Skip to content
master
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
doc
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UGSCNN: Spherical CNNs on Unstructured Grids

By: Chiyu "Max" Jiang, Jingwei Huang, Karthik Kashinath, Prabhat, Philip Marcus, Matthias Niessner

[Project Website] [Paper]

teaser

Introduction

This repository is based on our ICLR 2019 paper: UGSCNN: Spherical CNNs on Unstructured Grids. The project webpage presents an overview of the project.

In this project, we present an alternative convolution kernel for deploying CNNs on unstructured grids, using parameterized differential operators. More specifically we evaluate this method for the spherical domain that is discretized using the icosahedral spherical mesh. Our unique convolution kernel parameterization scheme achieves high parameter efficiency compared to competing methods. We evaluate our model for classification as well as semantic segmentation tasks. Please see experiments/ for detailed examples.

Our deep learning code base is written using PyTorch in Python 3, in conjunction with standard ML packages such as Scikit-Learn and Numpy.

Generate or download mesh files

To acquire the mesh files used in this project, run the provided script gen_mesh.py.

python gen_mesh.py

To locally generate the mesh files, the Libigl library is required. Libigl is mainly used for computing the Laplacian and Derivative matrices that are stored in the pickle files. Alternatively, the script will download precomputed pickles if the library is not available.

Run experiments

To run experiments, please find details instructions in under individual experiments in experiments. For most experiments, simply running the script run.sh is sufficient to start the training process:

chmod +x run.sh
./run.sh

The script will automatically download data files if needed.

Citation

If you find our code useful for your work, please consider citing our paper:

@inproceedings{
jiang2018spherical,
title={Spherical {CNN}s on Unstructured Grids},
author={Chiyu Max Jiang and Jingwei Huang and Karthik Kashinath and Prabhat and Philip Marcus and Matthias Niessner},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=Bkl-43C9FQ},
}

Credits

We used code from open-source repositories, including S2CNN, Libigl, among others.

Contact

Please contact Max Jiang if you have further questions!

About

Spherical CNNs on Unstructured Grids Using Parameterized Differential Operators

Resources

License

Releases

No releases published

Packages

No packages published