the surface of the earth with radius
``radius_deg`` degrees latitude along longitude ``lon_0``,
made up of ``npts`` vertices.
The polygon represents a Tissot's indicatrix
(http://en.wikipedia.org/wiki/Tissot's_Indicatrix),
which when drawn on a map shows the distortion
inherent in the map projection.

.. note::
Cannot handle situations in which the polygon intersects
the edge of the map projection domain, and then re-enters the domain.

Extra keyword ``ax`` can be used to override the default axis instance.

Other \**kwargs passed on to matplotlib.patches.Polygon.

returns a matplotlib.patches.Polygon object."""
        ax = kwargs.pop('ax', None) or self._check_ax()
        g = pyproj.Geod(a=self.rmajor,b=self.rminor)
        az12,az21,dist = g.inv(lon_0,lat_0,lon_0,lat_0+radius_deg)
        seg = [self(lon_0,lat_0+radius_deg)]
        delaz = 360./npts
        az = az12
        for n in range(npts):
            az = az+delaz
            lon, lat, az21 = g.fwd(lon_0, lat_0, az, dist)
            x,y = self(lon,lat)
            # add segment if it is in the map projection region.
            if x < 1.e20 and y < 1.e20:
                seg.append((x,y))
        poly = Polygon(seg,**kwargs)
        ax.add_patch(poly)
        # clip polygons for round polar plots.
        if self.round: poly,c = self._clipcircle(ax,poly)
        # set axes limits to fit map region.
        self.set_axes_limits(ax=ax)
        return poly

    def gcpoints(self,lon1,lat1,lon2,lat2,npoints):
        """
compute ``points`` points along a great circle with endpoints
``(lon1,lat1)`` and ``(lon2,lat2)``.

Returns arrays x,y with map projection coordinates.
"""
        gc = pyproj.Geod(a=self.rmajor,b=self.rminor)
        lonlats = gc.npts(lon1,lat1,lon2,lat2,npoints-2)
        lons=[lon1];lats=[lat1]
        for lon,lat in lonlats:
            lons.append(lon); lats.append(lat)
        lons.append(lon2); lats.append(lat2</