
CONSTRUCTING SEARCHES
Introduction to Regular Expressions

Tools & Techniques in DH

MAXIM ROMANOV

Practicum files are on Course website

▪On Windows
▪ Install EditPad Pro or Lite
▪ Alternatively, Sublime Text

▪ Open the practicum file

▪On Mac

▪ Install Sublime Text
▪ Open the practicum file

What are Regular Expressions?

• very small language for
describing textual patterns

• not a programming
language, yet a part of each
one

• incredibly powerful tool for
find/replace operations

• old (1950s-60s)

• arcane art

• ubiquitous

Why Use Regular Expressions?

To search:
▪ all spelling variations of the same word:
• Österreich, Osterreich or Oesterreich?

▪ words of specific morphological patterns:
• [root]er, [root]ed, [root]ing [root]s: all derivatives from the same word

▪ entities that may be referred to differently:
• references to Austria? (Vienna, Wien, Salzburg, etc.)

• references to education in biographies

To search and replace:
▪ reformat “dirty”/inconsistent data

To tag:
▪ make texts navigable and more readable

▪ tag information relevant to your research
• and many other uses…

The Basics

• a regular expression is a pattern enclosed within delimiters
• delimiters will differ depending on a programming language or software that

you use; you may also not see them at all
• most text editors that support RE do not display delimiters (EditPad Pro,

Sublime Text, TextMate)

• most characters match themselves

• there are also special characters

Example:

• `Vienna` is a regular expression that matches “Vienna”
– ` (tick) is the delimiter enclosing the expression 

(you do not need them in text editors)
– “Vienna” is the pattern

/at/

• Matches strings with “a”
followed by “t”.

at hat

that atlas

aft Athens

/at/

• Matches strings with “a”
followed by “t”.

at hat

that atlas

aft Athens

Characters & Special Characters

• most characters match themselves

• matching is case sensitive

• special characters: ()^${}[]\|.+?*

• to match a special character in your text, you need to “escape it”,
i.e. precede it with “\” in your pattern:

– `Osterreich [sic]`  
does not match “Osterreich [sic]”

– `Osterreich \[sic\]`  
matches “Osterreich [sic]”

Character Classes: []

• Characters within [] are choices for a
single-character match.

• Think of a type of or.

• Order within [] is unimportant.

• `x[01]` matches >>> “x0” and “x1”.

• `[10][23]` matches >>>  
>>> “02”, “03”, “12” and “13”.

• Initial ^ negates the class:
– `[^45]` matches any character except 4 or 5.

/[ch]at/

• Matches strings with “c” or
“h”, followed by “a”,
followed by “t”.

that at

chat cat

fat phat

/[ch]at/

• Matches strings with “c” or
“h”, followed by “a”,
followed by “t”.

that at

chat cat

fat phat

Ranges (within classes)

• Ranges define sets of characters within a class.

– `[1-9]` matches any non-zero digit
– `[a-zA-Z]` matches any letter of the

English alphabet
– `[12][0-9]` matches numbers between

10 and 29

Ranges shortcuts

Shortcut Name Equivalent Class

\d digit [0-9]

\D not digit [^0-9]

\w word [a-zA-Z0-9_] (actually more!)

\W not word [^a-zA-Z0-9_]

\s space [\t\n\r\f\v]

\S not space [^\t\n\r\f\v]

. everything [^\n] (depends on mode)

/\d\d\d[-]\d\d\d\d/

• Matches strings with:
– Three digits

– Space or dash

– Four digits

501-1234 234 1252

652.2648 713-342-7452

PE6-5000 653-6464x256

/\d\d\d[-]\d\d\d\d/

• Matches strings with:
– Three digits

– Space or dash

– Four digits

501-1234 234 1252

652.2648 713-342-7452

PE6-5000 653-6464x256

Repeaters

• Symbols indicating that
the preceding element of
the pattern can repeat.

• `runs?` matches runs
or run

• `1\d*` matches any
number beginning with
“1”.

Repeater Count

? zero or one

+ one or more

* zero or more

{n} exactly n

{n,m} between n and m
times

{,m} no more than m
times

{n,} at least n times

Repeaters

Strings:
1: “at” 2: “art”
3: “arrrrt” 4: “aft”

Patterns:
A: `ar?t` B: `a[fr]?t`
C: `ar*t` D: `ar+t`
E: `a.*t` F: `a.+t`

Repeater Count

? zero or one

+ one or more

* zero or more

{n} exactly n

{n,m} between n and m
times

{,m} no more than m
times

{n,} at least n times

Repeaters

1: “at” 2: “art”  
3: “arrrrt” 4: “aft”

• `ar?t` matches “at” and “art” but not “arrrt”.

• `a[fr]?t` matches “at”, “art”, and “aft”.

• `ar*t` matches “at”, “art”, and “arrrrt”

• `ar+t` matches “art” and “arrrt” but not “at”.

• `a.*t` matches anything with an ‘a’ eventually followed
by a ‘t’.

Lab: Intro (in the practicum file)
Repeater Count

? zero or one

+ one or more

* zero or more

{n} exactly n times

{n,m} between n and m
times

{,m} no more than m
times

{n,} at least n times

Shortcut Name

\d digit

\D not digit

\w word

\W not word

\s space

\S not space

. any symbol

Anchors

• Anchors match between
characters.

• Used to assert that the
characters you’re
matching must appear in
a certain place.

• `\bat\b` matches “at
work” but not “batch”.

