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Abstract

A bacterial species’ genetic content can be remarkably fluid. The collection of genes
found within a given species is called the pan-genome and is generally much larger
than the gene repertoire of a single cell. A consequence of this pan-genome is that

bacterial genomes are highly adaptable and thus variable.

The dominant paradigm for analysing genetic variation relies on a central idea: all
genomes in a species can be described as minor differences from a single reference
genome, which serves as a coordinate system. As an introduction to this thesis, we
outline why this approach is inadequate for bacteria and describe a new approach using

genome graphs.

In the first chapter, we present algorithms for de novo variant discovery within
such genome graphs and evaluate their performance with empirical data. The re-
maining chapters address a question relating to a critical bacterial pathogen: can
Nanopore sequencing of Mycobacterium tuberculosis provide high-quality public
health information? We collect data from Madagascar, South Africa, and England to
help answer this question. First, we assess outbreaks identified using single-reference
and genome graph methods. Second, we evaluate AMR predictions and introduce
a framework for using genome graphs to improve current methods. Lastly, we train
an M. tuberculosis-specific Nanopore basecalling model with considerable accuracy

improvement.

Together, this thesis provides general methods for uncovering bacterial variation
and applies them to an important global public health question.
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Chapter 1
Background

This thesis examines graph genome methods and their application to bacterial genomes.
In particular, we focus our attention on Mycobacterium tuberculosis and Nanopore

sequencing for these applications.

We begin with the concept of a bacterial pan-genome and discuss the limitations of
current approaches for its interrogation. Next, we introduce graph genomes as a more
intuitive model for investigating the bacterial pan-genome. We then provide more
detail on a particular genome graph method, Pandora, a focal point in the ensuing
chapters. A survey of nanopore-based sequencing is then provided, motivating its use
as the primary source of genomic data in this thesis. Finally, we introduce tuberculosis
(TB) and its causative pathogen, M. tuberculosis. We outline the global effort to end

TB and discuss the diagnostic challenges we address in this thesis.

1.1 Bacterial genomes

1.1.1 Drivers of bacterial diversity

Bacteria have incredibly flexible genomes. The mechanisms that generate genetic
diversity can be grouped by how they are passed on between cells. Vertical inheri-
tance is the passing of genetic material from parent to offspring during replication,
while horizontal inheritance describes the acquisition of genetic information between

unrelated cells.
Vertically inherited variation generally consists of genetic point mutations, in-
sertions and deletions (indels), and structural rearrangements. Such mutations can

arise due to a multitude of reasons: homologous recombination, DNA deamination,
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replication-transcript conflict, and replication errors, to name a few [1]. However, the

dominant form of genomic variability in bacteria is horizontal inheritance [2].

Horizontal inheritance operates via the three main mechanisms transduction, con-

Jjugation, and transformation. These are illustrated in Figure 1.1.

Transduction is mediated by bacteriophages (phages) - viruses which infect bacteria
and are the most abundant organism on Earth [3]. During phage propagation, parts of
the host (bacteria) DNA can become encapsulated in the virus. If a phage goes on to
infect another cell and eject this encapsulated DNA (transduction), it can recombine
into the chromosome or begin replicating as a plasmid [4]. When the transduced DNA
is a gene that imparts a new (beneficial or deleterious) function, it can impact the

recipient’s evolution.

Conjugation is the cell-to-cell transfer of DNA. A donor cell contacts another via
a pilus, and a copy of the DNA - usually a plasmid - is transmitted [5]. A rarer form of
conjugation can occur when a plasmid has become incorporated into the chromosome

of the donor, and this portion of the chromosome is transferred to the recipient cell [6].

Transformation occurs when a cell internalises exogenous DNA, which in turn
becomes incorporated into the chromosome by homologous recombination [7]. There
is some debate about the exact purpose of transformation, with the consensus being it

increases genetic diversity; however, a nutritional role is also a possibility [7].

These different means of inheritance compound to create varying diversity levels

within bacterial species and give rise to the pan-genome.

1.1.2 The pan-genome

A pan-genome is the full complement of genetic loci found within a given species.
Traditionally, loci refer to genes, although we note that loci need not be genes for the

work we will describe in this thesis.

The pan-genome can be broken into two subsets: the core and accessory genome.
Loci that occur in the majority of species members are considered core, whilst every-
thing else is deemed accessory (see Figure 1.2a). The accessory genome can be further

divided into intermediate and rare loci.

The proportional size of the core genome varies dramatically between species. For
instance, if we assume a gene is core when present in > 95% of a sampled species,
the Escherichia coli pan-genome is composed of 10% core genes. Conversely, 89% of

the Mycobacterium tuberculosis pan-genome is core genes (data was obtained from
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Fig. 1.1: An illustration of the three main mechanisms of horizontal inheritance in bacteria. a)
Transduction is facilitated by phages that encapsulate host DNA in one cell and eject that DNA into
another cell. b) Conjugation, in its prevalent form, is the transfer of a plasmid copy from a donor to a
receiver cell via a pilus "bridge". In a rarer form, a plasmid that has been incorporated into the donor
cell chromosome is transferred. ¢) Transformation (competence) is the uptake of exogenous DNA and
subsequent incorporation into the chromosome.

Source: Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Nature Reviews Genetics [6], Copyright © Nature Publishing
Group (2001)
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the panX database [8]). Species with a large (ever-expanding) pan-genome, such as
E. coli, have what is called an "open" pan-genome, while those with more conserved

gene content, such as M. tuberculosis, are deemed "closed".

Another interesting property of the bacterial genome is the distinctive "U-shaped"
gene frequency distribution [9—-11], shown in Figure 1.2b. This frequency distribution
is a consequence of the fact that, in general, genes are either rare or common within a
pan-genome [9, 12]. Moreover, the size of the bacterial pan-genome is estimated to be

infinite [11], as hinted at by Figure 1.2c.

These definitions of the pan-genome components (core and accessory) are somewhat
simplistic. Recent work by Horesh et al. has highlighted that these traditional def-
initions are biased by lineage sampling [14]. For example, we have a collection of
100 genomes, with 50 being from the same lineage (L;). Let us say gene abc occurs
in all 50 members of L, but none of the other 50 genomes. Under the traditional
pan-genomic definitions, we would call abc an intermediate accessory gene. However,
if we gathered a further 1,000 genomes, none of which are lineage L, abc would
now be considered rare. In the new pan-genome model proposed by Horesh ef al.,
loci are given a classification that is population-structure aware. The abc gene from
our example would be classified as "lineage-specific core", acknowledging the fact
that the sampled lineages in a collection provide essential contextual information.
Other categories include multi-lineage and collection core and the same categories for
intermediate, rare, and a new varied frequency class. The collection core is analogous
to the traditional core, with everything else being the accessory genome - albeit with a

much finer level of detail.

1.1.3 How are pan-genomes analysed?

Most genomic analyses of bacterial collections follow a similar approach: extract
core gene alignments and typically ignore the accessory, except where investigations
focus on a small subset of genes related to phenotypes [15, 16]. Current pan-genomic
analyses use a similar principle of core alignment (e.g., Roary [17], Panaroo [18]) to
identify core and accessory but lack detail when describing the accessory, which is
usually presented as a presence-absence matrix [12, 19-21]. However, as we have seen,
the pan-genome size varies significantly, so depending on the species, such approaches
could be "ignoring" large portions of the total genomic repertoire. Despite this, we
have learned an enormous amount about bacteria and their pan-genomes with these

methods.
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Fig. 1.2: The size and gene frequency distribution of the bacterial pan-genome. a) Venn diagram
representation of the pan-genome and its core and accessory components. b) The asymmetric U-shaped
gene frequency distribution for 10 genomes within 6 bacterial species. Genes are generally rare (left)
or common (right). ¢) the size (y-axis; number of genes) of the core (red) and accessory (blue; Pan)
genome of E. coli as more genomes are sampled (x-axis).
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1.1.4 Variant calling of bacterial genomes

A typical (pan-)genomic analysis requirement, and a focus of this thesis, is variant
calling. However, depending on the application, this can be done in many different
ways. For example, when characterising an outbreak, common approaches are to use a
reference genome of the same, or very close, strain to the outbreak [22], or assemble
each sample and select the closest reference to it based on some typing strategy
[23]. Alternatively, a reference-free approach can alleviate some of the reference bias
induced when selecting a genome to call variants against and provide better resolution
of an outbreak [24].

Given the importance of bacterial variant calling to this thesis, we will briefly
outline various approaches to calling variants in bacterial genomes and highlight their

strengths and limitations.

Alignment-based methods

Alignment-based variant calling requires a reference genome. In this mode of variant
calling, raw sequencing reads are aligned to a given reference genome to generate a
Sequence Alignment/Map (SAM) file. Common software programs used to perform
these alignments for bacterial variant calling include BWA-MEM [25], Bowtie2 [26],
and Novoalign (http://www.novocraft.com/products/novoalign) for short (Illumina)
read technology. (Nanopore-based variant calling will be detailed in Section 1.4.2, for

now we focus on Illumina-based sequencing reads).

Where variant calling programs distinguish themselves is in how they handle
the alignment information. This includes, but is not limited to, the number of base
calls disagreeing with the reference, the quality of the read alignment, the alignment
locations of a read pair, or the quality score of the mapping [27]. Popular methods
for calling variants generally employ either Bayesian, likelihood, or machine learning
algorithms to infer candidate variants given this alignment data. While many of these
models were designed for human variant calling, a selection have shown themselves
to be perfectly applicable to bacteria. The most frequently used Bayesian method for
bacterial variant calling is Freebayes [28]; however, it is generally used via a wrapper,
Snippy (https://github.com/tseemann/snippy), which handles the alignment (BWA-
MEM), variant calling (Freebayes), and additionally applies filters to the resulting
VCF file. Of the likelihood-based callers, Samtools/BCFtools [29, 30] and GATK [31]

tend to be most often employed.
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Alignment-free methods

In general, methods that do not align reads to a reference genome use k-mer-based
algorithms for variant inference. FastGT [32] and LAVA [33] are two such programs
that require a database of known variants and use k-mer counts in a sample to determine
the presence of any of these variants. The major limitation with these tools is their
inability to call variants not present in the provided database. Kestrel [34] is a k-
mer-based variant caller that can de novo discover variants and does this by detecting
unique k-mers in a sample, with respect to a given reference genome. However, Kestrel
is not strictly alignment-free, as it does use local alignment to place candidate variants
in relation to the reference genome. Additionally, it was shown to have much lower

sensitivity than alignment-based methods.

Another popular alignment-free single nucleotide polymorphism (SNP) caller is
kSNP, which finds SNPs between samples by detecting k-mers where the central base
varies [35]. It is regularly used in outbreak settings where differences between samples
are crucial [36-38]. However, KSNP cannot detect SNPs within & positions (bases)
of each other or detect indels, and cannot deal with sequencing errors - requiring

extensive pre-filtering.

A benchmark of alignment-free methods for various sequence analysis applications
can be found in [39].

Assembly-based methods

There are two forms of assembly-based variant calling. In the first, an assembled
genome for a sample (or samples) is compared to a reference via whole-genome
alignment. Software such as MUMmer [40] or minimap2/paftools [41] facilitate this
assembly-to-assembly alignment and then identify positions where the two disagree.
An assembly-based method that is prevalent in bacterial genomics is Parsnp [42],
which aligns the core genome of assemblies and then calls SNPs (only) between those
genomes. A major limitation with these types of assembly-based approaches is that
there is no sense of the quality of calls. As an assembly naturally has a depth of 1x at
all positions, there is no information about variant support - all variants are considered

equal in this scheme.

The second form of assembly-based variant calling performs assembly and geno-
typing. Cortex de novo assembles a sample from sequencing reads and genotypes

variants at "bubble" sites in its de Bruijn graph [43]. It produces variant calls with
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respect to a provided reference genome and has been used extensively in bacterial

genomics [44—48].

A recent comprehensive benchmark of alignment-based variant calling found that
the choice of reference genome, rather than the choice of tools, has the most critical
impact on accuracy [49]. The best general-purpose pipeline was found to be Snippy;
however, they note that species-specific filtering of the final VCF file can cause the

performance of many tools to converge.

Reference genome bias is the most significant limitation of bacterial variant calling
approaches [27, 49, 50]. The bacterial pan-genome highlights this impediment in
a stark way. As an illustration of this, Figure 1.3 shows a cartoon depiction of the
"single-reference problem". In this figure, we see that no two genomes contain the
same complete set of loci - precisely what we expect from nearly any pan-genome
[2]. Thus, using any of these genomes as a reference to call variants against will
inevitably mean we cannot describe variants in loci not found in both the reference and
query genomes. This type of bias is termed hard reference bias. Another, more subtle,
form is soft reference bias, which results from difficulties aligning to the reference
due to divergence in shared loci between the reference and query - especially around
structural variants [27, 51, 52]. However, these biases tend to impact clonal species,

such as M. tuberculosis, much less than those with open pan-genomes [49].

Given the biases resulting from the use of a single reference genome, an alternative
solution is needed. One solution that is rapidly maturing is the use of a genome graph

to replace a single reference.

1.2 Genome graphs

Genome graphs are a way of representing variation within a population, be it a
bacterial species, a human gene, or a viral quasi-species [53]. Figure 1.4 illustrates a
generic representation of a genome graph, where redundant information (consensus) is
collapsed into a linear sequence and variation is represented as divergent paths leading
in and out of these consensus segments. Thus, a walk (path) through such a graph

represents a mosaic of the population variation.

A rich array of algorithms and methods have been proposed for representing and
operating on genome graphs across all kingdoms of life [53-55]. In this section, we

will highlight some mature genome graph frameworks, along with their limitations. In
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of variants in the other genomes could be found by a perfect variant caller if that genome was used as a
reference. Not all genomes contain the same loci; hence no genome can capture all of the variants.

Source: [10] under the terms of the Creative Commons CC BY license

the context of this thesis, limitations will focus on the applicability of a method to the
bacterial pan-genome. Finally, we follow these existing methods by introducing a new

genome graph approach relevant to this thesis.

1.2.1 Existing methods
GraphTyper

GraphTyper [56, 57] represents a genome graph as a directed acyclic graph (DAG)
built from a reference sequence plus known variants (similar to Figure 1.4, but with
directionality). Sequencing reads are mapped to the reference genome with BWA-
MEM. The reference sequence is then broken into 50kbp regions, and reads are
realigned to the graph in the respective region they map to. A path for the read is
detected using a seed-and-extend approach, and variants are genotyped based on the
read-support from this alignment. Impressively, GraphTyper can genotype SNPs,

indels, and complex and structural variants.

In the context of bacterial genomes, there are several limitations with GraphTyper.

First, a single reference genome is used as the backbone of the graph. This is a feasible
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Fig. 1.4: Conceptual representation of a genome graph. a) Variants cause a "bubble", or divergent path.
Note, the second bubble represents an insertion/deletion. b) Variation can be arbitrarily nested. In this
example, there is a SNP within an insertion. ¢) Haplotype information can be encoded by "colouring"
variants and disallowing paths that mix colours.

Source: Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Nature Reviews Genetics [54], Copyright © 2020, Springer
Nature Limited.

solution for humans, but not for bacteria, where, as we have seen, it is likely that two
genomes do not have an identical gene repertoire. Second, the initial alignment of
reads to the reference genome suffers the same soft and hard reference bias discussed
in Section 1.1.4. The realignment of reads reduces the soft reference bias compared
to linear genome methods; however, the hard bias remains. Third, no long-read
sequencing technology support is available and is unlikely to be possible with the

current seed-and-extend approach used for alignment [41].

Variation graph toolkit

The Variation Graph Toolkit (VG) [58] is a suite of tools for construction, alignment,
and genotyping of genome graphs. The representation used by VG is an undirected,
potentially cyclic, graph. Variation graphs can be constructed from a single reference
and associated VCF file or multiple genome assemblies. Read alignment to the graph
uses a seed-and-extend approach. Variant calls are made via a basic read pileup on
the graph and then augmenting the original graph with novel candidates, followed by
genotyping [59].

As with GraphTyper, the use of seed-and-extend alignment makes the support
of long reads unlikely. (We note there have been discussions within the VG GitHub

repository for four years about supporting long reads; however, no support has been
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announced). Another limitation of VG is that in order to produce variant calls, the user
must provide a reference genome, again, either inheriting reference bias or requiring
a verbose description of simple variants (see Section 1.3.3 for an elaboration of this
point).

A significant limitation of VG is its computational resource requirements. As VG
attempts to be a "general" method - i.e., it is undirected and allows cycles to support
events such as inversions and repeats naturally - it is CPU and disk intensive [60-62] to
the point of requiring over one terabyte of temporary disk space to construct a bacterial

(M. tuberculosis) graph [61], or not being useable [62].

Minigraph

Minigraph [62] represents a genome graph as a bidirectional graph, which allows
cycles. The construction process starts with a single genome and iteratively adds
structural variants (SVs; regions of divergence > 100bp and < 100kbp). In each
round, a genome is aligned to the existing graph (a linear sequence in the beginning),
augmenting it with sequence from poorly mapped regions (SVs). Minigraph aligns
sequencing reads or assemblies to this graph using a modified version of minimap2’s
minimizer k-mer-based seed-and-chain approach [41]. As such, Minigraph should

inherently support long reads.

As Minigraph only incorporates SVs of 100bp or longer, it does not variant-call
in the typical sense. It instead produces a BED-like file that calls SVs from the
alignment. This is the main limitation of Minigraph: it cannot call variants smaller
than 100bp, which are especially important in bacterial genomes. However, the authors
acknowledge this limitation and state that the reason for this exclusion is that smaller

variants can be easily identified with standard approaches.

Gramtools

Gramtools [61, 63] represents a genome graph as a DAG that can be constructed from
either a single reference and associated VCEF file or a multiple sequence alignment
(MSA) (it uses the same model outlined below in Section 1.3.1). Alignment of
sequencing reads is facilitated by the variation-aware Burrows-Wheeler Transform
(vBWT; [63]), which is an extension of the original linear BWT to graphs. It genotypes
variants under a haploid or diploid likelihood-based model and produces variant calls
in the standard VCF. Alternatively, Gramtools can write variant calls to a new JSON-
like VCF (jVCEF) file, which stores the standard VCF information, with the addition

11
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of graph-relevant details about the nesting of sites [61]. As with the other genome
graph methods, though, Gramtools only supports short Illumina sequencing data and

is unlikely to support long reads with a higher error rate than Illumina.

