Skip to content
πŸ“Š Python charts with 0 dependencies
Branch: master
Clone or download
Latest commit 4562baa Aug 13, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
chart standardize examples Aug 12, 2019
examples standardize examples Aug 12, 2019
images add travis and a bitchin logo Aug 9, 2019
tests 0.2.0 release Aug 12, 2019
.gitignore Initial commit Aug 8, 2019
.travis.yml first test with DSI Aug 9, 2019
LICENSE Initial commit Aug 8, 2019 standardize examples Aug 12, 2019 standardize examples Aug 12, 2019


MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output

Charts supported:

  • Bar graphs
  • Scatter plots
  • Histograms
  • πŸ‘πŸ“ŠπŸ‘


Bar graphs can be drawn quickly with the bar function:

from chart import bar

x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']

bar(x, y)
       marc: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡             
    mummify: β–‡β–‡β–‡β–‡β–‡β–‡β–‡                       
      chart: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡
sausagelink: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡                              

And the bar function can accept columns from a pd.DataFrame:

from chart import bar
import pandas as pd

df = pd.DataFrame({
    'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
    'listens': [8_456_831, 18_185_245, 2_556_448]
bar(df.listens, df.artist, width=20, label_width=11, mark='πŸ”Š')
Tame Impala: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š           
Childish Ga: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š
 The Knocks: πŸ”ŠπŸ”ŠπŸ”Š                                

Histograms are just as easy:

from chart import histogram

x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]

β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡     β–‡
β–‡ β–‡     β–‡
β–‡ β–‡   β–‡ β–‡

And they can accept objects created by scipy:

from chart import histogram
import scipy.stats as stats
import numpy as np

n = stats.norm(loc=0, scale=10)

histogram(n.rvs(100), bins=14, height=7, mark='πŸ‘')
            πŸ‘   πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
        πŸ‘   πŸ‘ πŸ‘ πŸ‘          
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘    
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘   πŸ‘

Scatter plots can be drawn with a simple scatter call:

from chart import scatter

x = range(0, 20)
y = range(0, 20)

scatter(x, y)
                                   β€’ β€’  
                             β€’ β€’        
                         β€’ β€’            
                  β€’  β€’                  
            β€’ β€’                         
        β€’ β€’                             
  β€’ β€’                                   

And at this point you gotta know it works with any np.array:

from chart import scatter
import numpy as np

N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)

scatter(x, y, width=20, height=9, mark='^')
             ^^^^^ ^
                ^^ ^

In fact, all chart functions work with pandas, numpy, scipy and regular python objects.


In order to create the simple outputs generated by bar, histogram, and scatter I had to create a couple of preprocessors, namely: NumberBinarizer and RangeScaler.

I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart here they are for your tinkering:

from chart.preprocessing import NumberBinarizer

nb = NumberBinarizer(bins=4)
x = range(10)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler

rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]


pip install chart


For feature requests or bug reports, please use Github Issues


I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart πŸ₯‚ (still can't believe I got it on PyPI)

You can’t perform that action at this time.