Skip to content

mbertalan/iPsychCNV

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
R
 
 
 
 
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 

iPsychCNV

##In R: ### To install setRepositories(ind=1:8) # 1 = CRAN , 2 = BioCsoft, 8 = http://R-Forge.R-project.org. library(devtools) install_github("mbertalan/iPsychCNV") ### Load the package library(iPsychCNV)

## Testing iPsychCNV # Creating a long mock file (one chromosome). LongRoi <- MakeLongMockSample(CNVDistance=1000, Type=c(0,1,2,3,4), Mean=c(-0.6, -0.3, 0.3, 0.6), Size=c(300, 600))

# Running iPsychCNV on long mock data.
CNVs <- iPsychCNV(PathRawData=".", Pattern="^LongMockSample.tab$", Skip=0)

# Reading long mock to an object in R.
Sample <- read.table("LongMockSample.tab", sep="\t", header=TRUE, stringsAsFactors=F)

# Plotting LRR and BAF from 
PlotLRRAndCNVs(CNVs, Sample, CNVMean=0.3, Name="LRR_BAF_Test_Plot.png", Roi=LongRoi)

# Evaluating CNVs
CNVs.Eval <- EvaluateMockResults(LongRoi, CNVs)

# Print ROC curve.
LongROC <- plot.roc(CNVs.Eval$CNV.Predicted, CNVs.Eval$CNV.Present, percent=TRUE, print.auc=TRUE)

Creating mock data.

# Simulates Infinium PsychArray BeadChip (Illumina).
#  Creates a Mockfile on local folder and returns the CNV position on the mock sample.
MockCNVs <- MockData(N=1, Type="Blood", Cores=1)

# Predicting CNVs
CNVs <- iPsychCNV(PathRawData=".", Cores=1, Pattern="*.tab", MINNumSNPs=20, LCR=FALSE, MinLength=10, Skip=0)

# Subset all CNVs with copy number (CN) different from 2.
CNVs.Good <- subset(CNVs, CN != 2)

# Creating ROI for Mock Data.
# ROI: Regions of interest (CNV position on the sample). 
MockCNVs.Roi <- subset(MockCNVs, CN != 2)
MockCNVs.Roi$Class <- rep("ROI", nrow(MockCNVs.Roi))

# Ploting CNVs. 
# It create a file (test.png) on your local folder.
PlotAllCNVs(CNVs.Good, Name="test.png", Roi=MockCNVs.Roi)

Evaluating CNVs

CNVs.Eval <- EvaluateMockResults(MockCNVs, CNVs.Good)

# Ploting evaluation using ROC curve.  
rocobj <- plot.roc(CNVs.Eval$CNV.Predicted, CNVs.Eval$CNV.Present, percent=TRUE,  print.auc=TRUE)  

About

Method for copy number variation detection for dried blood spots.

Resources

Stars

Watchers

Forks

Packages

No packages published