Anchor Matches
^ start of line

$ end of line

\b word boundary

\B not boundary

\A start of string (rare)

\Z end of string (rare)

\z raw end of string (rare)

ALTERNATION – “|” (pipe)

• In RE, “|” means “or”.

• You can put a full expression on the left and another full
expression on the right.

• Either can match.

• `seek|seeks|sought`
• matches “seek”, “seeks”, or “sought”.

• `seeks?|sought`
• matches “seek”, “seeks”, or “sought”.

Grouping

• Everything within (…) is grouped into a single
element for the purposes of repetition and alternation.

• The expression `(la)+` matches “la”, “lala”,
“lalalala” but not “all”.

• `schema(ta)?` matches “schema” and
“schemata” but not “schematic”.

Grouping Example

• What regular expression matches
“eat”, “eats”, “ate” and “eaten”?

Grouping Example

• What regular expression matches “eat”, “eats”, “ate”
and “eaten”?

• `eat(s|en)?|ate`

• Add word boundary anchors to exclude “sate” and
“eating”:

• `\b(eat(s|en)?|ate)\b`

Lab: Part I (in the practicum file)

Repeater Count

? zero or one

+ one or more

* zero or more

{n} exactly n times

{n,m} between n and m
times

{,m} no more than m
times

{n,} at least n times

Shrtct Name

\d digit

\D not digit

\w word

\W not word

\s space

\S not space

. any symbol

Anchor Matches

^ start of line

$ end of line

\b word boundary

\t TAB symbol

\n new line

| “or” alternation

(…) capture group

[…] class

Replacement

• Regex most often used for search/replace

• Text editors:
• Search Window: pattern

• Replace Window: replacement

Capture

• During searches, (…) groups capture patterns for use
in replacement.

• Special variables \1, \2, \3 etc. contain the capture
• in Sublime Text: $1, $2, $3

• `(\d\d\d)-(\d\d\d\d)` “123-4567”
– \1 ($1) contains “123”

– \2 ($2) contains “4567”

CAPTURE & REFORMAT

• How to convert “Schwarzenegger, Arnold” to “Arnold
Schwarzenegger”?

• Search: /(\w+), (\w+)/

• Replace (a): /\2 \1/
• Replace (b): /$2 $1/

• Before hitting “Replace”, make sure that your match
does not catch what you do NOT want to change

CAPTURE & REFORMAT

• How to convert “Schwarzenegger, Arnold” to “Arnold
Schwarzenegger”?

• Search: `(\w+), (\w+)`

• Replace (a): `\2 \1`
• Replace (b): `$2 $1`

• (!) Before hitting “Replace”, make sure that your match
does not catch what you do NOT want to change

Lab: Part II (in the practicum file)

Repeater Count

? zero or one

+ one or more

* zero or more

{n} exactly n times

{n,m} between n and m
times

{,m} no more than m
times

{n,} at least n times

Shrtct Name

\d digit

\D not digit

\w word

\W not word

\s space

\S not space

. any symbol

Anchor Matches

^ start of line

$ end of line

\b word boundary

\t TAB symbol

\n new line

| “or” alternation

(…) capture group

[…] class

Finding Toponyms

▪Very Simple: Construct regular expressions that finds
references all Austrian cities.

Finding Toponyms

▪Very Simple: Construct regular expressions that finds
references all Austrian cities.

▪Simply connect all toponyms from the list with a pipe
symbol “|”

Finding Toponyms

▪A Bit Tricky: Construct regular expression that finds
only cities from 1) Lower Austria; 2) Salzburg.

Finding Toponyms

▪A Bit Tricky: Construct regular expression that finds
only cities from 1) Lower Austria; 2) Salzburg.

▪Option I:  
\b([\w]+) \(Lower Austria\)  
\b([\w]+) \(Salzburg\)

▪Option II (cooler): 
\b([\w]+)(?=(\(Lower Austria\)))  
\b([\w]+)(?=(\(Salzburg\)))

To keep in mind

▪ RE are “greedy,” i.e. they tend to catch more
than you may need. Always test!

▪ Test before applying! (In text editors Ctrl+Z
(Win), Cmd+Z (Mac) can help to revert
changes)

▪ Check the language/application-specific
documentation: some common shortcuts are
not universal (\1 vs $1, for example)

SOME READINGS

▪ Amazon.com
▪ http://www.amazon.com/Regular-Expressions-Cookbook-Jan-Goyvaerts/dp/1449319432/
▪ http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/

▪ Free Online Readings
▪ http://www.regular-expressions.info/
▪ http://ruby.bastardsbook.com/chapters/regexes/

▪ Cheat Sheets
▪ http://krijnhoetmer.nl/stuff/regex/cheat-sheet/
▪ http://www.rexegg.com/regex-quickstart.html

▪ Interactive tutorial
▪ http://regexone.com/

http://www.amazon.com/Regular-Expressions-Cookbook-Jan-Goyvaerts/dp/1449319432/
http://www.amazon.com/Regular-Expressions-Cookbook-Jan-Goyvaerts/dp/1449319432/
http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/
http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/
http://ruby.bastardsbook.com/chapters/regexes/
http://ruby.bastardsbook.com/chapters/regexes/
http://ruby.bastardsbook.com/chapters/regexes/
http://ruby.bastardsbook.com/chapters/regexes/
http://krijnhoetmer.nl/stuff/regex/cheat-sheet/
http://krijnhoetmer.nl/stuff/regex/cheat-sheet/
http://www.rexegg.com/regex-quickstart.html
http://www.rexegg.com/regex-quickstart.html
http://regexone.com/
http://regexone.com/