All existing genome graph methods require an enforced ordering - i.e., loci are not
considered independently. Despite the fluidity of bacterial genomes, there is surpris-
ingly conserved gene ordering [64, 65]. However, the enforced order of these genome

graphs cannot account for variations in gene repertoire - i.e., the bacterial pan-genome.

VG has been applied to bacteria for strain-typing and abundance estimates in E.
coli; however, individual graphs need to be concatenated together for each gene, thus
enforcing an order [60]. None of the methods, to our knowledge, natively allows
the independence of loci. This behaviour can be approximated but requires custom
pipelines, as in [60]. Additionally, no existing genome graph method supports long-

read sequencing technologies such as Nanopore.

These limitations are a driving motive for the development of the genome graph

method Pandora.

1.3 Pandora: bacterial pan-genomics with reference

graphs

As we have seen, the bacterial pan-genome can be amazingly diverse at both the
nucleotide and gene (locus) levels. Thus, using a single reference to describe such
variation is inadequate; the pan-genome seems a perfect application for genome graphs.
However, existing methods fail to allow for structural differences at the locus level
(Section 1.2.1) and therefore are unable to describe nucleotide-level variation in the
accessory genome. Another shared limitation of existing genome graph tools is the
lack of support for long-read sequencing technologies (we outline the significance of
this in Section 1.4).

Pandora is a genome graph method that addresses these limitations. Rachel
Colquhoun developed pandora during her PhD thesis [66]; we provide a brief overview
of its methodology here as we extend and apply it throughout this thesis.

1.3.1 Population reference graph construction

The genome graph representation used by pandora is a DAG. However, unlike Gram-

tools, which uses the same representation [61], pandora is agnostic to locus ordering.
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Fig. 1.5: Construction of a locus reference graph (PRG) from a multiple sequence alignment (MSA;
left) with the recursive cluster and collapse algorithm implemented in make_prg. Vertical slices in the
MSA are collapsed when there is a minimum match length of 4. Sections not collapsed are recursively
clustered and collapsed (if possible), until no further clustering is possible or a maximum nesting level
is attained. In this example, a nesting level of 2 is reached.

Source: [10] under the terms of the Creative Commons CC BY license

Instead, pandora interprets a genome graph (interchangeably referred to as a refer-
ence graph) at two levels: locus and pan-genome. We call a locus-level reference
graph a population reference graph (PRG) as it represents the variation within a given
population for a locus. A PRG is not restricted in its scope for a locus; it can be a
gene, intergenic region, operon, or any other grouping desired. A pan-genome-level
reference graph is termed a pan-genome reference graph (PanRG) and is a collection
of PRGs. Again, a PanRG is not limited in its scope; it could describe a pan-genome,

a meta-genome, or a collection of antimicrobial resistance-associated genes.

Construction of a PRG is accomplished with a recursive cluster and collapse
algorithm, implemented in the software program make_prg (https://github.com/i
gbal-lab-org/make_prg; [10, 66]). Two parameters are key to this process: the
minimum match length, m, and the maximum nesting level, n. Starting with an
MSA of locus sequences, when > m positions agree, they are collapsed into a single
sequence. The remaining non-collapsed sections of the MSA are recursively clustered,
with (sub)sequences in the cluster being collapsed or clustered again. This recursive
clustering and collapsing continues until all clusters contain a single sequence or
recursion has occurred more than n times. This process is illustrated in Figure 1.5,

which uses m =4 and n > 2.

1.3.2 Index, quasi-map, and sequence inference
(w, k)-minimizers

A core concept within pandora is (w,k)-minimizers [67] - interchangeably referred
to as minimizer (or minimizing) k-mers. A (w, k)-minimizer is a representative k-mer
from a collection of w consecutive k-mers in a string (sequence). pandora uses the
same strategy as minimap [68] - the k-mer with the minimum invertible integer hash
function value is selected as the minimizer. The purpose of minimizer k-mers is

to reduce the number of k-mers required to represent a sequence but ensure that if
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two strings share a significant exact match, they will share at least one minimizer.
Additionally, pandora requires w < k, ensuring all PRG bases are covered by a

minimizer (except, at most, the first and last w — 1 bases).

Indexing

Each PRG is represented within pandora as a minimizer k-mer graph. This graph
is constructed by walking all paths in the PRG and selecting minimizer k-mers as
outlined above. As w < k, walking each path ensures a minimizer covers every site
within the graph. The index of a PanRG is a map from a minimizer k-mer to the

position(s) and PRG(s) it occurs in.

Quasi-mapping

Quasi-mapping - as opposed to mapping - is a form of approximate alignment. The
goal of quasi-mapping is to identify which locus (or loci) a read originates from,
and roughly where within that locus each section of the read maps. To perform this
quasi-mapping, pandora looks up all (w,k)-minimizers of a read in the index. Then,
for every read minimizer that occurs in the index, a hit (read and PRG positions) is
recorded. A single read minimizer can have multiple hits if the minimizing k-mer
occurs in multiple locations in the PanRG. As such, once all hits are identified, they are
filtered to remove spurious ones. This filtering is done by keeping only those hits that
cluster together on a read and only occur in a single PRG. Thus, all PRGs associated
with a cluster of hits are deemed present in the sample, while the remaining loci are

considered absent.

Sequence inference

A major reason for pandora’s reduced reference bias is that it does not demand a
single reference genome. Instead, it takes a PanRG and infers the closest sequence in
that PanRG to the sample under consideration. As we saw in Section 1.1.4, the choice

of reference is often the biggest limitation when calling variants in bacterial genomes.

For each PRG deemed present after quasi-mapping, pandora has (filtered) cov-
erage information for the minimizers in the k-mer graph. A dynamic programming
algorithm is used to find the path through the k-mer graph that maximises the log-
likelihood score. This inferred sequence (path) is also referred to as the maximum
likelihood path.
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1.3.3 Variation inference
Single-sample

The single-sample inference and genotyping mode of pandora is coordinated by the
pandora map routine. It quasi-maps sequencing reads to the PanRG and infers a
sequence for each PRG. In addition, if requested, pandora map will also genotype
the sample against the maximum likelihood path for each PRG (or a user-provided
sequence if it exists). Thus, genotyping occurs for all variation sites within the PRG
and is returned as a VCF file. An example of this single-sample genotyping and VCF

is shown in Figure 1.6a.

Multi-sample

Variation inference can also be performed for a collection of samples with the pandora
compare protocol. Reference bias problems have traditionally plagued this type of
analysis. If the collection of samples are of the same strain, then analysis against the
same reference is not problematic, but once even a single sample originates from a
different strain, the pan-genome exerts itself. As we outlined in Section 1.1.3, analysing
divergent samples generally works by looking at variation in the core genome while
resorting to locus presence-absence in the accessory genome. Multi-sample inference
with pandora compare offers the best of both worlds; variation is inferred for both
the core and accessory genome. Where a locus is absent from a sample, all sites for
that locus are represented with a null genotype. In this approach, if a locus is present
in only 2/20 samples in the collection, variants for that locus are only inferred for those

two samples.

To allow this multi-sample variation inference, pandora infers the maximum
likelihood path for each sample (Section 1.3.2). Then, using the same dynamic
programming algorithm, pandora infers a maximum likelihood path for the collection
of samples; instead of k-mer coverage, the number of maximum likelihood paths
covering each minimizer is used for inferring the most likely path. In the end, the
inferred sequence is selected to be maximally close to all samples in the collection.
Therefore, all samples are genotyped against the same reference at all variant sites,
making direct sample comparisons possible. This approach also ensures that small

differences between samples are described as such - as shown in Figure 1.6b.
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Fig. 1.6: The impact of reference choice on variant representation. In both (a) and (b) the left panel
(1) shows the PRG. a) the blue line indicates the reference sequence. ii and iii show how the choice of
this sequence affects the representation of variant sites when genotyping. b) the black line indicates
the reference sequence, while the blue and orange lines are two different samples. ii and iii show that
small differences between the samples are represented as small variants by selecting the sequence that
is maximally close to the two samples (iii).

The pandora method addresses the main limitations of existing genome graph ap-
proaches (Section 1.2.1) in the context of bacterial pan-genomes. In particular,
pandora supports both short (Illumina) and long (Nanopore) sequencing reads and
removes hard reference bias by letting go of locus ordering and genotyping loci

regardless of their genomic context.

Despite these advantages, the method has a notable limitation: an inability to detect
novel variants. As variation inference is achieved by genotyping all sites in a PRG,
it follows that if a variant does not exist in a PRG, it cannot be detected by pandora.

Chapter 2 of this thesis will address this limitation.

1.4 Nanopore sequencing

The sequencing of DNA and RNA with a nanopore was conceived of by multiple
parties in the 1980s [69]. However, it was not commercially available until the release
of the Oxford Nanopore Technologies (ONT) MinION™ device in 2014 [69, 70]. (We
use Nanopore sequencing to indicate sequencing with an ONT device throughout this
thesis). The MinION device is smaller than a smartphone and plugs into a computer’s
USB port.
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Fig. 1.7: Nanopore sequencing. a) A single strand of DNA or RNA (black) is passed through a
nanopore (green) by an enzyme (red). A sensor records the electrical current flowing through the
nanopore. b) The raw signal (electrical current; y-axis) changes as nucleotides move through the
nanopore. Each nucleotide can be inferred by a characteristic alteration in the signal, indicated by the
black arrows.

Source: Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Nature Biotechnology [69], Copyright © 2016, Nature Publish-
ing Group.

Nanopore sequencing works by passing a strand of DNA or RNA through a
nanopore. The nanopore is embedded in an electro-resistant membrane, with a flow
cell containing an array of such pores. A sensor attached to each nanopore records
the electrical current passing through it; as the DNA or RNA strand moves through
the nanopore, this current signal changes. There are approximately five nucleotides
present in the nanopore at a time. As such, the identity of each nucleotide (base) can
be inferred by a characteristic signal alteration (see Figure 1.7). Because the sensor
takes measurements at a faster speed than the DNA moves through the nanopore,
multiple recordings are obtained for each base transition - see the distinctive "steps" in
Figure 1.7b. The process of inferring a DNA or RNA sequence from this raw signal is

called basecalling.

1.4.1 Basecalling

The raw signal and metadata for each molecule read by a nanopore are deposited into
a hierarchical data format file (HDFS5; referred to as a fast5 file; [71]). Furthermore,
these fast5 files are produced in real-time. Thus, the user has immediate access to the
sequencing data as soon as it is produced, a unique advantage over existing sequencing

technologies.

Basecalling algorithms have seen substantial development since the release of
ONT’s first device. The progression of these algorithms, along with nanopore structure

and chemistry, has led to a steady increase in the accuracy of genomic sequences
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inferred from Nanopore sequencing (as shown in Figure 1.8; [72]). For example, from
an initial read-level accuracy of approximately 60% [73], recent studies have reported
accuracy of 93.2% [74].

Traditionally, there were two key components to basecalling. The first was the
segmentation of the raw signal into "events" (the plateaus in Figure 1.7). These
events represent a S-mer within the nanopore; therefore, consecutive events describe a
sequence of nucleotides entering and leaving the nanopore. The second component of
traditional basecalling is applying an algorithm to these events to infer the genomic

sequence.

Basecalling algorithms require an a priori model trained on molecules for which
the sequence is known. Metrichor was the original software provided by ONT for
basecalling; it used a hidden Markov model (HMM) to turn events into a sequence.
In 2017, Boza et al. developed the first basecalling method to use a recurrent neural
network (RNN) - instead of an HMM - to turn events into sequence with increased
accuracy [75]. RNN basecalling was provided soon after this with ONT’s new Alba-
core algorithm. The following major algorithmic development was the removal of the
segmentation step (the most error-prone stage of basecalling). These programs, Chiron
and BasecRAWller, used a Connectionist temporal classification (CTC) decoder to
label unsegmented raw signal and subsequent basecalling with an RNN and convolu-
tional neural network [76, 77]. Again, soon after this, ONT released a new basecalling
program, Guppy, which incorporated these new ideas. Since its release, Guppy has
been the gold-standard basecalling algorithm, and all algorithmic development has

focused on labelling the raw signal data.

The pre-trained models distributed with guppy aim to be general. That is, they can
be used on Nanopore data from any organism. The species these models were trained
with is not common knowledge; however, it is fair to assume a variety were used
given guppy’s consistent performance across kingdoms and species. In 2019, Wick et
al. showed that training a taxon-specific (Enterobacteriaceae) basecalling model can
provide increased accuracy when used to basecall a sample from that taxon [78]. Their
analysis also revealed that - at least in Enterobacteriaceae - Dcm-methylation sites
were the primary source of guppy basecalling errors and that the taxon-specific model
removes nearly all of the errors of this type. In addition, as has also been described
elsewhere [79], homopolymer deletions were found to be the next most common
source of systematic errors and were also reduced with the use of a taxon-specific

model.

18



1.4 Nanopore sequencing

A Median @ Mean Hi [O2p
100
95
13 15
90 A6 08 Oy, OA A
9 O, 011 14 A17 17
_ 85 OF—02 0 =" ) ®1s A1
9 12 O14 16
< 80
8 75 LIDN
3 04 05 6
o 70
< [OX]
65 o4 o1
60 9102
55
50
o3 Raw
Developments in base calling algorithms Transducer
HMM
Deve\opmems in mnopore chemistry
2 RZ; 2 R9.4/R9.5
201 5 201 6 201 7
R9 f
RNN Transducer Raw base calling
MlnION released (Nanonet) (Scrappie) (Albacore v2.0.1)

Fig. 1.8: Timeline of ONT nanopore chemistry and the accuracy of Nanopore sequencing data. The
numbers attached to each point in the accuracy plot relate to published work reporting the accuracy
measurement. A list of those publications can be found in the original article this figure was taken
from [72]. HMM=hidden Markov model; RNN=recurrent neural network; 2D=a form of Nanopore
sequencing where both strands are sequenced.

Source: [72] under the terms of the Creative Commons CC BY license

The current state of Nanopore basecalling suggests that improvements in accuracy
will come from three areas: chemistry, basecalling algorithm, and training data im-
provements. Therefore, in Chapter 5 we will look to improve Nanopore accuracy by

focusing on the latter of those areas and training a species-specific basecalling model.

1.4.2 Variant calling

Variant-calling from Nanopore sequencing data is slowly maturing but is yet to reach
the standards set by other sequencing technologies. Much of the problems relate to the
lower read accuracy of Nanopore data compared to Illumina and PacBio. A higher
error rate means it is harder for genotyping models to distinguish genuine variants

from technology-derived errors.

The first method specifically designed to call variation from Nanopore data was
Nanopolish [80, 81] - developed in 2015. It maps the raw signal for each read to
a reference genome and uses an HMM to determine if the reads show support for
a variant. However, Nanopolish requires access to the fast5 files in order to call
variants. Operating on fast5 files is incredibly IO intensive, and this contributes
to observed Nanopolish runtimes in the order of days, and peak memory in the

100’s of gigabytes [82]. More recent variant callers designed to support Nanopore
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data such as DeepVariant [83], Clairvoyante [82], and Clair [84] all use multi-layer
neural networks and require significant effort on behalf of the user to operate [85].
An ONT-developed variant caller (and sequence correction) tool, Medaka (https:
//github.com/nanoporetech/medaka), also uses neural networks but is much simpler to
use. In addition to these newer, complex methods, some researchers have found that
more traditional short-read approaches such as GATK [31] can be tuned to work well
with Nanopore data [86—88].

Despite the wealth of Nanopore basecalling [78] and assembly [89] benchmarking
studies, there are relatively few independent variant calling assessments. A recent
analysis by Sanderson et al. evaluated Clair, Nanopolish, and Medaka for variant
calling in Neisseria gonorrhoeae [85]. However, this study used Illumina as the "truth"
and only assessed SNP calls. They found Clair was the best-performing method and
could detect 94-98% of Illumina SNP calls; however, it required training a random
forest classifier to achieve this result. In addition, to reduce false-positive SNPs from
49-289/genome to 4-19/genome, SNP detection dropped to 76-94% - the upper end of
this range is excellent, while the lower is not. Therefore, it remains to be seen what

the true precision and recall of Nanopore variant calling is - for both SNPs and indels.

1.4.3 Benefits and limitations

As aresult of its vastly different approach to sequencing, Nanopore offers many unique
benefits over the gold-standard Illumina. However, there are limitations, and Nanopore
will unlikely ever be a solution for all problems. We will briefly summarise some of
these pros and cons with respect to Illumina in the context of pathogen genomics and

its application to real-world settings.

Cost

Depending on the context of the application, Nanopore sequencing is both more and
less expensive than Illumina sequencing. At a device and peripherals level, a few layers
of cost need to be understood. The upfront price of an ONT MinION device is €900,
while an Illumina MiSeq costs €100,000 - 111 times more than the MinION [90]. The
cost per lane/flow cell and library prep is €600 and €90-130 for the MinlON, while
for the MiSeq, these two items are €2,000 and €50-100, respectively. Considering
these prices, the cost of generating one billion bases (1gbp) of sequencing data is €12
on a MinION device and €175 for a MiSeq. However, the caveat here is that, currently,

the 1gbp of Illumina data will be of superior quality. Other costs that are harder to
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quantify are the need for more extended library preparation for [llumina sequencing,

which causes additional labour expenses [90].

A recent study from the New York State Department of Health also found that, for
M. tuberculosis clinical diagnostics, Nanopore sequencing cost ~US$57 per sample,

while Illumina came in at US$130 per sample [91].

