Exploration of traits in Julia
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.



This package is currently abandoned, although with the new type system in Julia 0.6 it should become viable to make this package maintainable; also #23117 should help. SimpleTraits.jl package provides traits, although without the interface specification present in this package.

Build Status

Traits.jl allows to:

  • define traits/interfaces with @traitdef

  • implement interfaces with @traitimpl

  • make functions which dispatch on traits with @traitfn

It's based on what I think traits should be:

  1. contracts on a type or a tuple of types. The contract can contain required methods but also other assertions. (Assertions could be that certain fields are present or that it has some storage structure, etc.)

  2. they needn't be declared explicitly, but can be.

  3. they allow dispatch to work with them

Julia's generic functions are very good to set up contracts as mentioned in (1). But Julia does not support (2) or (3) yet. (2) is fairly easy to implement. However, dispatch on a "contract" is not easily possible, but Tim Holy recently came up with a trick. The cool thing about that trick is that the generated machine-code for a trait-dispatch function should be identical to a duck-typed function, i.e. there is no loss in performance.

Traits.jl adds those kind of traits to Julia, using Tim's trick combined with stagedfunctions and extensive facilities to define traits. See also the Julia-issue #6975 concerning interfaces/traits.

My JuliaCon 2015 talk gives a 10 minute introduction to Traits.jl. Also, Jeff mentioned Traits.jl during Q&A in his JuliaCon talk, suggesting that trait functionality may well be added to Julia-Base (but different to Traits.jl).

Note that there is also the SimpleTraits.jl package which is a lot simpler than Traits.jl, essentially just macro-sugar for Holy-traits. Thus SimpleTraits.jl does not contain the possibility to define traits by specifying required methods. Instead types need to be added to a trait manually; the rest is almost identical to Traits.jl.

Example examples/ex1.jl:

using Traits
# Check Cmp-trait (comparison) which is implemented in Traits.jl/src/commontraits.jl
@assert istrait(Cmp{Int,Float64})        # Int and Float64 can be compared
@assert istrait(Cmp{Int,String})==false  # Int and String cannot be compared

# make a new trait and add a type to it:
@traitdef MyTr{X,Y} begin
    foobar(X,Y) -> Bool # All type-tuples for which there is a method foo
                        # with that signature belong to MyTr
type A
@assert istrait(MyTr{A,A})==false  # foobar not implement yet
foobar(a::A, b::A) = a.a==b.a      # implement it
@assert istrait(MyTr{A,A})         # voila!
@assert istrait(MyTr{Int,Int})==false

# make a function which dispatches on traits:
@traitfn ft1{X,Y; Cmp{X,Y}}(x::X,y::Y)  = x>y ? 5 : 6
@traitfn ft1{X,Y; MyTr{X,Y}}(x::X,y::Y) = foobar(x,y) ? -99 : -999

ft1(4,5)        # ==6    i.e. dispatches to first definition
ft1(A(5), A(6)) # ==-999 i.e. dispatches to second definition

ft1("asdf", 6)
# -> ERROR: TraitException("No matching trait found for function ft1")

Package status

New features are documented in NEWS as they are added. I keep some notes, musings and plans in dev_notes.md.

This is a fairly experimental package and I will not try to keep backwards compatibility as I move on. Please try it out and give me feedback, issues or pull requests!

Update April 2016: I will not have much time to work on this in the near-ish future and it will be a low priority for me to update Traits.jl once Julia 0.5 is out.


The source of below examples is in examples/ex2.jl. Most of the important functions are documented and will respond to ? in the REPL.

Trait definition (for details see traitdef.md):

using Traits
# simple
@traitdef Tr1{X} begin
    fun1(X) -> Number   # this means a method with signature fun1(::X)
                        # returning a Number
@traitdef Tr2{X,Y} begin
    fun2(X,Y) -> Number
# subtrait
@traitdef Tr3{X,Y} <: Tr1{X}, Tr2{X,Y} begin
# with additional constraint on the types
@traitdef Tr4{X,Y} begin
    @constraints begin
        # both Types need to start with the same letter:

# using associated types
@traitdef Tr5{X,Y} begin
    Z = promote_type(X,Y) # calculates Z from X and Y
    fun5(X,Y) -> Z

Note that return-type checking is quite experimental. It can be turned off with check_return_types(false).

Trait implementation and checking with istrait:

# manual definiton, i.e. just define the functions
fun1(x::Int) = 5x
@assert istrait(Tr1{Int})

# using @traitimpl
@traitimpl Tr1{Float64} begin
    fun1(x::Float64) = 7x # the explicit "::Float64" is needed at the moment
@assert istrait(Tr1{Float64})

# wrong usage of @traitimpl
    @traitimpl Tr1{Float32} begin
        fun1(x::Float64) = 7x # if the explicit type is wrong, it may error
catch e

# This gives an error because supertypes have not been defined yet:
    @traitimpl Tr3{Int, Int} begin
        fun3(x::Int, y::Int, t::Int) = x+y+t
catch e

