
CS422 Project: Searching for Markovian Malware

C&C on Twitter

Maxime Augier and Gowthami Ramasamy

May 7, 2014

0.1 Objectives

The main objective was to assess how realistic is it to use a Markov language
model to build a stealthy control channel for malware, piggybacking on the
Twitter service, and as a side effect, to study other anomalies of Twitter
traffic.

A botnet is typically employed to launch Denial-of-Service attacks on
popular websites, then extorting protection money from the site owners.
In its simplest form, a botnet command would consist of a target website,
maybe a few control flags (3-5 bits) and an attack duration (to get a 5 minute
granularity over 1 week, 11 bits are sufficient). According to the list of the
500 most popular domains available on http://moz.com/top500/domains/

csv, the median length of a domain name is 14 characters and the 95th
percentile is at 20. A domain name consists of the characters a-z, 0-9, dash
and dot. With charater-wise encoding, and assuming characters in domain
names are evenly distributed (quite a pessimistic assumption) we need 6 bits
to per domain character, so 120 bits for a domain name, 136 after adding
some control bits.

We thus consider a control channel “realistic” if it can fit 136 bits in a
single message.

0.2 Project setup

All the project code is available on github at http://github.com/maugier/
cs422.git.

0.3 Data collection

As a starting point, we used a sample of the twitter stream archive pro-
vided on http://archive.org. The original file is a tar archive containing
bzipped fragments of text files. The chunks were small, in the order of
1.5MB. In orded to ease the load on the cluster filesystem (millions of files

1

is not a trivial thing) we decided repacked them into bigger chunks, of the
order of 100M.

In hindsight this was a bad decision; it would have been adequate if we
were the only users of the machine, but on a shared system it would have
been better to have more chunks of smaller size, as it would have decreased
the granularity of the mapper jobs and made for a more fluid scheduling.

For repacking, gzip compression was used. The bzip2 format is techni-
cally superior in that it allows almost-random access to the data, decoupling
the chunks from the mapper jobs. However, bzip2 compression is signifi-
cantly slower than gzip; we considered the time saved when repacking more
important that the ability to scale the dataset to a bigger cluster on the
spot. In theory, it would have been possible to merge the bzip2 chunks by
playing header trickery, but we prefered the safe approach.

For this operation we used the python code under the “extraction” di-
rectory. It offers a generator-based API to process the tweets. There is also
a script to upload data to a MongoDB instance if needed (we ended up not
using MongoDB at all for now).

The repacked chunks were uploaded to the lab cluster HDFS under
the /team16 directory, where they were made publically available for other
teams. There are also /team16/tweets-small and /team16/tweets-tiny, which
are subsets of the main dataset, and can be used for testing purposes.

0.4 Early assessment

Using Java MapReduce jobs proved extremely troublesome. The Hadoop
version available was rather obsolete (1.x) and much of the documentation
available on the net referenced non-existing mechanisms. Not having admin-
istrator access restricted our options; in particular, inclusion of third-party
libraries for json parsing was much more difficult than needed. We tried
several approaches (fat jars, trickery with the configuration object) to no
avail. In the end, it turned out to be much simpler to write jobs using the
streaming API. We wrote jobs in Python, as the version installed on the
machine already had all the desired libraries.

The streaming API wasn’t free from oddities though. It appears using
spaces as end markers for the trigrams wasn’t a great idea, and actually
caused the shuffle step to return inconsistent results. Everything went better
after we switched to a printable character for the begin/end marker (the
dot.)

Every tweet provided a language field, set by the preferences of the user.
As a trial of the hadoop system, we counted the languages of our tweets.
Results are in table B.

On the contents of every tweet, we computed the simple entropy of the
message as a sequence of characters. The entropy per language is presented
in figures 1 and 2.

2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
o

u
n
t

Entropy (bits)

Tweet Entropy

"result"

Figure 1: Entropy distribution over tweets

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000

"result-cdf"

Figure 2: Entropy CDF over tweets

3

Lang Count Lang Count

ja 2437 bg 2
zh 58 th 1
en 12 pa 1
de 9 he 1
ko 6 ar 1
vi 3

Table 1: High Entropy Tweets per Language

We suspected entropy might vary per language, and so plotted entropy
variation against the language field in ??.

There are a few ouliers above 6.6 where we suspected we might find
interesting content. The language count for these tweets is reported in ??.
It is not surprising that among these outliers are ideogram-based languages,
Japanese and Chinese.

Recognizing base64 turned out to be harder than expected. Regex
matching yielded a significant number of false positives.

We did, however, identify one odd pattern: sequences of nucleotids
(ATGC letters) in long strings. We found a couple of users tweeting these
sequences as “Human DNA pieces”. While we initially thought this may
be a covert communication channel, the sequences we tested turned out to
be genuine human DNA, present in the publicly-available BLAST nucleotid
database.

It is straightforward to encode bytes into groups of four nucleotids. With
the 140-character twitter limit we can accomodate 35 bytes, or 280 bits,
enough for our target bound.

For instance, assigning A,C,G,T the values 0,1,2,3, and writing every
ascii value in base 4, lsb first, we can encode www.facebook.com as

CTCTCTCTCTCTGTGACGCGCGACCGATCGCC

CGAGCGTTCGTTCGGTGTGACGATCGTTCGTC

Unfortunately this is not a very good disguise, as such a code would
exhibit strong self-correlation of order 2, where for actual genetic data an
order 3 would be expected. This could be improved by compressing or
encrypting the data with a very simple scheme prior to encoding.