Portability

The ONT MinION weighs just 87g and has a volume of 80cm?, while the Illumina
MiSeq respective weight and volume are 57.2kg and 202,709cm?’. In addition, the
MinION can be powered through the USB port of a computer, while the MiSeq requires
significantly more power resources [90]. These two aspects combine to make the

MinlON extraordinarily portable and the MiSeq completely stationary.
The benefit of the MinlION’s portability has famously been exhibited during the

Zika and Ebola outbreaks, where Nanopore sequencing was used on-the-ground to aid

public health investigations [92-94].

Diagnostics

Another benefit of Nanopore sequencing is that the data is made available in real-time.
A standard MiSeq runtime is approximately 55 hours [90], and therefore it takes at
least 55 hours to have access to the sequencing information. In contrast, MinlON
diagnostics can operate as rapidly as the sequencing. Indeed, Nanopore sequencing has
been applied to same-day M. tuberculosis diagnostics, with phylogenetic placement
and full drug susceptibility profiles in 12.5 hours [95]. Other real-time diagnostic
applications have included detection of surgical device infections [96], Ebola [93, 94]
and Zika [92] virus outbreak surveillance, and Enterobacteriaceae strain and drug
resistance identification [97]. Even conventional genomics for bacterial diagnostics
stands to gain from the use of Nanopore sequencing. For example, Greig ef al. from
Public Health England found that the better resolution of the Shiga toxin-producing E.
coli accessory genome from Nanopore sequencing lead to improved resolution during

outbreak investigation [86].

Another emerging benefit of Nanopore sequencing is the artificial enrichment/
depletion of samples [98, 99]. An API (Read Until) facilitates this enrichment within
the MinION device, allowing for ejecting (rejecting) molecules from the nanopore.
The sequencing data is mapped to a reference database, and rules can be provided that

reject a molecule if it originates from a specified reference or once a certain read depth
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has been reached. One application by Kovaka et al. was to deplete bacterial DNA, thus
enriching yeast genetic material [99]; however, this could easily be employed in reverse,
depleting human DNA and enriching bacterial or viral material in a patient-derived

sample.

While there are many benefits to Nanopore sequencing, the accuracy of data provided
is still well behind Illumina. However, as we have seen, increased algorithm and
method development is helping to reduce the difference. Therefore, a primary focus
of this thesis is the improvement of Nanopore-derived sequencing information. In
particular, after adding the ability for pandora to discover novel variants, we will turn
our attention to genome graph and Nanopore sequencing applications for the pathogen

Mycobacterium tuberculosis.

1.5 Tuberculosis and its causative agent

Tuberculosis (TB) is an ancient airborne disease that predominantly affects the lungs
[100]; evidence suggests it has been with humans since leaving Africa [101, 102].
In 2019, an estimated 1.4 million people died of TB globally, and over 10 million
fell ill to the disease[103]. The causative agent of TB is principally the bacterium
Mycobacterium tuberculosis, which has no known reservoir other than humans [102].
However, other members of the Mycobacterium tuberculosis complex (MTBC), such
as M. africanum and M. bovis, can also cause TB [100, 104].

TB is a preventable and curable disease; 85% of patients with active disease can
be successfully treated with a 6-month drug treatment that has the added benefit of
preventing transmission [103]. Furthermore, estimates show that 60 million TB-caused
deaths have been avoided since 2000. Despite this, TB remains in the top 10 causes of
death worldwide [103].

In 2015, the World Health Organization (WHO) and United Nations developed
the End TB Strategy, which aims - among other goals - for a 95% reduction in TB
deaths by 2035 [105]. One of the central pillars of the End TB Strategy is "Intensified
research and innovation" through the "discovery, development and rapid uptake of
new tools, interventions and strategies." Another pillar, which will be a focus of this
thesis, is improved patient-centred diagnostics for the "early diagnosis of tuberculosis
including universal drug-susceptibility testing, and systematic screening of contacts

and high-risk groups."
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We highlight these specific focuses of the End TB strategy as they motivate much

of the work in this thesis.

1.5.1 Epidemiological and phylogenetic diagnostics

Public health applications for whole-genome sequencing (WGS) of M. tuberculosis
generally focus on three diagnostic use-cases: species/lineage identification, prediction

of drug resistance, and clustering of samples for epidemiological purposes [106, 107].

Species/lineage identification

The MTBC is composed of seven species of mycobacteria with varying growth, host,
and pathology characteristics [108]. In addition, non-tuberculous mycobacteria (NTM),
such as M. abscessus and M. avium, can cause infections that present similarly to those
of the MTBC [109]. However, NTMs can have very different drug resistance profiles
to MTBC members [109, 110], highlighting the importance of correct species and
lineage identification.

Routine species and lineage identification for suspected TB cases involve the
use of the GenoType CM, and AS line probe assays (LPA; Hain Lifescience) [111,
112]. These LPAs work by reverse hybridisation of PCR products from the sample to
species-specific probes from the 23S rDNA region [111].

WGS identifies species and lineage by detecting SNPs known to be unique to each
species, lineage, and sublineage [108, 113—116], and has been proven as accurate
enough for adoption by Public Health England [112]. In contrast to the LPAs, the
resolution provided by WGS means that the various lineages and species can be

delineated in a single test and can be easily adapted to new markers of lineages.

Transmission cluster detection

The inference of possible transmission events is an important component of prevent-
ing ongoing TB infections. Given the low mutation rate in M. tuberculosis - 0.5
SNPs/genome/year [117] - clustering tends to operate on the assumption that samples

with few SNP differences are likely part of a transmission event.

Until recently, mycobacterial interspersed repetitive-unit—variable-number tandem-
repeat (MIRU-VNTR) genotyping was the primary method for TB outbreak investi-
gation [117]. MIRU-VNTR is a PCR test that measures the size of tandem repeats
(VNTRs) from 24 loci in the M. tuberculosis genome. The size of these VNTRs,
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as the name suggests, is variable among strains, and so this can be used to exclude
transmission. However, without epidemiological data in support, it is unable to provide

the fine-grained information needed to infer likely transmission [117, 118].

[llumina WGS has been extensively validated as a preferred means of identifying
M. tuberculosis genetic relatedness - at least in high-income settings [117-121]. It
provides greater resolution and lower costs than MIRU-VNTR and is now routinely
used in some public health agencies, such as Public Health England, the New York
State Department of Health, and the National Institute for Public Health and the
Environment in the Netherlands [91, 118, 122].

Clustering samples based on WGS data is done by first calling SNPs with respect
to the M. tuberculosis reference genome. The number of SNP differences between two
samples defines their genetic distance (relatedness). Second, the pairwise distances for
all of the samples under investigation are used to cluster cases if they have a distance
less than or equal to a predefined threshold [117, 119]. For example, if the threshold
is set to 5 and two samples A and B have a distance of 4, they are considered part of
the same cluster. If a third sample C has a distance of 6 from A, but 2 from B, C is
added to the cluster. Further epidemiological information can also be incorporated to

improve connections [119, 123].

Two problems that afflict WGS-based clustering are bioinformatic and threshold
disparity. The method for obtaining SNPs for a sample is far from standardised. The
consequence of this lack of consistency was masterfully demonstrated by Walter et al.
when they asked five different genomic epidemiological research groups to produce
variant calls from the same outbreak data [124]. They found these variant call sets
did not produce consistent transmission inferences and found that filtering of variants
had a noticeably negative effect. Furthermore, an important study from Stimson et
al. recently highlighted the issues with SNP threshold-based WGS clustering [123].
These limitations come down to the variety of SNP thresholds used and the contexts
in which they are calibrated [123]. They provide an alternative approach that uses
SNP difference, the timing of cases, molecular clock rates, and transmission processes
to produce clusters based on the probability of two cases being separated by a given

threshold of transmission events.

In addition to the limitations just described, Nanopore WGS for transmission infer-
ence has yet to see a thorough investigation. Smith et al. recently assessed Nanopore
sequencing against [llumina but provided very little detail about the clustering and

only used a small portion of their data for assessment [91]. This shortcoming motivates
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the work in Chapter 3 where we examine Nanopore’s ability to produce transmission

clusters concordant with Illumina.

1.5.2 Antimicrobial resistance prediction

Antimicrobial resistance (AMR) is a global concern for TB care and prevention. The
End TB Strategy seeks universal access to drug susceptibility testing (DST). The first-
line drugs used in TB treatment are isoniazid, rifampicin, pyrazinamide, and ethambu-
tol, while second-line antimicrobials include fluoroquinolones and aminoglycosides.
In addition, the new and repurposed drugs bedaquiline, delamanid, pretomanid, clo-
fazimine and linezolid are providing reduced treatment times and improved patient
outcomes [125]. M. tuberculosis resistant to rifampicin (RR-TB) and isoniazid is
deemed multi-drug resistant (MDR-TB). As these two drugs form a critical part of
front-line treatment, detection of RR/MDR-TB is crucial in reducing the global TB
burden [103]. In 2019, it was estimated that 3.3% of new and 18% of treated TB cases
- 465,000 cases in total - were RR-TB, with 78% also being MDR-TB. [103].

Traditionally, the TB standard of care required phenotypic testing of the infecting
organism against the four first-line drugs to prescribe appropriate treatment. However,
M. tuberculosis is a slow-growing organism; therefore, phenotypic testing - which
is still the "gold-standard" - takes many weeks to complete and can delay correct
treatment by up to 80 days [126]. Thankfully, the Xpert® MTB/RIF assay (Cepheid)
has helped provide rapid RR-TB testing (and TB detection), and in 2019, 61% of
confirmed TB cases were tested for rifampicin resistance [103]. The Xpert® MTB/RIF
assay is a PCR test that simultaneously detects MTBC and known rifampicin resistance-
causing mutations in the rpoB gene in as little as two hours [127]. In addition, the
newly developed and tested Xpert® MTB/XDR (Cepheid), which tests for resistance
to isoniazid, fluoroquinolones, ethionamide, and aminoglycosides [128], stands to

provide much greater access to diagnostics [129].

These Xpert® assays are a welcome addition to the DST of TB. However, due to
their (necessary) use of a fixed set of resistance-causing genotypes, drug susceptibility
cannot be inferred [130]. This inflexibility was highlighted in 2015, when 30%
(38/125) of phenotypically RR-TB in Swaziland returned negative resistance results
on the Xpert® MTB/RIF assay. The missed resistance was due to the presence of rpoB
mutation I491F [130], which is not a mutation the Xpert® MTB/RIF recognises. As
a result, the Xpert® MTB/RIF could not be reliably used in Swaziland or any other
country with this RR-TB population.
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WGS offers a more flexible solution that is much faster than gold-standard phenotyping
methods - and now cheaper [95, 126, 131]. In addition, the accuracy of WGS-based
predictions is now comparable to phenotyping [44, 45, 126, 131, 132], and can even
be used as a replacement for first-line DST [133].

Predicting drug resistance from WGS data typically works by detecting known
resistance-causing mutations from a curated catalogue - for M. tuberculosis these
are almost always SNPs or indels [134]. The two most commonly used open-source
software programs for WGS AMR prediction are TBProfiler [135, 136] and Mykrobe
[44, 45]; although, in-house custom scripts are common [91, 133]. TBProfiler uses
an alignment-based variant calling pipeline (Section 1.1.4) to identify the presence of
mutations in their catalogue. Mykrobe, on the other hand, takes an assembly-based
approach (Section 1.1.4) and maps sequencing data to de Bruijn graphs built from in

silico probes of catalogue mutations.

Previous assessments of WGS-based AMR prediction for TB have focused on
[llumina sequencing. However, as we saw in Section 1.4, Nanopore provides greater
speed to results, reduced costs, and portability of sequencing. Indeed, proof-of-
concept work by Votintseva et al. found it took 44 and 16 hours to gain WGS AMR
predictions from Illumina’s MiSeq and MiniSeq instruments, respectively [95]. In
contrast, Nanopore-based predictions were available in 12.5 hours; the technology has

improved significantly since then, so this interval is likely to have reduced.

Both TBProfiler and Mykrobe support Nanopore; however, both used a small
sample size (Mykrobe n=5 and TBProfiler n=3) for validation. Recent work from
Smith et al. confirmed the feasibility of Nanopore WGS for TB AMR prediction on a

much larger, but homogeneous, cohort (n=431) with an in-house script [91].

To date, the most influential factor in the accuracy of a method’s AMR predictions
has been the catalogue [45]. These catalogues are constructed by aggregating mutations
from large cohort studies where the impact of individual mutations is linked to a
phenotype [45, 133, 134, 136, 137]. These catalogues are set to expand significantly
after the work of the Comprehensive Resistance Prediction for Tuberculosis: an
International Consortium (CRyPTIC), who sequenced 10,228 isolates with phenotypic
information for thirteen drugs [138—140]. In addition, the WHO recently issued a
mutation catalogue with metrics for association with resistant and susceptible isolates,
along with a confidence grading for each [141]. However, the genetic basis of resistance
for some drugs, such as the new and repurposed ones, remains only partially understood
[125].
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While WGS catalogue-based AMR predictions provide more flexibility than molecular
assays, current approaches do not detect off-catalogue mutations. As in the Swaziland
Xpert® MTB/RIF example [130], if a novel mutation arises in a population, current
WGS methods will not identify the resistance. The CRyPTIC consortium recently
introduced a new approach whereby if an unknown mutation is identified in a gene
known to be involved in resistance, they refuse to make a prediction [133]. On their
10,290 samples, this approach achieved a specificity and sensitivity for first-line drugs
acceptable for clinical usage. This method is now in use at Public Health England
for all M. tuberculosis samples in England, where samples with unknown mutations
are sent for phenotyping. Additionally, Hunt et al. quantified the cost of the pure-
genotyping approach of mykrobe, showing that 2.4-4.6% of resistant samples were
missed [45].

The lack of sufficient Nanopore WGS validation for TB AMR prediction, along with
the inability of current methods to detect off-catalogue mutations, motivate the work
in Chapter 4. In this chapter, we will leverage the new de novo variant discovery
from Chapter 2 to develop an AMR prediction method that uses pandora and can flag

off-catalogue mutations.

Using genome graphs for drug resistance prediction

As a brief aside, we introduce the benefits of pandora over mykrobe for the task of
AMR prediction; the focus of Chapter 4. mykrobe uses population genome graphs
built from a catalogue of known resistance-causing mutations for the genotyping of
samples. The underlying method mykrobe uses for this is Cortex [43] - an assembly-
based variant caller that uses de Bruijn graphs (dBGs; see Section 1.1.4). Cortex is
somewhat of a precursor to pandora. However, pandora offers several advantages
over Cortex. The first being the representation of the genome graph itself. Cortex
uses k-mers in coloured dBGs, while pandora uses minimizing k-mers in a directed
acyclic graph (see Section 1.3.1). In the context of Nanopore data, this distinction is
important. Building dBGs from Nanopore data creates very complex graphs due to
the number of erroneous k-mers that result from the high error rate. In addition, as the
Nanopore error rate is higher than Illumina, a smaller k-mer size is required, another

factor that increases the complexity of the dBG.

A second difference in the graph representations of Cortex and pandora is how
k-mer "hits" are incorporated. In a dBG, anywhere that a k-mer matches, the depth

is incremented by one. However, in pandora such hits are dependent on the context

27



Background

of the read (see Section 1.3.2). If a k-mer matches two locations in the graph, but
one location has many hits close by from the same read while the other does not, the
spurious hit is discarded. This filtering of k-mer hits allows pandora to use a lower
k-mer size (k = 15) than Cortex (mykrobe uses kK = 21). The flow-on effect of using a
smaller k-mer size is pandora does not require as much read depth as there is a much
higher chance of matches to smaller k-mers, especially when the error rate is high. For
example, assuming a Nanopore error rate of 0.08, we would expect the probability of

a 15 —mer and 21 — mer having no errors to be 0.30 and 0.19, respectively.

1.6 Executive summary of this thesis

We begin this thesis in Chapter 2 by describing algorithms to facilitate the de novo
discovery of variants in a (pandora) genome graph. We first calibrate this method, and
associated parameters, on a simulated dataset. Next, we use an empirical dataset of 20
diverse E. coli genomes with [llumina and Nanopore data to evaluate the precision and
recall of pandora, with and without de novo variant discovery. We additionally show
that pandora’s representation of a pan-genome as a genome graph provides superior
recall to single-reference methods and a substantially lower Nanopore error rate than

existing methods.

For the remainder of the thesis, we turn our attention to M. tuberculosis and investi-
gate how genome graphs and Nanopore sequencing can improve public health applica-
tions for this pathogen. In Chapter 3, we provide a detailed analysis of Nanopore-based
transmission cluster inference. Using a diverse dataset of 150 M. tuberculosis clinical
isolates, we show that BCFtools SNP calls from Nanopore data produce transmission
clusters that are highly concordant with those inferred from Illumina and do not miss
any samples from their expected cluster. Additionally, we explore the efficacy of
pandora for constructing transmission clusters and find that while no samples are
missed from their expected clusters, more work is needed to prevent the merging of

separate clusters.

In Chapter 4, we outline a method for drug resistance prediction with pandora
reference graphs (drprg). We compare this method and mykrobe against available
first- and second-line drug phenotypes for the 150 samples from Chapter 3. As a result,
we simultaneously show that Nanopore WGS AMR predictions are concordant with
[llumina and drprg predictions are consistent with mykrobe. We also find the major

sources of error for both mykrobe and drprg with Nanopore data and investigate. In
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addition, we measure drprg’s ability to detect off-catalogue mutations and find that it
leads to less missed resistance predictions.

Finally, in Chapter 5, we train an M. tuberculosis-specific Nanopore basecalling
model and illustrate its increased read- and consensus-level accuracy over the default
basecalling model. Furthermore, we show that our species-specific model reduces

homopolymer deletion errors - an error type we encounter multiple times in this thesis.
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Chapter 2

Variant discovery in genome graphs

2.0 Publication and collaboration acknowledgements

The software program that this chapter extends, pandora, was first conceived and
implemented in Rachel Colquhoun’s DPhil thesis [66].

A paper describing pandora and the work in this chapter is available at [10]. This
paper was a collaborative project that spans five years of work by Rachel (first author),

myself (second author), Leandro Ishi (third author), and others.

