
ZkSync 1

ZkSync
Created by CJ

Created time

Status New

Tags

Introduction
ZkSync is a layer2 of Ethereum, ranked the #3 on l2beat. It’s a ZK Rollup which provides volition support for users. I encourage
everyone to learn ZkSync from zkSync 2.0 for Builders so that you can have an overview, after this video you can read the official
docs to learn more about details.

Compilation
ZkSync uses a VM different than EVM, and was previously implementing its own contract language - Zinc but later decided to be
Solidity first. The following is the flow of compilation:

As you can see from the graph, ZkSync needs two compilers:

solc compiler

zksolc compiler

The latter was introduced for converting Yul to LLVM IR and is the root cause of incompatibility with existing hardhat toolchains.
ZkSync paid lots of effort on the hardhat toolchains but it’s still not fully ready for production usage

Integration
To work with ZkSync we will be needing the following toolchains, all of these have been integrated seamlessly via PR#393

solidity ≥ 0.8.17

@July 18, 2023 4:16 PM

https://l2beat.com/scaling/summary
https://www.youtube.com/watch?v=xd2siik0iBU&t=186s
https://www.youtube.com/watch?v=xd2siik0iBU&t=186s
https://era.zksync.io/docs/
https://github.com/matter-labs/zinc
https://github.com/para-space/paraspace-core/pull/393

ZkSync 2

zksolc ≥ 1.3.9

@matterlabs/hardhat-zksync-deploy

@matterlabs/hardhat-zksync-solc

zksync-web3

After adding this dependencies, we need to add the following configs to hardhat.config.ts

zksolc: {
 version: "1.3.9",
 compilerSource: "binary",
 settings: {
 libraries: ZK_LIBRARIES // Here it should contain all non-inlinable libraries' address
 }
},
networks: {

 zksync: {
 chainId: CHAINS_ID[eEthereumNetwork.zksync],
 url: NETWORKS_RPC_URL[eEthereumNetwork.zksync],
 accounts: DEPLOYER,
 ethNetwork: NETWORKS_RPC_URL[eEthereumNetwork.mainnet],
 zksync: true,
 verifyURL: ETHERSCAN_APIS[eEthereumNetwork.zksync],
 },
 zksyncGoerli: {
 chainId: CHAINS_ID[eEthereumNetwork.zksyncGoerli],
 url: NETWORKS_RPC_URL[eEthereumNetwork.zksyncGoerli],
 accounts: DEPLOYER,
 ethNetwork: NETWORKS_RPC_URL[eEthereumNetwork.goerli],
 zksync: true,
 verifyURL: ETHERSCAN_APIS[eEthereumNetwork.zksyncGoerli],
 },

}

then since ZkSync uses a different Signer type we will need to be compatible on this while getting the deployer:

export const getFirstSigner = async () => {
 if (DRE.network.zksync) {
 return new zk.Wallet(
 last(accounts)!.privateKey,
 new zk.Provider((DRE.network.config as HttpNetworkConfig).url), // L2
 new ethers.providers.JsonRpcProvider(
 (DRE.network.config as HttpNetworkConfig).ethNetwork // L1
)
);
 } else {
 if (!RPC_URL) {
 return first(await getEthersSigners())!;
 }

 const {paraSpaceAdminAddress} = await getParaSpaceAdmins();
 return (
 await impersonateAddress(IMPERSONATE_ADDRESS || paraSpaceAdminAddress)
).signer;
 }
};

finally because of ZkSync uses Deployer to loadArtifact and deploy, we also need to be compatible on this

export const getContractFactory = async (
 name: string,
 libraries?: Libraries
) => {
 const signer = await getFirstSigner();
 if (DRE.network.zksync) {
 const deployer = new Deployer(DRE, signer as zk.Wallet);
 const artifact = await deployer.loadArtifact(name);
 const factoryDeps = await deployer.extractFactoryDeps(artifact);
 return {

ZkSync 3

 artifact,
 factory: new zk.ContractFactory(
 artifact.abi,
 artifact.bytecode,
 signer as zk.Signer
),
 customData: {
 factoryDeps,
 feeToken: zk.utils.ETH_ADDRESS,
 },
 };
 } else {
 const artifact = await DRE.artifacts.readArtifact(name);
 if (libraries) {
 artifact.bytecode = linkLibraries(
 artifact,
 normalizeLibraryAddresses(libraries)
);
 }
 return {
 artifact,
 factory: new ContractFactory(artifact.abi, artifact.bytecode, signer),
 customData: undefined,
 };
 }
};

Incompatibility
SELFDESTRUCT op code is not supported

payable is removed, msg.value by default equals to zero

zksync bytecode is different with EVM bytecode (different VM)

zksync bytecode contains only creationCode，no more runtimeCode

zksync account now has two nonces: deployment nonce and transaction nonce

zksync supports AA out of box and each address can be considered as contract address

!!deployment process!!

1. create a contract by calling ContractDeployer system contract by providing bytecode hash and constructor arguments

2. bytecode pre-image should be provided via custom_data.factory_deps , if this contract creates other contracts, all contracts’
bytecode should be put inside custom_data.factory_deps

3. bytecode hash must be Known on L1

!!compile time library linking!!