We attempted to match base64-encoded data with the heuristic of at-
tempting a base64 decode, then keeping only the messages for which there
is at least one ascii letter. Unfortunately this also produced too many false
positives.

4

0.5 Model building

MapReduce is especially well fitted to compute the probability distributions
over a Markov model. We will compute our models both on letters (n-
grams) and tokenized words (for the english corpus only). We also need to
test several tokenization models.As a part of n-gram model and tokenized
words, a MapReduce program has been developed, the logic of the model
follows

Mapper (n-gram) Input : The twitter stream, without any
pre-processing

Functionality :

1. The twitter stream is parsed and the language field - ’Lang’
and Tweet text ’Text’ gets extracted.

2. The language fields is used according to the model that we
are build [full one or English only]

3. The tweet text further parsed into n-grams, without
elimination of any bytes.

Output : Each n-gram will be passed as a key to the reducer. The
value is one. n-gram, one

Mapper (tokenized words) :

Input : The twitter stream, without any pre-processing

Functionality :

1. The twitter stream is parsed and the language field - ’Lang’
and tweet text ’Text’ gets extracted.

2. The language fields is used according to the model that we
are build [full one or English only]

3. The tweet text further parsed into words, tweet texts
always contains special characters,plural forms which
should be eliminated. So regex pattern is used to extract
only alpha-numeric characters

Output : Each word will be passed as a key to the reducer. The
value is one. word, one

Reducer (common to n-grams and tokens) :

Input : Key, Value

Functionality : Count the Key

Output : Key Count

5

We hit several trivial (in hindsight) difficulties that required model tweak-
ing, and thus a lot of redundant computations. For the trigrams, the most
common word was “RT”: it is used as a marker at the beginning of a tweet
to tag retweets. Thus, the model would mostly build strings of the “RT”
word repeated. The second most common word was “http” followed closely
by “https”. For tokens, we (arbitrarily) excluded hashtags and user handles.

The top 5-grams for the english language are summarized in table 3.

Entropy estimation Once the encoding channel is working, we shall
make it run with random input bits, and measure on average how many
bits fit in each tweet, for all our models (n-grams, english n-grams, english
words). Combined with compression, we will estimate how many messages
would be required for typical C&C operations, checking in how many bits
we can fit (for instance) a DDoS attack target or a typical shady url.

Detection The difficult part will be extracting suspicious messages con-
forming too well to our model.

One first technique will be to use different Markov models of different
orders, and see if for given accounts, their distribution of tweets follows a
low-order model anormally better than a high-order one.

We will also use the n-gram table to compute likelihood for a set of
hashtags, and try to extract randomly-generated hashtags from it. We will
apply the same n-gram analysis to messages contents, and compare with the
first naive regex-based classifier.

Channel building We propose to use an inverted form of Huffman coding
to encode arbitrary bits into human-looking chains. The algorith wil work
as follows:

First, prune the model to keep it down to a reasonable size, by excluding
uncommon words.

Then, for every state in the chain, build a Huffman tree over the distri-
bution for the next symbol.

To encode, begin with an empty starting state in the Markov chain.
Perform a Huffman decoding operation on the tree of the current state,
which will consume an arbitrary number of bits and produce a symbol.
Output the symbol, compute the new state, and repeat until no bits are
left, or the chain picks a terminating symbol, or the maximum output size
is exceeded.

To decode, begin with the same empty state; for each token encoutered,
perform Huffmann compression, repeat until the message is complete.

6

A Future Work

Another option we want to consider (but less likely to give results) is encod-
ing messages in deliberate grammar or orthography mistakes, trough per-
mutation of simple characters. Decoding would be performed by a standard
spell checker like aspell.

B Appendix A: results

7

Lang Count Lang Count

en 46324982 lt 82100
ja 22399870 zh 77609
es 15817824 no 71175
id 10970703 fa 69998
ar 9368831 uk 57837
pt 7189249 he 54388
und 3964165 ur 37947
tr 3897656 is 35487
fr 2947715 hi 19889
ru 2566648 ta 8417
tl 1917014 bn 6140
ko 1730077 ne 5859
th 1664855 hy 2828
it 1029948 ka 2149
nl 1019123 ml 1159
de 725735 te 1071
vi 572220 pa 892
et 498251 bo 746
pl 453255 si 638
sl 429062 my 634
ht 350093 iu 505
sk 263615 gu 492
sv 248050 kn 444
lv 209531 km 433
hu 119744 lo 315
bg 115099 am 196
el 111589 chr 184
fi 110380 dv 146
da 110267 or 47

Table 2: Tweets per language

8

5gram count 5gram count

.the. 7233325 ight. 1943931

.you. 6642536m 1943566

....i 4578163a 1861019

.and. 4160015 .with 1828758

...i. 3186708 .i.m. 1815360

.for. 2966322 e.you 1750457

....t 2830670 just. 1735798

.that 2691984 .foll 1724977
that. 2569898 with. 1697451
ollow 2305442w 1657913
follo 2303823 .like 1655889
....s 2291588 .your 1654147
.just 2044528 .love 1630010
.this 2039137 .have 1627986
this. 2033897

Table 3: Top 5-grams for english language

9