My aim here is to clarify what work is solely mine and what was completed in
collaboration. Where possible, I have also attempted to indicate within certain sections
the work not completed by myself.

The method for performing de novo variant discovery in Section 2.2 is my own,
with input from collaborators. However, I implemented it within the pandora codebase.
Section 2.2.3 describes a process for pruning the path-space in a de Bruijn graph,
this work was the joint idea of myself and Leandro Ishi, and Leandro added the

implementation for the distance map calculation.
All of the work in Section 2.3 is my own.

Section 2.4 describes a subset of the results in [10]. The evaluation framework
used in the paper (and this section) underwent many iterations over two years. Leandro
Ishi and I conceived and implemented the original method of calculating precision
and recall in a coordinate-agnostic manner with the mapping of variant probes. This
framework was later incorporated and adapted by Martin Hunt in the tool Varifier
(https://github.com/igbal-lab-org/varifier). Leandro Ishi implemented the final

evaluation method but it is heavily based on the original work we performed together.
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In addition, several components of the pipeline to run the analysis in Section 2.4
and [10] were initially implemented by myself but were later refactored or changed by

Leandro.

The idea for the Nanopore basecalling model comparison in Section 2.4.4 was
mine, as was the initial implementation - but not the final. Section 2.4.5 was ultimately
performed by Leandro Ishi; however, I had much input and contributed pipeline code
in the beginning.

The construction of the pan-genome truth set of variants discussed in Section 2.4.3
and Section A.2 is the work of Leandro Ishi. It is included in this chapter to aid the
reader’s understanding of how recall is calculated.

2.1 Introduction

Standard approaches to variant analysis are effectively a first-order approximation. In
such an approximation, samples are considered identical to a selected reference; one
aligns sequencing reads to it, identifying apparent variations via the read pileup, and
then the reference is modified to get an estimate of the sample’s genome. We term

such a procedure a "linear" or "single-reference" approach.

As mentioned in Section 1.3, pandora is a method developed by a previous
PhD student in our lab, Rachel Colquhoun [66]. pandora works on the principle of
approximating a genome as a hierarchical mosaic. At a high level, pandora represents
a pan-genome as a mosaic of loci, while at the locus level, it is a mosaic of previously
observed genomes. Loci in this context can represent any genomic unit desired; a gene,
intergenic region, or a mobile genetic element - the method is agnostic. Sequences
from many genomes in a population are collapsed into a graph structure (Section 1.3.1)
to form a locus population reference graph (PRG). All of the pan-genome’s PRGs are

collected into the high-level pan-genome reference graph (PanRG).

When given a set of Illumina or Nanopore sequencing reads, pandora identifies
which PanRG loci are present and infers a consensus sequence for each. This consensus
is the maximum likelihood path through the respective PRG and is used as the first-
order approximation for the sample.

While pandora - before the work in this chapter - enables the comparison of
genomes to a level of detail provided by no other tool, there is still a significant
shortcoming: it cannot discover novel mutations. As such, before the work presented

in this chapter, pandora was effectively a genotyping tool. If a sample contains a
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variant not present in a PRG, the best pandora can do is select the path closest to
that variant. Therefore, we begin this chapter by describing a method for performing
de novo variant discovery in a genome graph and implement it in pandora - turning

pandora into a two-stage approximation method.

We use a simulated genome and associated Nanopore dataset to show that without
this discovery capability, pandora cannot detect variants absent from a PRG. In
addition, we explore the impact of various parameters on the de novo discovery

method and find read depth to have a vital influence.

Finally, we use an empirical dataset consisting of 20 diverse E. coli samples to
show that with our new variant discovery approach, pandora has higher recall than
all single-reference tools tested for both Illumina and Nanopore data. In addition,
we identify methylation sites as a major source of our errors on Nanopore data and
provide a solution for removing many of these errors. In the process of performing this
analysis, we outline a coordinate-free method for evaluating variant caller precision

and recall, facilitating the comparison of linear- and graph-based methods.

2.2 Methods

We define a method that extends pandora, with a subcommand discover, to allow
for the de novo discovery of variants not present in a PRG. We implemented it within

the pandora codebase in the C++ programming language.

pandora, as implemented by Rachel Colquhoun (before this chapter), approxi-
mates a novel genome as a mosaic of prior genomes - the nearest path through the
PanRG. In this chapter, we add two further steps: first, locating regions of the mosaic
which were not supported by reads ("candidate regions"), and second, performing a

particular type of local assembly in those regions.

The first step of de novo variant discovery in genome graphs is finding the candidate

regions that show evidence of dissimilarity from the sample’s reads.

2.2.1 Finding candidate regions

The input required for finding candidate regions are a locus PRG (node), n, within
the pandora PanRG; the maximum likelihood path of n, as both sequence mlp,
and (minimizer) k-mers, kmlp,; and a padding size, w, for the number of positions

surrounding the candidate region to retrieve.
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We define a candidate region, r, as an interval within mlp, where read depth
(coverage) is less than a given threshold, for less than m consecutive positions. m
acts to restrict the size of variants we can detect. If set too large, the following steps
become much slower due to the combinatorial expansion of possible paths. We note
that coverage is actually stored on kml p,, but is stored for the whole k-mer. We convert
the coverage on kmlp, into per-position coverage on mlp, and use that to identify

low-coverage segments as described.

2.2.2 Enumerating paths through candidate regions

For all candidate regions, r, we construct a de Bruijn graph G, from the subsequences
of the reads that overlap r, using the GATB library [142].

We define Ay and Ag as sets of k-mers to the left and right of r in the maximum
likelihood path, mlp,. They are anchors to allow insertion of new sequences found by

de novo discovery into the PRG. Each set has a maximum size of k.

We abandon de novo discovery if no pairwise combination of Ay and Ag exists in

the de Bruijn graph G,.

We use sets of k-mers for Ay and Ag, rather than a single anchor k-mer, to provide
redundancy in the case where sequencing errors cause some anchors to not be in
G,. We define the start anchor k-mer, a;, as the first (left-most) a;, € A;, A ag, € G,.

Likewise, we define the end anchor k-mer, ag, as the left-most ar € Ag A ag € G,.

Now that we have two anchor k-mers, ay and ag, our goal is to find all valid paths

between these anchors in G,.

To identify valid paths, we perform depth-first search (DFS) on G,, beginning from
ar, to obtain a spanning tree, 7,. p, is defined as a path from the root node a;, of 7,
and ending at node ag, which fulfils the following two conditions: i) p, is shorter than
the maximum allowed path length; 11) no more than k nodes along p, have coverage
< (0.1n,e,), where e, is the expected k-mer coverage for r and n, is the number of

iterations of path enumeration for r.

V, is the set of all p, satisfying these conditions. If |V,| is greater than a predefined
threshold, 1, n, is incremented by 1 and V, is repopulated. If 0.1n, = 1.0 then de novo

discovery is abandoned for r.

The second condition listed above, which relies on n, and ¢,, has the effect of
progressively increasing the amount of coverage we demand on a candidate path (p;).

In the first iteration, n, = 1 - i.e., we require the path to have 10% of the expected read
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depth (coverage). If this yields too many paths (|V,| > 1), we restart and require all
paths to have 20% of the expected coverage. Finally, if we reach a stage where we
require 100% of the expected coverage but still have too many paths, we quit de novo

discovery for the candidate region.

2.2.3 Pruning the path-space in a candidate region

As pandora operates on both accurate and error-prone sequencing reads, the number
of valid paths in G, can be immense. In testing, we found that the path enumeration
process can result in runtimes beyond seven days in some scenarios. The increased
runtime is due to cycles occurring in G, and exploring paths that will never reach our

required end anchor (ag).

In order to reduce the path-space within G,, we prune paths based on multiple cri-
teria. Critically, this pruning happens at each step of the graph walk (path enumeration;
Section 2.2.2).

In addition to 7, obtained by performing DFS on G,, we produce a distance map
D, that results from running reversed breadth-first search (BFS) on G,, beginning from
the end anchor (ar). We say reversed BES as we explore the predecessors of each
node, rather than the successors. D, is a binary search tree where each node in the
tree represents a k-mer in G, that is reachable from ag via reversed BFS. Each node

additionally has an integer that describes the shortest path from that node to ag.

We use D, to prune the path-space as follows. As we walk the candidate path (p,)
in Section 2.2.2, for each node (k-mer; v) in the de Bruijn graph G,, starting at ay, we
lookup v in D, to see if ag can be reached in a minimum of i nodes, where i is defined
as the maximum allowed path length minus the number of nodes walked to reach v. If

one of these conditions is not met, we abandon p,..

The advantage of this pruning strategy is that we never explore paths that will not
reach our endpoint. Additionally, we will discard any path once we have made too

many loops around a graph cycle.

To illustrate the benefit of this pruning algorithm, we present an example in Figure 2.1.
This graph represents G, (7, more specifically, as only nodes reachable from ar,
are present), with the nodes representing k-mers. The anchor k-mers a7 and ag are
coloured red, and the numbers associated with each node represent the distance map
D, - indicating the length of the shortest path to ag from that node. The lighter blue
nodes and dashed edges indicate nodes that would cause us to abandon a path walk.

For example, if we have stipulated a maximum allowed path length of 4, starting at
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Fig. 2.1: An illustration of graph pruning. The graph represents a de Bruijn graph of a candidate
region. Nodes represent k-mers and are arbitrarily labelled, except ar and ag (red), which are the start
and end anchor k-mers, respectively. When enumerating paths, we aim to find all paths between a;, and
ag with a length no greater than a specified maximum. Numbers next to nodes indicate the length of the
shortest path from that node to the end k-mer ag. In this example, we set a maximum path length of 4.
As such, light blue nodes and dashed edges indicate sections of the graph that would be pruned (not
explored).

ar, whenever we reach a light blue node, the number of steps taken to reach that node,
plus the length of the shortest path from that node to ag, will always be greater than 4.
Take the path a; -+ B — C — E — F; we have taken four steps to reach this node, yet
the shortest path to ag is 2, meaning, in the best-case scenario, p, would have length 6.
In this way, we prevent needlessly walking the section of the graph F — G — H — 1.

While this is a small example, in real graphs, the saving is potentially huge.

In the end, for each candidate region (r), we are left with a collection of paths (V,.)
between two k-mers (ar and ag). We create the final candidate paths by replacing
the sequence between ay and ag in the maximum likelihood path (m/p,) with each
path (p,) in V,.. These are written to file - with one file per candidate region. Padding
the candidate paths in this way ensures they are inserted into the PRG in the correct

location (see Section 2.2.4).
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2.2.4 Updating a PanRG with candidate paths

As new paths may alter the structure of a PRG, we cannot insert them directly and

must rebuild each PRG for which a candidate path is discovered.

The first step of rebuilding each locus PRG is to add the new candidate paths to
the original multiple sequence alignment (MSA). We ensure the novel paths align
with the correct section of the locus because we padded each candidate with the
maximum likelihood path. Next, we combine all candidate paths for a locus into a
single, unaligned FASTA file and add them to the existing locus MSA with the -add
protocol in MAFFT [143].

Finally, we run make_prg on the subsequent alignments, and the resulting updated

PRGs are combined into a single PanRG and indexed with pandora.

This updated PanRG can then be used as input to pandora, and subsequent geno-

typing will include the novel variants.

2.3 Initial assessment via simulations

Having described an extension of the pandora program that allows for de novo variant
discovery, we now perform an initial evaluation and explore the impact of various

parameters using a simulated dataset.

2.3.1 Methods

The first step in evaluating the effect of adding de novo variant calling to pandora is
with a simulated dataset. We aim to show that the addition of de novo discovery allows
pandora to improve its capacity for variant detection (recall) with minimal impact on

the quality of the calls (precision).

To construct our simulated dataset, we randomly select 100 gene MSAs from a pool
of 29,702 obtained for E. coli from the panX database [8]. Next, a PRG is constructed
for each MSA with make_prg (Section 1.3.1). We used a range of make_prg maximum
nesting levels - 1, 3, 5, and 10 - to investigate whether PRG nesting has an impact on
our ability to discover novel variants. The PRGs are combined into a single PanRG for
each nesting level. A random path through each PRG is selected using pandora, and

these sequences are concatenated together to form a single "genome" sequence.

We subsequently add SNPs to the simulated genome at different per-gene rates
using snp-mutator [144]. For this work, we introduce 100, 400, and 1,000 SNPs to
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the simulated genome, which equate to approximately 1, 4, and 10 SNPs per gene,
respectively. snp-mutator produces a VCF of the SNPs that were introduced, along

with the mutated genome sequence.

Next, we simulated 30,000 Nanopore reads from the mutated genomes using
nanosim-h [145, 146]. As the most recent model offered by nanosim-h was from the
old R9 Nanopore flow cell, we trained and used a model from a freely-available E. coli
R9.4 dataset (http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/). Each read
set was randomly subsampled to a read depth (coverage) of 15, 30, 60, and 100 with
rasusa [147] so we can investigate the impact of coverage on our ability to discover

novel variants.

pandora’s discover routine is then run, using the original panX-derived PanRG
and the reads simulated from the mutated genome. Using this approach, we know that
the reads originate from a sequence in our PanRG, but with some SNP differences
and Nanopore errors. It is possible that some of the random SNPs introduced by
snp-mutator already exist in the PanRG, but this is likely a minimal number. We use

three different k-mer sizes for the de novo discovery: 11, 13, and 15.

After running the discover routine, we are left with a collection of candidate
paths produced by the de novo component. We then add these candidate paths back
into the PanRG as per Section 2.2.4. The updated PanRG is then used as input - along
with the simulated reads - to pandora map to produce a genotyped VCF that hopefully

contains all of the simulated SNPs.

In parallel to this, we also run pandora map on the original PanRG and simulated
reads - i.e., without variant discovery. The genotyped VCF produced by this run
shows how pandora performed before the addition of de novo variant discovery in
this chapter. Theoretically, we only expect this VCF to contain simulated SNPs that
were already in the PanRG.

At the end of this workflow, we have a genotyped VCF with and without de novo
variant discovery for each combination of maximum nesting, de novo k-mer size, SNP

rate, and read depth (coverage).

2.3.2 Evaluation

Comparing the truth VCF to the one produced by pandora requires care. The variants
in the truth VCF are with respect to a linear reference genome; as we only simulated

SNPs, these are single-position records. However, the pandora variants are with
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respect to a graph and, depending on the density of variation in the graph, may not

appear as single-position records (see Figure C.3 for an illustration of this).

We avoid the error-prone conversion of linear coordinates into graph coordinates,
or vice versa, by using a coordinate-free evaluation. This approach maps variant probes

to each other and compares the probe sequences.

We define a probe-set P as a collection of probes, p, where p represents an entry, e,
in a VCF file, V. For each e € V, p is constructed by the concatenation of /,,, e., and
ry (in that order), where e, is the called allele of e, and /,, and r,, are the sequences, of
maximum length w, in the VCF reference to the left and right, respectively, of e.. For
pandora, the VCF reference is the maximum likelihood sequence, and for the truth
VCF it is the simulated genome (without the simulated SNPs).

A truth probe-set, P;, was constructed from the VCF of variants added to the
simulated genome and a query probe-set, P, from the variants called by pandora. We
then mapped all probes from P, to P, using bwa mem [25]. We classify each probe in
P, as a true positive (TP) if the e, part of the probe exactly matches the sequence it
aligns to in P, or a false negative (FN) otherwise. Any probe in P, that does not have
a TP truth probe mapped to it is classified as a false positive (FP). We perform this

assessment for the "no de novo" and "with de novo" VCEF files from pandora.

Precision is defined as the number of TPs divided by the number of TPs and FPs
precision = %; it represents the fraction of variant calls made that are correct.

Likewise, recall is calculated as recall = and describes the proportion of

_TIp
TP+FN
expected variants correctly discovered.

2.3.3 Results

We first look at Figure 2.2, which shows how precision and recall of the pandora de
novo variants changes depending on the combination of parameters chosen. Those
parameters were the read depth (coverage) of the simulated reads (Figure 2.2a), the
number of SNPs introduced into the simulated genome (Figure 2.2b), the k-mer size
used for variant discovery (Figure 2.2c), and the maximum nesting level allowed in
the PRGs (Figure 2.2d). In total, there are 144 different combinations of parameters,
and thus data points.

The parameter that appears to have the most visible impact on the precision and
recall is the coverage (Figure 2.2a). It is somewhat unsurprising that as coverage
increases, so do both precision and recall. However, there does not seem to be any

noticeable difference for coverage > 60.
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In the best case, the highest recall and precision values are 0.91 and 1.0, respectively.
The data point is the same in both instances, with a coverage of 60, k-mer size of 13,
number of SNPs 100, and a maximum nesting level of 10. Upon further investigation
of the nine missed variants (FNs) for this data point, six were within 2k — 1 positions
of the start or end of the locus, one was a null call (indicating genotyping uncertainty),
one was falsely called as a homopolymer deletion, and the remaining missed call never
had de novo discovery triggered for that region of the locus. Therefore, only 3/9 FNs

for this example (the last three) were discoverable with our de novo method.

The last point requires some elaboration, as it may not be clear why only three
FNs in the best-performing data point were expected to be detected by de novo. As
a reminder, the role of the de novo component is to collect candidate alleles that are
potentially in the sample but missing from the graph; if that set includes the truth,
it has succeeded. Whether or not that true allele is genotyped as being present and
recorded in the VCEF is the job of the sequence inference and genotyping components
of pandora. In the case of the null genotype call, the correct variant was discovered,
and it had higher coverage than the reference allele (26 vs 11); therefore, it is a failure
of the genotyping. The homopolymer deletion is a failure of the genotyping; while
de novo (incorrectly) discovered the candidate indel, it also discovered the correct
allele, but the genotyping chose the homopolymer deletion. Furthermore, the variant
which de novo discovery was never initiated for most likely has enough coverage on
the reference allele that a candidate region was not detected - by default, we only flag

a candidate region if coverage drops below 3.