1. inlineable libraries should be ok, no change needed

2. non-inlineable libraries ’ address should be put inside hardhat.config.ts before compiling

3. if library relies on other libraries, we need to compile from the bottom to top so that each library can contain correct
bytecode

!!no cache support for compilation!!

compile time is very long

zksync rpc server is centralized and not fully compatible with ETH RPC

Getting Started

ZkSyncGoerli

1. install packages

ZkSync 4

yarn

2. touch .env

NETWORK=zksyncGoerli
ALCHEMY_KEY=v2H0jMbFK2BAlezbtzdYwdm9P_p38yOZ
ETHERSCAN_VERIFICATION=false
ETHERSCAN_VERIFICATION_CONTRACTS=*
MOCHA_JOBS=1
DB_PATH=deployed-contracts.json
DEPLOYER_MNEMONIC=...

3. build with no zk-libraries.json

make build

4. deploy libraries

make deploy-all-libraries

5. deploy

make deploy

Local Setup

1. clone https://github.com/matter-labs/local-setup

git clone https://github.com/matter-labs/local-setup

2. run local testnet

cd local-setup
./start.sh

3. open another terminal and go to paraspace-core, replace hardhat.config.ts#221 by the following

ethNetwork: "http://127.0.0.1:8545",

4. modify .env

RPC_URL=http://127.0.0.1:3050
DEPLOYER_PRIVATE_KEY=0x7726827caac94a7f9e1b160f7ea819f172f7b6f9d2a97f992c38edeab82d4110

4. go back to normal process

Debugging
ZkSync’s error message is a nightmare, it often looks like the following, cast will not work with zksync so we cannot simulate the
transaction locally.

https://github.com/matter-labs/local-setup
https://www.notion.so/4a082dfa39c34aa1905b665b3c20b672?pvs=25#43dbe47e7e8c46eb80470ad79cde81c3

ZkSync 5

error.trace

I find it’s useful to debug via debug_traceTransaction rpc

curl -X POST -H "Content-Type: application/json" \
--data '{"jsonrpc":"2.0", "id":2, "method": "debug_traceTransaction", "params": ["0xe31f3c948f89066a131af16cdf7a0b459a0049ca6f1c4bb7bab285d9
"https://zksync2-testnet.zksync.dev" > trace.json

then you can open trace.json and search the field with value non-null

{
 "type": "Call",
 "from": "0x0000000000000000000000000000000000008001",
 "to": "0x0000000000000000000000000000000000008004",
 "gas": "0xb0c9a0",
 "gasUsed": "0x37b",
 "value": "0x0",
 "output": "0x",
 "input": "0xe516761e000100
 "error": null,
 "revertReason": "Unknown revert reason",
 "calls": []
},

sometimes it tells you why, sometimes no, we can try again for a different trace on local-setup

error.trace2

"error": null,
 "from": "0x36615cf349d7f6344891b1e7ca7c72883f5dc049",
 "gas": "0xb59f3b",
 "gasUsed": "0x1081",
 "input": "0x13ad9cab000000000000000000000000512899a8dd96919721c5aacc2f01e9c6743d9337000000000000000000000000d0a217a9fcc538c971cff2a48c
 "output": "0x",
 "revertReason": "Unknown revert reason",
 "to": "0x6f580854224a6ec4757ff9c99a8a4af3882f6e24",
 "type": "Call",
 "value": "0x0"
 }
],
 "error": null,
 "from": "0x0000000000000000000000000000000000008001",
 "gas": "0xb89008",
 "gasUsed": "0x1f9d",
 "input": "0xdf9c1589ab27573b667b629a20b24aa188941b729ef447b277cfb48cf7b0ced41bcf09c2ab116ca50abe068b3e6f3554b0e9b9f0d95bbd9eed17bbbc959e55
 "output": "0x",
 "revertReason": "Unknown revert reason",
 "to": "0x36615cf349d7f6344891b1e7ca7c72883f5dc049",
 "type": "Call",
 "value": "0x0"
},

OK still unknown revert reason, then only god and ZkSync team knows why

Bad Technical Support
26 June was the last day on which ZkSync team replied to us (ParaSpace), we asked for help multiple times via different methods:

github issues

https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F287d6f78-45d4-4df7-9be6-ac01644f3fdf%2Ferror.trace?table=block&id=b709c414-1ec2-4b9a-aee5-08512323d96f&spaceId=f624d704-b706-480f-a610-3d4f2da30af8&userId=a05c2e20-d579-4c9a-bd33-36be39cc0091&cache=v2
https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F29bfdf82-ea32-4402-8c71-79b280a1f93a%2Ferror.trace2?table=block&id=229b4be4-bd32-4147-8bdf-8ab14bbbe887&spaceId=f624d704-b706-480f-a610-3d4f2da30af8&userId=a05c2e20-d579-4c9a-bd33-36be39cc0091&cache=v2

ZkSync 6

telegram group

but ZkSync team doesn’t really provide any helpful instruction, so we kept trying and it finally succeeded on local-setup

But, yes there is a but, it doesn’t work with ZkSync goerli yet