# this works:
@traitimpl Tr2{Int, Int} begin
    fun2(x::Int, y::Int) = x+y
@traitimpl Tr3{Int, Int} begin
    fun3(x::Int, y::Int, t::Int) = x+y+t
@traitimpl Tr4{Int, Int} begin
    fun4(x::Int, y::Int) = x+y

# This gives an error because constraints are not satisfied:
# Int starts with an "I" whereas Float64 with an "F":
    @traitimpl Tr4{Int, Float64} begin
        fun4(x::Int, y::Float64) = x+y
catch e
    println(e)  # ErrorException("assertion failed: istrait(Tr4{Int,Float64})")

Trait functions & dispatch (for details see traitfns.md):

@traitfn tf1{X, Y; Tr1{X}, Tr1{Y}}(a::X, b::Y) = fun1(a) + fun1(b)             # I
@traitfn tf1{X, Y; Tr1{X}, Tr1{Y}}(a::X, b::Y, c::Int) = fun1(a) + fun1(b) + c # II
@traitfn tf1{X, Y; Tr2{X,Y}}(a::X, b::Y) = fun2(a,b)                           # III
# Note that all the type-parameters are in the {} and that all
# arguments need a type parameter (a limitation of the
# macro-parser). This doesn't work:
# julia> @traitfn ttt1{X, Y; Tr1{X}, Tr1{Y}}(a::X, b::Y, c) = fun1(a) + fun1(b) + c
# ERROR: type Symbol has no field args
# But this works:
# julia> @traitfn ttt1{X, Y, Z; Tr1{X}, Tr1{Y}}(a::X, b::Y, c::Z) = fun1(a) + fun1(b) + c
# ttt1 (generic function with 6 methods)

# tf1 now dispatches on traits
@assert tf1(5.,6.)==77. # -> 77 ; dispatches to I because istrait(Tr1{Float64})
                        #         but not istrait(Tr2{Float64,Float64})
@assert tf1(5.,6.,77)==154. # -> 154. ; dispatches to II because of the extra argument

# Errors because of dispatch ambiguity:
    tf1(5,6)  # istrait(Tr1{Int}) and istrait(Tr2{Int,Int}) are both true!
catch e

# Implementing Tr1 for a type will make it work with tf1:
type MyType
    tf1(MyType(8), 9) # not implemented yet
catch e
@traitimpl Tr1{MyType} begin
    fun1(x::MyType) = x.a+9

@assert tf1(MyType(8), 9)==62 # -> 62 ; dispatches to I

Generated code

Continuing the example from last section, let's have a look at the llvm code:

f(x,y) = 7x + 7y
@code_llvm f(5.,6.)
@code_llvm tf1(5.,6.)

both produces

define double @"julia_f;41342"(double, double) {
  %2 = fmul double %0, 7.000000e+00, !dbg !1388
  %3 = fmul double %1, 7.000000e+00, !dbg !1388
  %4 = fadd double %2, %3, !dbg !1388
  ret double %4, !dbg !1388

However, for more complicated functions code is not quite the same, see test/perf/perf.jl.

Inner workings

Julia is already good at specifying function-interfaces for types/families of types with its ability of multiple dispatch. However, for a particular type these function-interfaces are implicitly defined by defining the particular functions needed for that "interface". For example, to support iteration a type needs to implement the functions start, next, and done with a specific calling convention. What Julia is lacking is a way to formally define and implement an interface, and, probably more importantly, to dispatch on interfaces. This package implements both of these abilities.

Probably easiest to figure out what Traits.jl is doing with its macros, is to have a look at the files tests/manual-trait*.jl. There I manually coded what the macros do.

Dispatch on traits

In Julia dispatch works on types, to extend this to traits I use @timholy's trick. His trick uses a method to assign its arguments to a trait. That trait-function is then used for dispatch in another function. Example of Tim's trick (examples/ex_tims_traits.jl):

type Trait1 end
type Trait2 end
type Trait3 end
# Now define function f which should dispatch on those traits:
f(x,y) = _f(x,y, traitfn(x,y))
# Logic which dispatches on trait:
_f(x,y,::Type{Trait1}) = x+y
_f(x,y,::Type{Trait2}) = x-y
_f(x,y,::Type{Trait3}) = x*y
# Association of types with traits through method definitions:
# Throw error as default
traitfn{T,S}(x::T,y::S) = error("Function f not implemented for type ($T,$S)")
# Add types-tuples to Trait1, Trait2 or Trait3
traitfn(::Int, ::Int) = Trait1
traitfn(::Int, ::FloatingPoint) = Trait2
traitfn(::FloatingPoint, ::FloatingPoint) = Trait3
# use
@assert f(3,4)==7      # Trait1
@assert f(3,4.)==-1.0  # Trait2
@assert f(3.,4.)==12.0 # Trait3
# add another type-tuple to Trait3
traitfn(::String, ::String) = Trait3
@assert f("Lorem ", "Ipsum")=="Lorem Ipsum"

What does this add compared to what we had before with usual dispatch? When a new type, say A, is created it can made to work with the function f without needing to re-define f for that particular type. Instead all that is needed is to add it to the traitfn, and choosing the exact behavior of f by the type traitfn returns:

traitfn(::A, ::Int) = Trait1()
traitfn(::Int, ::A) = Trait1()