In the case of the six missed calls near the ends of loci, these are not detectable by
our current de novo method as they occur within 2k — 1 positions of the boundary of
a locus. The reason this makes them undetectable is related to our need for start and
end anchor k-mers in order to find candidate paths (Section 2.2.2). The start and end
k-mers are a collection of k k-mers, meaning 2k — 1 positions are required surrounding
a candidate region in order to be able to initiate de novo discovery. We will return to

this limitation later (Section 2.6.1).

While not an issue for the best-performing example we have just been examining,
missing loci were another common source of FNs. If pandora decides a locus is not
present after quasi-mapping (Section 1.3), then it is impossible for de novo to discover
any variants in it. We note that the vast majority of missing loci have a length of less
than 250 base pairs (Section A.1).
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(a) Simulated coverage (read depth) (b) Number of SNPs simulated

Lo coverage

(¢) de novo discovery k-mer size (d) PRG maximum nesting level

fenovo_kmer._size I . max_nesting
en % o1
13

A

Fig. 2.2: Recall (x-axis) and precision (y-axis) of de novo variants discovered by pandora on a
simulated dataset. Subplots style the points by the parameter indicated in the subtitle. Each point
indicates a single run of pandora with a unique combination of all parameters.

Max. nesting de novo k-mer size

Precision 0.934 (10) 0.937 (13)
Recall 0.674 (5) 0.671 (13)
Table 2.1: The median precision and recall for all parameter combinations, grouping by the maximum

PRG nesting level or the de novo k-mer size used for variant discovery in pandora. The values in
parentheses indicate the parameter value that leads to the specified precision or recall.

When looking across all 144 combinations of parameters, we found that, on
average, 7.8% of the true variants are near the ends of loci and 2.8% are in absent loci

(see Figure 2.3).

The parameters that we can directly control with respect to de novo discovery within
pandora are the PRG maximum nesting level and the de novo k-mer size. Figure 2.2
shows no clear optimum for either of these options. However, when taking the median
precision and recall values across all data points (Table 2.1), a maximum nesting level

of 5 and de novo k-mer size of 13 seem the best choice.

For the final analysis of the simulation data, we look at how the precision and
recall change with an increasing genotype confidence threshold. We select the data

point with the optimal maximum nesting level (5) and de novo k-mer size (13), along
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Fig. 2.3: The proportion of simulated SNPs that are not detectable by de novo variant discovery. The
red box represents SNPs that occur in loci designated as absent by pandora. The blue box depicts the
SNPs that occur within 2k — 1 positions of the start or end of a locus. Each point indicates a single run
of pandora with a unique combination of parameters.

with 4 SNPs per gene, as this is within the range expected for an E. coli genome.
Next, starting at 0 and increasing by 10 until 700, we filter out any variant with a
genotype confidence score below the current threshold. The purpose of this analysis
is to illustrate what the cost on recall is for requiring more confident variant calls at
different read depths.

Figure 2.4 shows the same relationship we saw earlier: coverage has a significant
impact on precision and recall. Most importantly, though, it shows that the inclusion of
de novo discovery is vital for finding novel variants. Precision and recall for pandora
without variant discovery are not shown in Figure 2.4, as the best recall achievable for
this set of parameters was only 1.0% (indicating that 4 SNPs were incidentally in the
PanRG). This is compared to a maximum of 81.5% when using de novo discovery.
Focusing on the 100x coverage data point with de novo discovery, the best recall
(81.5%) leads to a precision of 97.0%, but the cost of increasing precision to 99% is

decreasing recall to 25%.

2.3.4 Summary

In summary, we have shown that the addition of the de novo variant discovery method
outlined in Section 2.2 gives pandora the ability to find many variants not present in
its PanRG. Using simulated data, we find a k-mer size of 13 gives slightly better recall
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Fig. 2.4: Precision-recall curve for increasing genotype confidence score thresholds. The curves are
coloured by read depth (coverage). Each marker/point is a different genotype confidence threshold,
starting with O as the right-most value and increasing as the line moves towards the (top) left. Note, the
y-axis has been cut to provide more clarity of precision.

than 11 or 15, but that the sample read depth has the most considerable impact on our

ability to discover novel variants.

We have also shown that, on average, approximately 10.5% of (simulated) SNPs
are not detectable based on their membership in either loci pandora does not detect,

or lying within 2k — 1 positions of the start or end of a locus.

2.4 Validation with empirical data

Having shown, for simulated data, that the de novo variant discovery method indeed
alleviates a major limitation of pandora, we turn our attention to evaluating its per-
formance on empirical data. However, rather than the single-sample (pandora map)
approach we used for genotyping in Section 2.3, we evaluate pandora’s multi-sample

comparison protocol - pandora compare.

The inference of variation within a collection of samples is one of the unique
aspects of pandora. As detailed in Section 1.3.3, the compare routine of pandora
genotypes multiple samples against a PanRG simultaneously, with the aim of rep-
resenting variation between the samples in the most succinct manner possible (see
Figure 1.6b). It does this by selecting a single maximum likelihood path that best ap-

proximates the samples under investigation - akin to an "average" path of the samples.
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Evaluating the variant calls from such a graph-based method is by no means trivial.
In this section, we aim to compare the variant calls made by pandora against those

made by single-reference (linear) methods for both Illumina and Nanopore data.

In keeping with the focus of this chapter, we will also assess the utility of de novo
variant discovery within pandora. While we have shown its benefit on simulated data,
the PanRG used did not contain many of the simulated SNPs. However, we expect
many of the SNPs in real data also to be present in a PanRG built from a pan-genome

of diverse samples.

Note: all work in this section (Section 2.4) is described in full in [10]. See
Section 2.0 for a detailed description of what work was completed by myself.

2.4.1 Dataset
Samples

The empirical data we use for this evaluation is a diverse set of 20 E. coli samples from
four different phylogroups. Each sample has both Nanopore and Illumina sequencing
data and high-quality assemblies available. The sequencing reads for each technology
were subsampled to read depth 100x.

References

The PanRG we use as the reference for pandora was constructed from a combination
of E. coli genes and intergenic regions. 23,054 gene MSAs from 350 RefSeq genomes
were obtained from the panX database [8], while 14,374 intergenic region MSAs from
228 ST131 genomes were collected from [148]. PRGs were constructed for each locus
using make_prg and then all were combined into a single PanRG file and indexed with

pandora.

As single-reference variant callers cannot use a PanRG, we selected 24 reference
genomes from five major phylogroups - one phylogroup is not contained within the
sample set. These references were selected to be spread across phylogroups, and where
the phylogroup was present in our samples, we chose the nearest RefSeq genome
according to Mash, and a phylogenetic tree [10]. By calling variants for each sample
with respect to each reference genome, we can directly view the impact of reference

selection on the results of standard variant callers.
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2.4.2 Variant calling
Graph-based: Pandora

To produce a multi-sample VCEF file of variants for pandora we follow a somewhat
similar approach to Section 2.3.1, with some important differences. Rather than adding
all de novo variants for a single sample to the original PanRG we instead add the novel
variants for all samples to the original PanRG. In the end, we have an updated PanRG
which contains all novel variants for all samples under comparison. We then perform
multi-sample genotyping with this updated PanRG using pandora compare. This

entire process is completed separately for [llumina and Nanopore data.

Linear-based

We compare the [llumina variant calls from pandora against those from Samtools
[30] and Snippy (https://github.com/tseemann/snippy) (which is a wrapper around
Freebayes [28]). The Nanopore variant callers we evaluate against are Medaka (https:
//github.com/nanoporetech/medaka) and Nanopolish [149]. Each variant caller is run

on all 20 samples with all 24 reference genomes.

In total, we produce 480 VCFs for each linear variant caller and 20 (one per sample)

for pandora.

2.4.3 Evaluation

A direct comparison of the VCF files produced by pandora and the single-reference
tools is not possible due to coordinate incompatibilities. As such, we use a probe-based

method, akin to that in Section 2.3.2 for assessing the variant calls.

The first step in this evaluation is the generation of a pan-genome SNP truth set.
Section A.2 details the construction of this truth set, resulting in 618,305 SNPs we

expect to find amongst the 20 samples.

There are two measures of recall in a pan-genome (see Section A.2), but of interest
to this section is the average allelic recall (AvgAR). Briefly, AvgAR is the average
recall of all pan-genome variants. For example, we have three genomes with two
pan-genome variants P; and P, between them. P; has the alleles A, A, and T across
the three genomes, and P, has alleles C, T, and T. If we find the P; alleles A (for only
one sample) and T, we have a P recall of 0.66 (2/3), and if we only find the P, allele
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C, we have a P recall of 0.33 (1/3). Therefore, in this example, we have an AvgAR of
0.66—50.33 —05.

To calculate AvgAR (recall) for tool-reference pairs, we perform the following: 1)
apply the variant calls for each sample to the reference sequence the calls were made
with respect to (giving 20 mutated sequences); ii) we map all truth set probes to these
mutated reference sequences with bwa mem; iii) we classify a mapping as TP if the
alleles within the aligned sequences match. Then, for each pan-genome variant, we
count the proportion of its alleles with a TP mapping and calculate AvgAR accordingly.
In the end, we have an AvgAR value for each variant caller and reference sequence

combination - i.e., 24 AvgAR values for each caller.

We determine precision in a somewhat similar manner. First, we create probes for
each variant in a given VCF, with 150bp of flanking sequence taken from the VCF
reference sequence. Second, we map each probe to the sample’s assembly sequence.
Next, we filter out poor quality mappings or mappings to low-quality regions of the
assembly. Finally, each mapping’s precision is classified as a continuous score - rather
than a binary true or false positive - by dividing the number of matching bases (ignoring
the flanking sequences) by the alignment length. Thus, for example, if the called allele
is ATG and maps to a sequence ATTG, the precision score is 0.75. Ultimately, we
calculate precision as the sum of precision scores, divided by the number of evaluated

calls.

2.4.4 Effect of different Nanopore basecalling models

Previous work from Wick et al. has shown that for Enterobacteriaceae, the majority of
Nanopore sequencing errors are related to Dcm methylation sites [78]. In version 3.2.1
of guppy (the ONT-provided basecalling software) a new methylation-aware model
was made available. However, this new model is considerably slower to basecall reads
than the default model. As E. coli is a member of this family, we set out to test a subset
of 4 samples from our dataset to see whether a methylation-aware model indeed has
a noticeable impact on the precision and recall from pandora - with and without de

novo variant discovery.

We basecalled the raw data for four samples from our dataset with both the
default and methylation-aware models from guppy version 3.4.5. Precision and recall

(AvgAR) are calculated as per Section 2.4.3 and presented in Figure 2.5.

46



2.4 Validation with empirical data

0.900 -

0.875 -

0.850 -

0.825 -

recall (AvgAR)

0.800 -

0.775 -

methlyation-aware

0.750 - — no

— yes
with de novo

— yes

-=- no

0.725 -

0.001 0.002 0.003 0.004 0.005 0.006
error rate (1-precision)

Fig. 2.5: Effect of Nanopore methylation-aware basecalling on pandora de novo variant discovery.
The lines show the average allelic recall (AvgAR; y-axis) and error rate (1—precision; x-axis) of
pandora with increasing genotype confidence score thresholds with (solid line) and without (dashed
line) de novo variant discovery. The red line shows data basecalled with the default guppy model and
blue being basecalled with a methylation-aware model.

Source: Adapted from [10] under the terms of the Creative Commons CC BY license. The colour scheme has been altered, along with the wording of some labels.
However, none of these changes in any way alters the underlying data or interpretation of that data.

The precision-recall curves represent increasing genotype confidence filtering; the
top-right of each curve is no filtering, and as the genotype confidence requirement is

gradually increased, we reduce the error rate (increase precision) at the loss of recall.

Two crucial observations from Figure 2.5 are that the use of a methylation-aware
model increases both precision and recall, and the use of de novo discovery increases

recall at the cost of precision.

Table 2.2 shows the precision and recall values for the unfiltered results (i.e., the
top-right of each curve in Figure 2.5). From this, we see that without de novo variant
discovery, using a methylation-aware model would allow us to recover 894.7 variants
in 1000 - 3.3 more than with the default model; likewise, we would expect to make
0.5 errors per 1000 variants. Using de novo variant discovery, the methylation-aware
model allows us to discover 906.3 variants in 1000 - 4.8 more than the default model
and 11.6 more than methylation-aware without de novo discovery. In terms of errors,
using a methylation-aware model leads to 3.7 less errors per 1000 variants with novel
variant discovery enabled; however, it makes 0.41 more errors per 1000 variants than

without novel variant discovery.
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Methylation-aware with de novo Recall (AvgAR) Error rate (1—precision)

o yes 0.9015 0.0060
no 0.8914 0.0023
yes yes 0.9063 0.0022
no 0.8947 0.0018

Table 2.2: Effect of Nanopore methylation-aware basecalling on pandora de novo variant discovery
(unfiltered) error rate (1—precision) and average allelic recall (AvgAR).

Given the dramatic improvement in precision and recall from using the methylation-
aware basecalling model, we re-basecalled all data for subsequent analyses with this

model.

2.4.5 Performance of Pandora against single-reference tools

We now compare the precision and recall of pandora on Illumina and Nanopore data
against two single-reference variant callers for each technology. For the Nanopore
analysis, we use the reads basecalled with the methylation-aware model (Section 2.4.4).
In addition, we run pandora with and without de novo variant discovery to see the

impact of the work in this chapter.

We use AvgAR as the measure of recall (see Section 2.4.3), error rate as the measure
of precision (1—precision), and apply increasing genotype confidence thresholds to

illustrate the precision-recall trade-off.

The results of this analysis are shown in Figure 2.6. For both sequencing tech-
nologies, pandora with de novo variant discovery has the highest (unfiltered) recall
of 85.82% on Illumina data and 85.51% on Nanopore. In terms of error rate, snippy
had the lowest Illumina unfiltered value of 0.01% (with reference CP010170.1), while
pandora without de novo variant discovery had the lowest Nanopore unfiltered rate of
0.19%.

Of particular interest to the work in this chapter is the observation that, on Illumina
data, de novo variant discovery leads to greater recall and precision (see inset of
Figure 2.6a); however, on Nanopore data, de novo discovery provides greater recall,
but at the cost of lower precision (see inset of Figure 2.6b). This suggests that
systematic errors in Nanopore create incorrect novel alleles, which are in turn deemed

correct by genotyping.

The most striking result from this work, though, is the error rate of pandora on

Nanopore data, which is 12.9 times lower than nanopolish and 79 times lower than
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(a) Illumina (b) Nanopore

Fig. 2.6: Precision-recall curve for variant calls from Illumina (left; (a)) and Nanopore (right; (b))
data for different variant calling tools (colours). Each curve represents increasing genotype confidence
thresholds, starting with no filtering in the top-right of each curve and increasing towards the bottom-left.
pandora has a single line with (blue) and without (red) de novo variant discovery, which represents
the error rate and recall across all 20 samples. The other variant callers are traditional single-reference
tools; therefore, each line represents the use of 1/24 reference genomes from across five major E. coli
phylogroups. Inset windows are used to give more granularity for error rate in the best performing tools.

Source: Adapted from [10] under the terms of the Creative Commons CC BY license. The colour scheme has been altered, along with the wording of some labels, and
the inclusion of inset windows. However, none of these changes in any way alters the underlying data or interpretation of that data.

medaka. In real terms, this equates to 22 and 146 fewer errors per 1000 variants,

respectively.

Equally impressive is the improvement in recall over snippy using pandora with
variant discovery on Illumina data, leading to 47/1000 more variants being discovered.

However, this does come at the expense of a higher error rate than snippy.

2.4.6 Summary

In this section, using 20 diverse E. coli samples, we have shown that the de novo
variant discovery method outlined in Section 2.2 allows pandora to discover more

variants (increases recall). In addition, it improves the error rate on Illumina data.

We also demonstrated that a methylation-aware Nanopore basecalling model
decreases the pandora error rate - quite significantly for de novo - indicating that many
of the novel variants "discovered" by our method are, in fact, systematic technology

CITOrS.

Finally, we show that pandora provides higher recall than single-reference-based
variant callers for both Illumina and Nanopore data and leads to a Nanopore error rate
that is an order of magnitude lower than other tools. However, snippy provides lower

error rates than pandora on Illumina data.

49


https://creativecommons.org/licenses/

Variant discovery in genome graphs

2.5 Discussion

In this chapter, we described a method for discovering de novo variation in a genome
graph from both Illumina and Nanopore data. We implemented it in the discover
subcommand of the reference graph program pandora and evaluated its utility on
both simulated and empirical data. Additionally, we demonstrate an approach for
comparing variant calls made from single-reference or graph-based tools independent

of genome coordinates.

Before the work in this chapter, pandora was only able to genotype with respect
to variation present in a pan-genome reference graph. To allow pandora to discover
novel variants, we use a localised form of genome assembly in segments of the graph
with low k-mer coverage. We first identify candidate regions of the genome where read
depth (observed as k-mer coverage) drops below a predefined threshold. Next, we slice
out the segments of the reads that map to these candidate regions and construct a de
Bruijn graph from them. Finally, we enumerate paths in this de Bruijn graph that pass
coverage and insertion size filters and output them as novel candidate alleles. These
alleles can then be added into the original PanRG to allow for genotyping against these

new alleles.

This de novo discovery process, detailed in Section 2.2, is somewhat analogous to
the method used by GATK’s HaplotypeCaller [31]. With two noticeable differences.
First, GATK determines candidate regions (described as ActiveRegions) based on an
"activity score" that is calculated from alignment quality and genotype likelihood at
a locus. In contrast, we use a naive approach that looks for k-mers in the maximum
likelihood path with coverage less than a hard threshold. While our approach may
seem simple, it relies on information gained by performing quasi-mapping to the graph
and inference of a maximum likelihood path. Second, the pruning methods employed
by GATK involve removing edges with low support, and when the terminal k-mer of
a path does not match the reference sequence, they attempt to use local alignment to
merge it. By comparison, we require a path contain the terminal k-mer, thus avoiding
local alignment. Additionally, we prune the de Bruijn graph by using depth- and
breadth-first search to construct a distance map so that we know whether a given k-mer
in the de Bruijn graph can reach the terminal k-mer within a predefined number of
graph walks. In this way, we never get stuck in cycles or produce paths longer than a

user-defined insertion size.
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While we did not compare pandora runtime to GATK, given the results in [31]
and the algorithmic details of their method, we suspect our method leads to much

faster runtimes due to the pruning of paths and lack of local alignment.

