Indexing paths in a binary tree:
lignaring the fact that to choose a path is to choose a leaf node)

Number of sub-paths below each node

Iso there are paths w / indies 1 through 7 .
e.y. find path with index 3.

at (a) we go left because $5 \geq 3$ at (b) we go right because $2<3$, and we adjust the sub-index to $3-2=1$.
at (c) we go left because $1 \leqslant 1$
Algorithm: Indexing paths in a binary wee:
Inputs: A binary tree and an index
Set the subindex i to the index
set current node to root noddle
while current node is not a leaf node;
let n be subpaths below left child of current node.
If $n \geq i$;
set new current node to left child of old current node Otherwise;

Set new current node to right clued of old cwrent node set new subindex i to $i-n$.
The final 'current node' is the node with the provided index.