Therefore traitfn is in effect a function that groups type-tuples into different Traits (via method definitions) and returns the appropriate type when called (which is then used inside f for dispatch). However, the limitation of this approach is that traitfn is married to f as can be seen from trying to reuse it for another function g which wants to dispatch in different traits:

g(x,y) = _g(x,y, traitfn(x,y))
# Logic which dispatches on trait:
_g(x,y,::Type{Trait1}) = 2x+2y
_g(x,y,::Type{Trait4}) = 2x-2y  # g doesn't care about Trait2&3 but about 4

# However, say Trait4 should also be implemented by {Int, FloatingPoint} just
# like Trait2:
traitfn(::Int, ::FloatingPoint) = Trait4 # this will overwrite the
                                         # Trait2 definition above!
g(5, 6.) # doesn't work

This limitation can be overcome having a different traitfn for each function which uses trait dispatch. However, it becomes rather tricky to remember to update all different traitfns if a type-tuple is added to a certain trait! This problem is solved in Traits.jl by de-coupling the trait definition from the trait dispatch helper function, both of which was done above by the traitfn.

Whether a trait is defined is checked by the istrait function (completely independent of any functions doing trait-dispatch). For instance istrait(Tr1{Int,Float64}) will check whether Tr1 is implemented by Tuple{Int,Float64}.

For the trait dispatch of a function, say f1, a generated-method is used (which also belongs to the generic function f1, so I needn't worry about scopes). The first time the generated method is called with arguments of a specific type, it figures out which trait or traits-tuple featuring in the method definitions of f1 that type satisfies, and constructs a constant method returning that trait. This trait is then used for dispatch. Time for an example!

For methods definition like so

@traitfn f1{X,Y<:Integer; D1{Y}, D4{X,Y}}(x::X,y::Y) = x + sin(y)
@traitfn f1{S,T<:Integer; D1{S}, D1{T}  }(s::S,t::T) = sin(s) - sin(t)
@traitfn f1{X,Y<:FloatingPoint; D1{X}, D1{Y}  }(x::X,y::Y) = cos(x) - cos(y)

the underlying definitions are:

f1{X,Y<:Integer}(x::X, y::Y)       = f1(f1(_TraitDispatch,x, y), x, y)
f1{S,T<:Integer}(s::S, t::T)       = f1(f1(_TraitDispatch,s, t), s, t)
f1{X,Y<:FloatingPoint}(x::X, y::Y) = f1(f1(_TraitDispatch,x, y), x, y)

# The logic for different traits is:
@inline f1{X,Y<:Integer}(::Type{(D1{Y}, D4{X,Y})}, x::X, y::Y) = x + sin(y)
@inline f1{S,T<:Integer}(::Type{(D1{S}, D1{T})}, s::S, t::T) = sin(s) - sin(t)
@inline f1{X,Y<:FloatingPoint}(::Type{(D1{X}, D1{Y})}, x::X, y::Y) = cos(x) - cos(y)

# Trait dispatch happens in these generated functions
@generated function f1{X1,X2<:Integer}(::Type{_TraitDispatch}, x1::X1, x2::X2)
    # Figure out which trait matches.  Note below list is updated as more
    # trait-dispatched methods are added to f1.
    traittypes = [(D1{X2}, D4{X1,X2}), (D1{X1}, D1{X2})]

    # errors if not a single match is found:
    traittyp = Traits.traitdispatch(traittypes, $(fn.name))

    out = :(())
    for s in traittyp
        push!(out.args, :($s))
    return out
# For each type signature there is a trait-dispatch function
@generated function f1{X1,X2<:FloatingPoint}(::Type{_TraitDispatch}, x1::X1, x2::X2)

Dispatch, happening in the function Traits.traitdispatch is quite simple taking trait-hierarchies into account. Although, note that it is easily possible to have unsolvable ambiguities with trait-dispatch as traits do not have a strict hierarchy like types.

Other trait implementations

See the Julia-issue #6975 for a discussion about interfaces/traits.

My simpler traits implementation: SimpleTraits.jl Similar to Traits.jl but:

  • types are added to traits manually
  • some restrictions on @traitfn

@Rory-Finnegan's Interfaces.jl

  • does dispatch on traits
  • only single parameter traits
  • uses a new type of mutable Union coded in C

Jason Morton's package Typeclass.jl

  • does multiple parameters
  • no dispatch

@pao's https://gist.github.com/pao/2432554

  • simple
  • no dispatch on trait

https://github.com/JuliaLang/julia/pull/7025 (and https://gist.github.com/tknopp/ed53dc22b61062a2b283)

  • @tknopp
  • interfaces are just added to types
  • no dispatch on interfaces


  • @abe-egnor
  • no dispatch


  • only does fields of types, as far as I can tell

Graphs.jl: http://graphsjl-docs.readthedocs.org/en/latest/interface.html

  • interface verification

@timholy's trick https://github.com/JuliaLang/julia/issues/2345#issuecomment-54537633

  • does limited dispatch: a function returns a true/false type depending on the input types
  • Jeff suggested some additions to it.