In Section 2.3 we selected random paths from a PanRG and randomly introduced
SNPs to each at varying rates. We then simulated Nanopore reads from these mutated
random genomes and used them to test different parameters relating to our de novo
discovery method. Read depth (coverage) had the most obvious impact on the ability to
detect novel variants. Given the simulated Nanopore read error rate of approximately
11%, the decrease in recall with coverage is expected as our method relies on k-mer
coverage along the candidate paths. Without sufficient k-mer coverage to support a
path, we cannot produce any candidate alleles. While a k-mer size of 13 for de novo
assembly was found to perform slightly better than 11 and 15, this was only marginal
and may warrant further investigation. Indeed, for the work in [10] we used a de novo

k-mer size of 15 in order to speed up variant discovery in some problematic loci.

While we compared the precision and recall of pandora with and without variant
discovery in the simulations, this was not a realistic scenario. However, these simula-
tions were not intended to be entirely realistic (that was the purpose of Section 2.4).
They were designed to illustrate the limitations of pandora without the capacity to
find novel variation and allow us to explore the impact of various parameters on variant

discovery.

Given the contrived nature of the simulation analysis, in Section 2.4 we used an
empirical dataset of 20 E. coli samples from across four major phylogroups to examine
the benefit of de novo variant discovery. In performing this analysis, we devised
a novel method for comparing variant-calling precision and recall across tools in a
coordinate-agnostic manner. The main benefit of such an approach is the mitigation
of hard reference bias, which occurs when the reference genome used for variant
calling (or mapping) does not contain a locus (see Figure 1.3). As the pan-genome of
E. coli is open, hard reference bias is a problem when comparing cohorts of diverse
samples. Indeed, as shown in Figure 7 of [10], pandora’s use of a locus-specific
reference that is dynamically selected based on the cohort under study leads to tens of
thousands more SNPs being discovered in rare loci (loci in 2-5 genomes) compared to
single-reference variant callers.

An important finding from our empirical analysis is the impact of Enterobacteri-
aceae methylation on pandora’s Nanopore error rate (Figure 2.5). In particular, when
using de novo discovery, the Nanopore error rate is 3-fold lower when a methylation-

aware basecalling model is utilised. This observation is also confirmed by Wick et al.
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in their work benchmarking Nanopore basecalling methods for Enterobacteriaceae [78].
They saw that the overwhelming error source was in Dcm methylation sites and that
these errors could be virtually erased by training a taxon-specific basecalling model.
It follows that given the dramatic decrease in de novo errors as a result of using the
methylation-aware model, these systematic biases are being captured and incorporated
back into the PanRG by variant discovery. Therefore, any Nanopore work involving
genomes subject to Dcm methylation would be wise to employ methylation-aware
basecalling. Other tools such as nanopolish have incorporated error modelling to
remove these systematic biases [149]. However, as Nanopore sequencing evolves at a
rapid pace, the constant maintenance required to model these errors can become very
laborious. As such, we feel that taxon-specific basecalling models are a more robust

solution to these systematic errors (we explore this further in Chapter 5).

Despite the impact of Nanopore systematic errors on de novo variant discovery,
we did find that for both Illumina and Nanopore, de novo discovery increased the
recall of pandora (Figure 2.5 and Figure 2.6). In addition, we also found that de
novo discovery provided lower error rates on Illumina data (Figure 2.6a). As the
[1lumina and Nanopore data for all samples are matched - i.e., from the same DNA
extraction - the difference in error rate between de novo and no-de novo must be
technology-driven. However, we do note that the pandora error rate for Nanopore

was an order of magnitude lower than both medaka and nanopolish.

Without the addition of de novo variant discovery, pandora’s recall is higher than all
other variant callers tested - although only marginally higher than medaka. This shows
the power of genome graphs to provide access to sections of the genome previously
unavailable to single-reference methods. Now that we have provided the functionality
for pandora to perform novel variant detection, the door is open to access even more

of the pan-genome.

One application that stands to benefit from pan-genome graphs is prospective
surveillance of a bacterial population. Current approaches to such surveillance perform
multiple levels of genome alignment in order to find the most appropriate reference for
a given sample [150]. In contrast, the PanRG used by pandora is a stable reference

capable of handling an evolving cohort.
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2.6 Limitations and future work

2.6.1 Path enumeration

A fundamental limitation of the de novo variant discovery method outlined in this
chapter is the need for anchor k-mers to initiate local assembly and perform path
enumeration. While this is not concerning in most locus areas, it becomes problematic
near the start and ends of loci (within 2k — 1 positions of the ends). Indeed, we see in
Figure 2.3 that on simulated data, variants that occur near the ends of loci account for

a recall loss of 8%.

One solution for removing this anchor k-mer limitation would be to use a unique
k-mer approach analogous to Kevlar [151]. Briefly, Kevlar aims to detect de novo
variants (in human trios/families) by looking for unique k-mers in a child, with respect
to the parents. Reads containing these "interesting" k-mers are then assembled with
an overlap graph, and the resulting contig is aligned to and genotyped against the

reference.

Our idea for how the Kevlar method could be adapted to pandora is to identify
candidate regions and extract the read pileups for these regions as we currently do
(Section 2.2.1). Then, for each candidate region, perform the following: i) let M be
the set of all minimizer k-mers along the maximum likelihood path in the candidate
region; ii) construct a k-mer count table from the read pileup of the candidate region,
only counting minimizer k-mers not in M; iii) filter out any k-mer with a count less
than some threshold determined by the number of reads in the pileup, leaving a set of
unique minimizer k-mers N. We would then construct a de Bruijn graph from only
those reads containing k-mers in N. The enumeration of paths through this graph
would then involve beginning from any one of the k-mers in N - removing the need for
anchors - and only keeping those paths that contain a k-mer in N. One element of this
strategy that requires careful thought is how to incorporate paths back into the graph

without the anchor k-mers we currently use.

2.6.2 Cycle detection

The primary computational bottleneck we have encountered during de novo variant
discovery development is infinite cycles in the de Bruijn graph. As de Bruijn graphs
are directed, but not necessarily acyclic, a cycle can occur when a k-mer (node) can
reach itself by following a path from any of its successor (out) nodes. When multiple

such cycles occur within a graph, computational performance suffers. Such cycles
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can be detected using depth-first search; however, we do not want to disallow them as

cycles are not invalid biologically.

To limit becoming stuck in cycles, we employ pruning heuristics (Section 2.2.3)
that prevent paths from reaching a maximum length or the exploration of paths that will
never reach the end anchor k-mer. However, if many cycles occur in close succession,
even these heuristics do not prevent bottlenecks. Moreover, in some low complexity
PRGs, we have seen this process take on the order of days for a single candidate region.
As such, future work to improve the computational performance would be well-served

to investigate additional pruning strategies.

2.6.3 Nanopore homopolymer deletions

Wick et al. found Dcm methylation sites to be the primary source of errors in En-
terobacteriaceae, and when these were eliminated with their taxon-specific model,

homopolymer deletions became the chief error source [78].

While we did not report the number of homopolymer deletions we found, we did
discover one as the source of 1/9 false negatives in our best-performing parameter set
in the simulations (Section 2.3.3). As mentioned, some methods attempt to remove
these errors as part of their model explicitly. One such possibility would be to refuse
to perform de novo discovery on candidate regions containing homopolymer sites.
However, we feel such an approach is too coarse and explore a potential solution in

Chapter 5 that entails training a species-specific Nanopore basecalling model.

2.6.4 Inserting novel alleles into the PanRG

In Section 2.2.4 we described a somewhat convoluted process for inserting candidate
paths found by de novo discovery into a PanRG. This insertion approach is another
of the main computational bottlenecks we encountered due to the need to perform a

multiple sequence alignment.

Leandro Ishi has been working on a prototype version of make_prg (https://github
.com/leoisl/make_prg) that facilitates much faster insertion of novel variants into a
PanRG. When building a PRG, it additionally produces a customised data structure
that acts as a way of remembering how sequences were clustered and collapsed. In
addition, a prototype version (0.9.0) of pandora changes the way de novo discovery
produces candidate paths. Rather than outputting them as sequences flanked by the

maximum likelihood path sequence, it describes them in a custom format similar to
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VCEF, with the addition of information about the PRG site the novel variant occurs
in. Leandro has then implemented a new routine within make_prg - update - which
takes these custom data structures and attempts to add the novel variants directly into

the PRG, only requiring the relevant sites to be recalculated.

2.6.5 Insertions and deletions

A limitation we regret is not including indels in the simulations (Section 2.3). Eval-
uating indels can become quite complex, and we suspect fine-tuning our method to
produce high-quality indel calls will require a lot of time and care. On the other hand,
simulations are the ideal environment in which to begin this work, as gathering a truth
set of indels for empirical data is notoriously tricky. Thus, future work will begin
by including indels in these simulations and then moving to well-characterised indel

models for empirical data such as [152].

2.7 Availability of data and materials

The pandora software is available at https://github.com/rmcolg/pandora under an MIT
license. The de novo method described in this chapter is implement in the command

pandora discover.

The analysis pipeline for the simulations in Section 2.3 is available at https:
//github.com/mbhall88/pandora_simulations. The data used for the PanRG in
these simulations was obtained from https://pangenome.org/Escherichia_coli. The
Nanopore reads used in the simulations was downloaded from Nic Loman’s blog post
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/.

All data and materials for the empirical data analysis in Section 2.4 is described in
[10] and the corresponding GitHub repository https://github.com/igbal-lab-org/paper
_pandora2020_analyses.
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Chapter 3

Nanopore sequencing for M.

tuberculosis transmission clustering

3.0 Publication and collaboration acknowledgements

A manuscript comprising the work in this chapter and Chapter 4 is currently in
preparation. The DNA extractions and sequencing of the data in this chapter were
performed by: Marie Sylvianne Rabodoarivelo and Simon Grandjean Lapierre for
the Madagascar samples; Anzaan Dippenaar, Anastasia Koch, and Helen Cox for
the South African samples; Sara Goodwin at the Next Generation Genomics Core
within Cold Spring Harbor Laboratory performed the PacBio sequencing for the
Madagascar samples; and Sophie George, Grace Smith and Esther Robinson for the
English samples. Fan Yang-Turner of the Nuffield Department of Medicine, University
of Oxford, performed the variant-calling of all Illumina samples. All other work in

this chapter is my own.

3.1 Introduction

Mycobacterium tuberculosis is the causative agent of the infectious disease tuberculosis
(TB). It accounts for more deaths than any other pathogen each year [103] — as such,
the epidemiology of M. tuberculosis transmission is of the utmost importance. Whole-
genome sequencing (WGS) has established itself as a vital tool for identifying possible
transmission clusters and is being used by some leading public health agencies to
aid contact tracing [153, 154]. [llumina is considered the gold standard for this type
of WGS work. However, Illumina is not readily available in many high-burden TB
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settings and requires considerable time and resources to start and maintain. Nanopore
has shown itself to be adept in these types of settings, having been used to notable
effect during recent Zika [92] and Ebola [93, 94] outbreaks. Even in environments
where resource availability is not an obstacle, Nanopore’s rapid turnaround time has
been used for monitoring COVID-19 and informing infection control measures [155].
The time and resources required to set up Nanopore sequencing are far lower than
Illumina, but despite this, there has been little work done to assess its suitability for M.
tuberculosis WGS-based transmission clustering. The lack of work in this space likely
stems from the long-held belief that due to its higher sequencing error rate, Nanopore
is not capable of such fine-grained analyses. However, Nanopore has seen considerable
improvements in its accuracy in recent years [78], and studies using variant calls from
the technology are becoming increasingly common [85, 156]. In particular, Public
Health England (PHE) has investigated the use of Nanopore for the analysis of Shiga
toxin-producing E. coli and found it to be well-suited to the application [86].

In this chapter, we evaluate whether Nanopore sequencing can provide M. tubercu-
losis transmission clusters consistent with Illumina. To facilitate this investigation, we
collect a new dataset of 150 samples - from Madagascar, South Africa, and England -
sequenced on both Illumina and Nanopore platforms. We first assess Nanopore variant
calls and outline a filtering strategy to provide [llumina-level precision. Next, we use
these variant calls to cluster samples based on SNP (single nucleotide polymorphism)
distance thresholds and find Nanopore does not miss any samples from their expected
cluster. Finally, we confirm that reliable clustering of samples from a mixture of

[llumina and Nanopore modalities is achievable.

M. tuberculosis has a "closed" pan-genome; all species members share most (but
not all) gene content. In Chapter 2 we sought to improve variant calling of bacterial
pan-genomes with genome graphs. The work in that chapter concentrated on E. coli,
which has an "open" pan-genome. In the interest of understanding how such genome
graph methods can aid in closed pan-genomes, we additionally assess transmission
clusters produced from pandora variant calls. We construct two M. tuberculosis
reference graphs from different densities of population variation towards this end.
While the clustering from pandora does not perform to the standards of the single-
reference caller BCFtools, we gain many insights for the improvement of pandora

and the construction of genome graphs.
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3.2 Dataset

3.2 Dataset

The data used for the work in this chapter, and Chapter 4, are patient-derived M.
tuberculosis 1solates from culture. We gathered samples from Madagascar (118), South
Africa (83), and England’s National Mycobacteria Reference Service in Birmingham
(46), giving us a total of 247 samples. Each sample was sequenced on both Nanopore
and [llumina platforms. We aimed to perform all sequencing for a sample from a
single DNA extraction. Performing all sequencing on the same DNA extract ensures
that any variation identified between technologies for the same sample would be due to
differences in the sequencing platform and not in vitro evolution. As these samples are
not reference isolates, and we want to be able to compare both Illumina and Nanopore

to a "truth", we also sequenced 35 of the Malagasy isolates with PacBio.

3.2.1 Illumina sequencing

An extended description of isolate selection, DNA extraction, and sequencing methods

is provided in Section B.1.

Madagascar

Illumina sequencing was carried out on the HiSeq 2500 platform at the Wellcome
Trust Centre for Human Genetics, Oxford, and paired-end libraries were prepared

according to the manufacturer’s instruction.

England

[llumina sequencing was performed on a MiSeq instrument at Public Health England
(Birmingham) by Grace Smith, Esther Robinson and their team. Sample preparation

and sequencing methodology were as described previously [131].

South Africa

Paired-end genomic libraries were prepared using the Illumina Nextera XT library or
NEBNext Ultra TM II FS DNA Library Preparation Kits (Illumina Inc, San Diego, CA,
USA) according to the manufacturers’ instructions. Pooled samples were sequenced

on an [llumina HiSeq2500 or NextSeq500 instrument.
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3.2.2 Nanopore sequencing
Madagascar

Nanopore library preparation was carried out using the Oxford Nanopore Technology
(ONT) Ligation Sequencing Kit 1D (SQK-LSK108) and the Native Barcoding Kit 1D
(EXP-NBD103) according to the ONT standard protocols. One microgram of DNA
was used as input for each library. Multiplexed sequencing was performed by pooling
6-8 barcoded DNA samples. Prepared libraries were loaded onto an R9.4 flow cell and
sequenced on a Minion device with ONT MinKNOW software.

England

Nanopore sequencing was performed at the John Radcliffe Hospital, Oxford, by Sophie
George.

South Africa

Remnant stored DNA used for Illumina WGS from each isolate was retrieved from
storage and used for Nanopore library preparation. Per isolate, one microgram of
undigested DNA was prepared for Nanopore sequencing using the ligation sequencing
kit (SQK-LSK109). In addition, the native barcoding expansion kit (EXP-NBD104)
was used for multiplexing. The protocols for sequencing genomic DNA by ligation
and native barcoding were carried out according to the manufacturers’ instructions.
Multiplexed sequencing libraries consisted of 6-12 barcoded DNA samples, and all

libraries were sequenced using SpotON R9.4.1 flow cells on a MinION device.

3.2.3 PacBio sequencing

Thirty-five of the Malagasy samples were sequenced and processed at the Next Genera-
tion Genomics Core within Cold Spring Harbor Laboratory with PacBio Sequel 1M V2
SMRT cells. The circular consensus was generated via the SMRTIink graphical user
interface version 6.0.0.47841. Section B.1.2 outlines the full details of the sequencing

protocol.
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3.2.4 Data preprocessing

All Nanopore data for this project was basecalled and de-multiplexed using the
Nanopore proprietary software tool guppy (version 3.4.5). We used default parameters
for basecalling, and the only non-default parameter used for de-multiplexing was to

trim barcodes from the resulting sequences.

3.3 Genome assemblies for validating variant calls

A central component of the work in this chapter is validating the quality of variant
calls - without being biased by assuming short reads are the "truth". In Section 3.6 we
compare the precision and recall of Nanopore and Illumina variant calls. A necessary
component of such analysis is a reference genome for each sample. Thirty-five of the
Malagasy samples in the dataset were sent for PacBio Circular Consensus Sequencing
(CCS) in addition to the matched sequencing on both the Nanopore and Illumina
platforms. PacBio CCS produces so-called high-fidelity sequencing reads with a
base-level accuracy greater than 99.8% [157]. These reads have such a high accuracy
because each one is the consensus from multiple passes of the DNA enzyme around a
circular copy of the original double-stranded read. As the CCS reads are both long
and accurate, they are regularly used to produce high-quality de novo assemblies
and complete existing reference genomes [158, 159]. For the samples with available

PacBio data, we construct high-quality assemblies to use as reference genomes.

We chose samples with greater than 30x coverage across all three sequencing
technologies to produce high-quality assemblies. In total, this left us with 9 Malagasy
samples. There have been many new genome assembly methods produced since the
last known assessment of M. tuberculosis long-read assemblies [87]. As such, we
benchmarked five assemblers and chose the best for each sample. The reason for this
comparison is that different assembly algorithms can produce quite varied results de-
pending on sequencing technology used, species, or computational resource availability
[89, 160]. The assembly tools used were Canu (v2.0;[161, 162]), Flye (v2.8;[163]),
Unicycler (v0.4.8;[164]), HASLR (v0.8al;[165]), and Spades(v3.14.0;[166]). Sec-

tion B.2 presents the complete benchmark.

In summary, we use the unpolished PacBio-only assemblies produced by flye
as reference genomes for eight samples. Although we assembled nine samples, we

exclude one from further analysis due to significant contamination.
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3.4 Quality control

Before any variant calling, all samples were subjected to a quality control (QC) pipeline

to ensure all data used was of the highest quality.

The first step in this QC was decontamination of both Illumina and Nanopore
sequencing reads. We use the decontamination database from clockwork (https:
//github.com/igbal-lab-org/clockwork), which contains a wide range of organisms,
including viral, human, M. tuberculosis, Nontuberculous Mycobacteria (NTM), and
nasopharyngeal-associated bacterial genomes. Next, reads are mapped to the database
using bwa mem (Illumina;v0.7.17) [25] and minimap2 (Nanopore;v2.17) [41]. A read
is retained if it has any mapping to a non-contamination genome (M. tuberculosis)
in the database and is output to a final decontaminated fastq file. All other reads are

considered contamination.

All decontaminated fastq files were randomly subsampled to a depth of 60x (Il-
lumina) and 150x (Nanopore) using rasusa [147]. The reason for subsampling is to
limit large read sets that can drastically slow down later steps in the analysis process
and do not provide any benefit [160]. Any sample with a depth less than the maximum

threshold remains unchanged by this subsampling.

The last step in the QC pipeline is to assign lineages for each sample. A panel of
lineage-defining SNPs [167-169] is used in conjunction with a sample’s [llumina VCF
from Section 3.6.2 for the lineage assignment. At each lineage-defining position in
the sample’s VCF, we determine if the called allele is the same as the panel allele. If
it is, we add the full lineage that allele defines (e.g. 4.1.1) to a list of called lineages.
We abandon lineage assignment for a sample if more than one heterozygous call
is made at lineage-defining positions. After classifying all of a sample’s lineage-
defining positions, we then produce a lineage assignment based on the list of called
lineages. We use the most recent common ancestor of all the called lineages as
the lineage assignment. For example, if the called lineages are [4,4.2.3,4.2.5], the
lineage assignment would be 4.2. Finally, a mixed-lineage assignment is made if
more than one called lineage is from a different major lineage group. For example,
[4,4.2.3,4.2.5,3.2] would still be called lineage 4.2; however, [4,4.2.3,4.2.5,3.2,3.1]
would be deemed mixed.

The purpose of QC is to ensure that all samples used in later analyses are of the
highest quality. By highest quality, we mean all samples have perfectly matched
[llumina and Nanopore data, sufficient read depth of coverage on both sequencing

technologies (Illumina > 20 and Nanopore > 30), no contamination, and no evidence
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3.5 Construction of M. tuberculosis reference graphs

of a mixed M. tuberculosis population. Fifty-eight samples failed to pass our QC
measures, and 39 had non-matched Illumina and Nanopore data. One of the samples
that failed QC is part of the eight PacBio samples we generated assemblies for in
Section 3.3 - we exclude this sample from any further analysis. In total, we use the

150 samples that have passed QC in the remainder of this chapter and Chapter 4.

3.5 Construction of M. tuberculosis reference graphs

A parallel line of investigation in this chapter is to assess the benefit of pandora for
M. tuberculosis transmission cluster inference. In particular, we focus on its use of
prior knowledge about variation in a population and ability to genotype collections of
samples against a reference chosen to be maximally close to all samples (Section 1.3.3).
pandora requires a pan-genome reference graph (PanRG) in order to operate; for
the work in this chapter, we chose to construct a reference PanRG based on the M.
tuberculosis reference genome, H37Rv (accession NC_000962.3). We add variants
sampled from 15,211 global M. tuberculosis isolates gathered by the CRyPTIC con-
sortium [138]. We sampled at two different rates to evaluate how varying complexity

of PanRGs affect variant-calling precision and recall.

To ensure the reference PanRG is not biased towards a particular lineage, we first
split the global CRyPTIC VCF into separate lineage VCFs. We assign lineages for
each of the global samples using the same approach as in Section 3.4. In addition, we
include variant calls from 14 high-quality M. tuberculosis assemblies, representing
lineages 1-7 [61, 170]. The two PanRG complexities we construct were termed
"sparse" and "dense". From each lineage VCF, we took a random subsample of 50
and 200 samples and combined them into single sparse and dense VCFs, respectively.
Note, we use the same fixed random seed for the subsampling to ensure the sparse
PanRG is a subset of the dense PanRG. Finally, we filtered the resulting VCFs to
remove any positions with no alternate allele calls or that failed the filtering applied by
the CRyPTIC pipeline clockwork. One exception is that we did not remove positions

that overlap a genome mask of repetitive regions in H37Rv [120].

The reference PanRG that pandora uses is actually a collection of local PRGs
(loci). These loci are effectively partitions of the original genome; one can partition
based on any criteria. We chose to split the H37Rv genome based on the genomic
features outlined in the accompanying General Feature Format (GFF) file from the
NCBI database. We also retain the segments between the features - so-called intergenic

regions (IGRs). We combine genomic features with overlapping coordinates (e.g.,
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transcribed on opposite strands or different reading frames) into a single locus and
join any locus (feature or IGR) shorter than 500bp with its 3’ neighbour. By building
the reference PanRG in this manner, we ensure representation of every position in the
H37Rv genome amongst all loci. We then remove any locus with 30% or more of
its positions overlapping the H37Rv genome mask mentioned above [120]. Refer to

Section B.3 for a detailed description of how we chose this masking strategy.

We form the sparse and dense PanRGs by applying the variants from the respective
VCF to the template (reference) sequence of each locus; for each position in the VCF,
we infer the locus it corresponds to. We then take all (called) alternate alleles and
create a sequence for each; that is, the template sequence, with the reference allele
replaced by the alternate allele. Note, we disregard any indels longer than 20bp or that
span a locus boundary. Finally, all of these sequences are pooled into a single fasta file

for each locus.

The multi-sequence fasta file for each locus is then subjected to multiple sequence
alignment (MSA) using MAFFT (v7.471; [171]). We use the accurate global alignment
setting, G-INS-i [172], with default parameters, using the ginsi script provided with
MAFFT. The resulting MSA is then converted to a pandora-compatible PRG using
the make_prg program (v0.1.1; Section 1.3.1; [10]) with a maximum nesting level of
5 and minimum match length of 7. All of the local PRGs are then combined into a
single PanRG file and indexed with pandora using a k-mer size of 15 and window

size of 14. In the end, we have two PanRG files - sparse and dense.

3.5.1 Computational performance

An important consideration for the usability of any genomic method is the compu-
tational cost in terms of time and memory resources. The construction process just
outlined need only be run once, and then it can be used as a reference for subsequent
pandora usage. However, it is necessary to understand the time and resources required
in order to identify bottlenecks. Additionally, if the resource usage is high enough,
it may also limit who can build a reference graph. We outline the time and memory
requirements for each step of the graph construction in Table 3.1. All times are on a
single compute node with 32 CPU cores. We only report the MSA, make_prg, and
pandora index steps as these are necessary steps; those preceding use little time and

memory and can be done in several different ways.

The most notable computational usage value from Table 3.1 is the fact that the

sparse and dense MSAs require 209 and 301GB of memory, respectively. The exact

64



3.6 Variant calling and filtering assessment

Sparse Dense
Step CPU time (sec) Real time (H:m) Max. RAM (GB) CPU time (sec) Real time (H:m) Max. RAM (GB)
MSA 138576 1:16 209 445284 3:56 301
Make PRG 3746 0:04 0.9 4269 0:05 0.9
Index 142 0:01 1.5 361 0:01 1.7

Table 3.1: Computational time and memory (RAM) usage for the main steps of building a M.
tuberculosis reference graph. Sparse and Dense refer to two different densities with respect to the number
of variants used. All steps were run on a single compute node with 32 CPU cores. MSA=multiple
sequence alignment;PRG=population reference graph.

cause of this high memory usage is not precisely known because we run the MSA of
all loci in parallel and do not receive memory usage for each CPU core. However,
MSA memory usage is known to scale exponentially with the number of sequences
[173], and the sparse and dense loci with the highest number of sequences had 180 and
335 sequences, respectively. Therefore, we could reduce memory usage by placing
a cap on the number of sequences in a locus. In addition, there are memory-saving
options within MAFFT that could also be used, along with reducing the number of

CPU cores, at the cost of increasing the runtime.

3.6 Variant calling and filtering assessment

One approach to determining genetic distance is to count the number of SNPs that
differentiate two samples. These distances enable the identification of possible trans-
mission clusters based on some predefined number of expected SNPs. Filtering of
variant calls is integral to creating trusted variant calls on which to base such distances.
However, there are many such filters used for Illumina genomic data, and they can
produce inconsistent results [124]. As our focus is on whether Nanopore can be used
for public health applications, we use the PHE Illumina pipeline - COMPASS [174] -

as a comparison.

Before attempting to define SNP thresholds for Nanopore data, we explore the
impact of a range of filtering parameters for both bcftools and pandora. The aim of
this filter calibration is ultimately to determine if SNP-calling precision for Nanopore

is comparable with Illumina, and if not, how close can we get it.

We evaluate the resulting, filtered SNP calls against the COMPASS Illumina SNP
calls for the seven samples with high-quality PacBio assemblies (see Section 3.3) to
ensure no bias for [llumina or Nanopore. For others interested in investigating variant
filters for Nanopore data, we also hope this calibration acts as a good starting point for

deeper analysis.
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3.6.1 Validating variant calls

We evaluate the precision and recall of SNPs using the method outlined in Section 2.4.3
- varifier - with a flank length of 100bp [175]. The samples we evaluated are those
seven with PacBio assemblies that passed QC. As a truth genome for each, we use the
unpolished f1ye PacBio assembly, along with a mask for low-quality regions. These
low-quality regions were identified by aligning the sample’s [llumina reads to the
assembly with bwa mem and flagging any position with less than 10 reads mapping to

it or less than 90% agreement (see Section B.2.2).

3.6.2 Illumina variant calling

Fan Yang-Turner performed the Illumina variant calls (see Section 3.0) with the
COMPASS pipeline used by PHE. Briefly, reads are mapped to H37Rv, and samtools
mpileup is used to identify SNPs [30]. SNPs are filtered based on the following
criteria: 1) must have at least five high-quality supporting reads, ii) must have at least
one read in each direction, iii) 75% of reads must be high-quality, iv) the diploid
genotype must be homozygous, v) fraction of reads supporting the major allele must
be at least 90%. In addition, any SNPs falling within masked sites - as defined by
aligning the H37Ryv to itself and identifying repetitive regions [120] - are excluded.

This mask is the same as in Section 3.5.

3.6.3 Nanopore variant calling: BCFtools

As there is no standard variant caller used for M. tuberculosis Nanopore data, we chose
to use BCFtools (v1.11; [29]), as it has a long history of use in bioinformatics and
is one of the main variant callers used for [llumina data. It is readily available to all
users and is much more user-friendly than other available tools, some of which have
only be trained on Human data [84], or require the raw Nanopore data [80]. Another
main reason for its use is that it is the updated form of the samtools pipeline used by

COMPASS and thus provides a somewhat "fair" comparison.

Nanopore reads were aligned to H37Rv using minimap2, with options to produce
SAM output containing no secondary alignments. The resulting SAM file is provided
as input to the bcftools subcommand mpileup with the option to skip indels. The
resulting pileup is then used to call SNPs with bcftools call using the multiallelic

caller with a haploid model and an option to skip indels.
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There are many fields in the resulting VCF relating to the information about the
reads that support each position. After a thorough examination of how filtering based
on each field impacts precision and recall, we settled on five filters for bcftools. First,
we filter out positions with a quality (QUAL field) score less than 60. The quality
is a log-scaled probability for the assertion made by the alternate allele. Second, a
read position bias (RPB) of at least 0.05 is required. RPB indicates a bias for support
from the ends of reads, as they are usually low quality. Third, we filter out positions
with a segregation-based metric (SGB) less than -0.5. SGB is a measure of how read
depths across alleles match expected depths. Fourth, variant distance bias (VDB) less
than 0.002 is filtered out. VDB measures whether a variant’s position is randomly
distributed within the reads that support it or biased (e.g. near the start). Fifth, the
fraction of reads supporting the called allele (FRS) must be 90% or more.

Figure 3.1 shows how the addition of each of these filters impacts precision
(proportion of calls that are correct) and recall (proportion of variants found) for
bcftools compared with COMPASS (Illumina). The trade-off between precision and
recall is dependent on the question one is trying to answer. For transmission clustering,
we place greater importance on precision as we seek to ensure the SNPs used are of
the highest quality. The consequence of this is we miss some variants - compared to
COMPASS.

The filtering we use for the remainder of the transmission inference work is to
apply all five filters mentioned above. These filters, represented by the yellow box in
Figure 3.1, lead to median precision and recall of 99.94% and 84.26%, respectively
for the seven validation samples with PacBio assemblies. This is compared to the
COMPASS median precision and recall values of 100% and 92.58%, respectively.

In summary, we produce Nanopore variant calls with equivalent precision to

Illumina but with lower recall.

3.6.4 Nanopore variant calling: Pandora

When assessing the best filters for increasing the precision of variant calls from
pandora, we are also interested in determining whether PanRG density has a notice-
able impact on performance. Therefore, we use the sparse and dense PanRGs from

Section 3.5 and look at the precision and recall these produce for the same filters.
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Fig. 3.1: Precision (left) and recall (right) of SNPs for COMPASS (red) and a selection of bcftools
filters. #nofilter (blue) is bcftools with no filtering of variants. QUAL (purple) is bcftools SNPs
with a quality score of 60 or more. +RPB+VDB+SGB (grey) indicates bcftools variants with the INFO
field values > 0.05, > 0.002, and < —0.5, respectively, plus QUAL. +FRS (yellow) shows bcftools
SNPs with all previous filters, plus only SNPs where the fraction of reads supporting the variant is at
least 90%. Note: the precision plot y-axis was cut causing some #nofilter points to be hidden.
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Single-sample

For each sample, we discover de novo variants using the method outlined in Sec-
tion 2.2.4 using the discover command of pandora (version 0.8.0). We use default
parameters, except limiting the number of novel variants from a candidate region to
10. Novel variants are added to the original MSAs from Section 3.5 with the -add
routine in MAFFT [143]. Next, make_prg is run on the subsequent alignments, and
the resulting updated PanRG is indexed with pandora. Finally, the map routine of
pandora genotypes a sample’s reads and produces a VCF. To be able to compare the
pandora VCEF to the truth assemblies, we instruct pandora to output coordinates with
respect to the H37Rv reference sequence for each locus. Running pandora in this way
leads to some alleles being quite long and redundant, so we use bcftools norm to

trim unused alleles and reduce variants down to their most succinct representation.

We apply four filters to the pandora variant calls. First, there must be at least 3
reads supporting the called allele. Second, we keep positions with a strand bias of at
least 1%, which is the lowest depth on the forward or reverse strand divided by the
total depth. This is a somewhat different definition of strand bias to that used in human
genetics [176]; our definition is testing whether there are significantly more reads on
one strand. For example, in this definition, if the forward and reverse strand have
read depths of 1 and 9, respectively, the strand bias is 10%. Therefore, this example
position would not be filtered out. Third, a genotype confidence score no less than 5.
This score is the difference between the log-likelihoods of the called allele and the
next most likely allele. Fourth, the fraction of reads supporting the called allele (FRS)

must be at least 90% - calculated the same way as in Section 3.6.3.

The results of incrementally applying these filters, along with no filters and COM-
PASS, are shown in Figure 3.2. Of the two PanRGs used, pandora’s best median
precision (100%) is with the sparse PanRG and all filters applied. With all filters, the
sparse PanRG leads to a median recall of 71.99%. When compared to the COMPASS
median precision and recall values of 100% and 92.58%, respectively, pandora pro-
duces Nanopore SNP calls with equivalent precision to Illumina, but with 20.59%
less recall (SNPs and indels are assessed in Section B.4). Part of the recall disparity
between pandora and COMPASS is explained by the masking of loci in the reference
graph (see Section 3.5 and Section B.3). Despite this large difference in recall, we
chose to use all of the filters outlined above because, as mentioned earlier, we value
Nanopore precision more than recall for this transmission cluster work - our genomic

epidemiologist collaborators in Oxford/PHE, with whom we are doing this, prefer
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Fig. 3.2: Precision (bottom) and recall (top) of SNPs for COMPASS (purple) and pandora with sparse
(red) and dense (blue) PanRGs. The pandora boxes start with no filters on the left, with each box moving
to the right adding a filter to the previous box. The COMPASS box is a reference to the precision and
recall of Illumina variant calls. Linear PRG density refers to the fact that COMPASS uses a single, linear
reference genome as opposed to pandora, which uses a genome graph. The black points refer to single
data points for the seven samples used. MIN_COV=minimum depth of coverage;MIN_SB=minimum
strand bias;MIN_GT_CONF=minimum genotype confidence score;MIN_FRS=minimum fraction of
read support.

precision. (We note that others argue for allowing more SNPs and are happy to deal
with the higher SNP error rates [124].)

In nearly every filtering combination, the sparse PanRG lead to higher recall and
precision, albeit marginally. As a result, the remaining work featuring pandora in this
chapter will use the sparse PanRG given the increased computational cost of using the
dense PanRG (Section 3.5.1 and Section 3.6.5), without any benefit for precision and
recall.

Multi-sample

pandora’s map routine infers a consensus sequence for a single sample and outputs
variant calls with respect to that consensus. However, pandora also has a multi-
sample counterpart - the compare command. The pandora compare routine infers a
single reference sequence that is maximally close to all samples. It outputs a locus
presence/absence matrix, along with a VCF of genotypes for all samples with respect

to the inferred reference sequence (see Section 1.3.3 for a description of the pandora
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compare method). As pandora compare was designed for analysing collections
of (potentially divergent) samples, we assess its ability to describe M. tuberculosis

transmission clusters.

The process for calling variants using pandora compare is first to aggregate the
novel variants discovered for each sample in Section 3.6.4. Then, instead of creating
an updated PanRG for each sample, we use the aggregated novel variants to update
the MSAs and PRGs as in Section 3.6.4. In the end, we have a PanRG that has novel
variants from all samples contained within it, rather than the PRGs used by pandora
map, which only have the novel variants for a single sample. Next, we run pandora
compare using these updated sparse and dense PanRGs and filter the resulting VCF as
per Section 3.6.4.

As a result of its design, it is not possible to provide pandora compare with a
reference to base VCF coordinates on (as in Section 3.6.4). Consequently, we cannot
assess the precision and recall for the seven samples as above. However, we have
evaluated the accuracy of pandora compare in Section 2.4; therefore, in this chapter,

we assess its usefulness for calculating genetic relatedness.

3.6.5 Computational performance
Single sample methods

In addition to the quality of the variant calls, the computational cost of producing
them is also important. The CPU time and maximum memory usage for performing
the Nanopore variant calling is shown in Figure 3.3. pandora’s performance is
broken down into the individual stages, while bcftools is represented by a single
job (pileup_nanopore). The median maximum memory for bcftools was 8.2GB,
although the maximum was as high as 58.5GB. This is compared to the highest
pandora step - updating the MSAs with novel variants - with a median maximum
memory usage of 9.7GB and 13.3GB for the sparse and dense PanRGs respectively.
The highest memory usage for pandora was 18.6GB during the updating of MSAs,
nearly 40GB lower than the peak of bcftools. However, we note that the peak
memory usage for pandora’s sparse and dense PanRG construction (Section 3.5.1)
was 209 and 301GB, respectively, although this is a one-off cost and does not need to

be run for each sample.

The median CPU time for bcftools was 35129 seconds, or 9.75 hours, with
the longest run coming in at 138364 seconds (38.4 hours). To be able to compare
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Sparse Dense
Step CPU time (sec) Real time (H:m) Max. RAM (GB) CPU time (sec) Real time (H:m) Max. RAM (GB)
Update MSA 114677 1:01 38 130221 1:15 37
Make PRG 4700 0:05 1.2 5403 0:06 1.1
Index 538 0:01 2.1 1224 0:02 24
Compare 90486 4:25 54 162294 6:04 6.1

Table 3.2: CPU and wall clock time, and memory (RAM) usage for the main steps of running
pandora’s multi-sample routine compare. Sparse and Dense refer to two different densities with
respect to the number of variants used. All steps were run on a single compute node with 32 CPU cores.
MSA=multiple sequence alignment; PRG=population reference graph.

bcftools with pandora as a whole, we can sum the median CPU time over each step,
which gives 21704 and 53194 seconds, or 6.0 and 14.7 hours, for the sparse and dense
PanRGs respectively. As with the memory usage, the longest runtime component of
the pandora pipeline was updating the MSAs with de novo variants. Note, bcftools’
mpileup command is not parallelised, while pandora’s steps are, so the wall clock

time for the two is dependent on the number of CPU cores available.

Multi sample method

The time and memory of pandora compare is not directly comparable to bcftools
and pandora map as it runs on all samples at the same time. Additionally, the novel
variant discovery phase of pandora map for all samples technically contributes to
the overall runtime of pandora compare. As the performance of this discovery step
has already been reported, we outline the remainder of the pandora compare steps
in Table 3.2. In total, the remainder of the sparse and dense PanRG steps took 58.4
and 83.1 CPU hours, respectively. The actual wall clock time for these steps was 5.5
and 7.3 hours using 32 CPUs. Maximum memory usage occurred while updating the
MSAs and peaked at 38 and 37GB for the sparse and dense PanRGs, respectively.

3.6.6 Summary

In summary, Figure 3.4 shows that our selection of filters for Nanopore variant callers
provides precision on-par with Illumina. However, this precision comes at the cost
of a loss in recall. Additionally, both bcftools and pandora have considerable

computational costs compared to what is typical for [llumina data.

The remainder of this chapter explores how the SNP calls from Nanopore can be
used to calculate distances between samples and define putative transmission clusters
from these distances. To recapitulate, we are using SNP calls from bcftools (per-

sample), pandora map (per-sample; sparse PanRG), and pandora compare (multi-
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sample; sparse PanRG). We are especially interested in how similar the pairwise
distances are between samples and sequencing modality and whether the same distance

thresholds used for [llumina can also be used for Nanopore.

3.7 Pairwise SNP distance comparison

When attempting to infer transmission clusters, one approach defines a SNP distance
threshold and says that any genomes within this distance of each other are clustered
(possible transmissions) [117]. It follows that the SNPs used must be trusted. Having
shown we can achieve SNP precision on-par with Illumina using Nanopore data (see
Section 3.6), we investigate the pairwise SNP distance between samples produced
by both Illumina and Nanopore sequencing technologies. The intention here is to
determine whether the thresholds typically used for [llumina data can also be used for

Nanopore, or whether adjustments are required.

To determine the distance between samples, we first generate sample consensus
sequences. We do this for each variant-caller: COMPASS (Illumina), bcftools
(Nanopore), and pandora map (Nanopore) (not pandora compare - see below). A
consensus sequence is obtained by applying the calls from a given VCF (from Sec-
tion 3.6) to the M. tuberculosis reference genome. We nullify (mark as N) any positions

where: 1) the position failed filtering, i1) the reference genome position does not appear
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in the VCF file (except for pandora map), iii) the called genotype is null, or iv) the

position is within the reference genome mask.

Next, all sample consensus sequences for a variant-caller are joined into a single
FASTA file and a pairwise distance matrix is calculated using snp-dists (version
0.7.0) [177]. In the case of pandora compare (multi-sample mode), we cannot follow
this approach for generating a consensus sequence and distance matrix due to the
inability to translate the coordinates from a graph to a linear reference. However,
as pandora compare selects a cohort-specific reference, it effectively allows one to
go directly to a distance matrix. Therefore, we generate a genotype array instead
of a consensus sequence by extracting the called genotype for each sample at each
site (VCF entry). Where a site has failed a filter, we use a genotype value of -2. To
calculate the distance between two samples, we compare their genotype arrays; if
either sample’s genotype is < 0 (i.e., null or filtered) or the genotypes are the same, we
record a distance of 0, otherwise 1. The sum of these comparisons for each genotype

is the distance between the two samples.

The pairwise SNP distance relationship is presented in Figure 3.5. For a given pair
of samples, we plot their SNP distance, based on the COMPASS (Illumina) variant calls
(x-axis), against the SNP distance for the same pair, based on the Nanopore variant
calls (y-axis). All pairwise comparisons between a sample and itself are absent from
the visualisation, and only a single value was used for each pair (i.e., we keep samplel
vs. sample2 and discard sample2 vs. samplel as they are the same). RANSAC Robust
Linear Regression [178], as implemented in the Python library scikit-learn [179],
was used for determining a linear equation and line-of-best fit for the relationship

between pairwise Illumina and Nanopore SNP distance.

If the same thresholds used for Illumina can also be used for Nanopore, we would
expect the distances to be the same and the bulk of the points in the plot to fall on the
dashed, diagonal identity line in Figure 3.5. What we see instead is a linear relationship
that falls under this identity line - for all Nanopore variant callers. Given the filtered
Nanopore SNP calls made by bcftools and pandora have lower recall than [llumina

(Section 3.6.6), this is expected, as they miss some SNPs found by Illumina.

We highlight one important observation in the zoomed inset of Figure 3.5. As
SNP thresholds used for M. tuberculosis are generally well below 100 [123], it makes
more sense to base SNP distance relationships on those samples that are "close".
And indeed, when we zoom in on pairs of samples within 100 (Illumina) SNPs of
each other, we see an association that is closer to the identity line. Fitting a linear

model to this close subset of pairwise distances yields a relationship defined by the
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distance is < 100.

equation y = 0.806x + 0.593 for bcftools, y = 0.575x + 13.544 for pandora map,
and y = 0.342x 4 0.765 for pandora compare. Replacing x with an Illumina SNP
threshold gives the (predicted) equivalent Nanopore SNP threshold based on these
relationships. For example, at an Illumina SNP distance of 12, the linear equation

would predict a corresponding bcftools Nanopore SNP distance of 10.

In the middle-left of the inset in Figure 3.5 a small cluster of pandora map (blue)
points can be seen. These have an approximate pairwise Nanopore distance of 100,
but - 10 for Illumina. Upon further investigation, the cause of the large discrepancy in
the distance was due to pandora map failing to identify (and filter) some heterozygous
calls. Two samples, in particular, occur as one member in all of the major outlying
pairs. 94% of the false-positive differences leading to the large Nanopore distances
occur at positions that are filtered due to evidence of heterozygosity in COMPASS.
That is, in the Illumina consensus sequence, these positions are ignored due to filtering
and do not count as a difference. However, pandora did not have sufficient read depth
on both alleles to trigger the FRS filter (Section 3.6.4) - leading to a passing variant

call that differs from the sample it is being compared with.
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The relationship between [llumina and Nanopore distances is indeed linear for all
three variant-calling methodologies. While the relationship is not identical, we will
attempt to use a linear model fit to the relationship to infer what Nanopore SNP
distance threshold is likely to align with a given Illumina threshold for defining

putative transmission clusters.

3.8 Nanopore transmission clustering

While the relationship between Illumina and Nanopore pairwise SNP distance is
enlightening, ultimately, the fundamental question is: do Nanopore SNPs lead to
transmission clusters consistent with those obtained with Illumina SNPs? To answer
this question, we compare Illumina- and Nanopore-based clusters for four Illumina
SNP thresholds.

Selecting a SNP threshold to infer transmission clusters from has seen a variety
of values recommended [123]. As we seek to show concordance of Nanopore data
with PHE’s Illumina-based strategy, we opt to investigate Illumina threshold values
0, 2, 5, and 12. PHE define two cases as clustered if they have a SNP distance < 12
as "12 SNPs represents the maximum SNP difference between 2 isolates for which
epidemiological links have previously been identified [117] and is a conservative
measure for reporting isolate relatedness" [153]. Five was likewise selected as Walker
et al. [117] found it to indicate membership in a recent transmission chain. Finally,
threshold values 0 and 2 were chosen to provide insight into the level of granularity
possible and are of clinical interest in some settings (personal correspondence with Tim
Peto). For each of these four thresholds, we investigate what corresponding Nanopore

SNP distance threshold yields the most similar clustering.

3.8.1 Transmission cluster similarity

We use the distance matrices from Section 3.7 to infer transmission clusters. To cluster
samples, for a given SNP threshold 7, we use pairs of samples with a distance < ¢
to define a graph, G = (V, E), where samples (nodes, V) are connected by weighted
edges (E), with the weight of an edge indicating the distance between the two samples
it connects. We define clusters as the set of connected components {C;,C;...Cx} € G,
where N is the number of clusters. That is, a cluster (connected component), C;, is a

subgraph of G where a path exists between any two samples in C;, but no path exists
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to any samples in the rest of G. With this definition, all clusters have a minimum of

two members.

To assess how closely Nanopore SNP-based clustering approximates Illumina
SNP-based clustering, we adapt a similarity measure on sets; the Tversky Index [180].
We define the Illumina clustering as G and the Nanopore clustering as H. We are
interested in being able to quantify the recall and precision of the Nanopore clustering
with respect to [llumina. In this sense, recall describes the proportion of clustered
samples in G clustered with the expected (correct) samples in H. Likewise, precision
in this context tells us when extra samples are added to existing clusters by H or when

clusters in G are joined in H.

In order to be able to define precision and recall when comparing two clustering

graphs G and H, we define the Tversky Index

‘C GﬁCnH}
‘CnGﬂCnH}+(X!CnG Cot| + B|Cor — Cu gl

TI(n,G,H) (3.1)

where C,, ¢ is the cluster in G that sample 7 is a member of. When ov =1 and f =0
in Equation 3.1, we get a metric analogous to recall - as described above. Therefore,

we define recall, R, for a single sample n as

|Cr.cNCu | |CuenCnl

(3.2)
‘CnGﬂCnH}+|CnG CnH| |C7

R(n,G,H) =

When a =0 and B = 1 in Equation 3.1, we get a metric analogous to precision.

As such, we define precision P, for a single sample 7 as

‘CnGanH| ‘Cn,Gan,H|
CocNCup| +[Coti —Cugl |G,

P(n,G,H) = (3.3)

With these definitions for a single sample, we can assess the recall and precision
of the Nanopore clustering, H, with respect to the Illumina clustering, G, by averaging
each metric over all samples in G. This gives us the Sample-Averaged Cluster Recall
(SACR)

YV R(n,G,H)

SACR =
Vel

(3.4)

where V; is the set of samples (nodes) in G (Illumina graph). Likewise, we define

the Sample-Averaged Cluster Precision (SACP) as
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Y,¢P(n,G,H)

SACP =
Vel

(3.5)

SACR states, on average, what proportion of the samples clustered together in
G are also clustered together in H (Nanopore) - it is a measure of how many true
positives Nanopore retains. Inversely, SACP states, on average, what proportion of the
samples clustered together in H are also clustered together in G - it is a measure of

how many extra samples Nanopore adds to clusters.

However, SACR and SACP do not inherently account for when H has clusters
containing only samples deemed non-clustered (singleton) in G. In order to quantify
any extra clustering by H, we establish the Excess Clustering Rate (XCR) as the
proportion of singletons (disconnected nodes) in G that are connected in H. We define
XCR as

1SG — S|
Ned

where S and Sy are the sets of singletons in the respective graphs.

XCR = (3.6)

We assess the cluster similarities using the Python programming language with the
networkx library [181]. For a given threshold, we create the Illumina clustering
(graph), G, and the Nanopore clustering, H - as described above - and use these to cal-
culate the SACR, SACP, and XCR using Equation 3.4, Equation 3.5, and Equation 3.6
respectively.

An illustrated example of cluster similarity metrics

Section 3.8.1 outlines three metrics - SACR, SACP and XCR - for evaluating the
similarity between two different strategies for transmission clustering. In order to
provide the reader with greater intuition for the purpose of each metric, we present an
illustrated example in Figure 3.6.

We take Figure 3.6a to be the truth clusters and Figure 3.6b to be test clusters.
These are akin to Illumina and Nanopore clusters, respectively, in Section 3.8.1. The
individual recall and precision values (defined in Equation 3.2 and Equation 3.3) for
each sample in Figure 3.6a are shown in Table 3.3. SACR and SACP (defined in
Equation 3.4 and Equation 3.5) are sample-averaged, so their values for this example

are 0.82 and 0.83 respectively.
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(a) Truth clusters (b) Test clusters

Fig. 3.6: Tllustrative examples of transmission clustering. a) represents truth clusters, while b) is
clustering from some "test" method we would like to compare to a. The nodes represent samples with
the numbers on the edges connecting them indicating the distance between those two samples. The red
nodes indicate samples with a clustering disparity between the two clusterings. Note, we do not show
singletons (disconnected nodes) - e.g., J is missing from (b).

To highlight the objective of SACR, we use the truth and test clusters containing
the sample F. Samples F', G, H and I are shared between both, but J is missing from
the test cluster. To calculate the individual recall for F, we take the intersection size
of the truth and test clusters it exists in and divide it by the size of the truth cluster -
% = 0.8. We do the same for the precision of sample D, except we divide by the size

of the test cluster - giving % =0.66.

The relevance of the XCR metric is best exemplified by the test cluster containing
samples L and M. As we calculate SACR and SACP for all samples in the truth clusters,
these two samples would be ignored. However, they are samples that - according to
the truth - should not be part of any cluster (singletons). Therefore, SACR and SACP
cannot capture these extra clusterings if they do not contain clustered truth samples.
XCR covers this limitation and is the proportion of singletons in the truth that are
clustered in the test (see Equation 3.6). As Figure 3.6 does not show singletons, let us
pretend there are 20 singletons in the truth (including samples L and M). This would
give an XCR of 2/20 =0.1.

Summary

To summarise, for each sample in an Illumina-defined cluster, SACR is the proportion

of samples in its [llumina cluster also in its Nanopore cluster - averaged over all
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sample recall precision

A 1.0 1.0
B 1.0 1.0
C 1.0 1.0
D 1.0 0.66
E 1.0 0.66
F 0.8 1.0
G 0.8 1.0
H 0.8 1.0
I 0.8 1.0
J 0.0 0.0

Table 3.3: Cluster recall and precision results for each sample in Figure 3.6.

samples. SACP is the proportion of samples in its Nanopore cluster also in its Illumina
cluster - averaged over all samples. SACR indicates whether samples have been missed
from Nanopore clustering (false negatives), and SACP reveals if additional samples
are being added to Nanopore clusters (false positives). One shortcoming of SACR and
SACP is that they do not account for when the Nanopore clustering contains clusters
where no member of the cluster is part of an Illumina cluster. To that end, XCR 1is
the proportion of Illumina non-clustered (singleton) samples added to a cluster by
Nanopore. For example, an XCR value of 0.1 would indicate that 10% of non-clustered
samples were part of a cluster in the Nanopore clustering. We provide an illustrated,

worked example of these metrics in Section 3.8.1.

Of the metrics outlined above, our primary focus is SACR, as samples missed from

clusters are of particular concern for public health agencies.

3.8.2 Evaluation of transmission clusters

The clustering produced for the four Illumina clusters of 0, 2, 5, and 12 are shown in
Figure 3.7, Figure 3.8, Figure 3.9, and Figure 3.10, respectively. We discuss the results

for each Nanopore variant caller below.

BCFtools

For the four Illumina SNP distance thresholds of interest - 0, 2, 5, and 12 - the
corresponding bcftools thresholds we use are 0, 2, 5, and 11. We chose to forego
the model-based predicted thresholds and instead use the hand-picked ones based on a

threshold parameter-sweep outlined in Section B.5.

81



Nanopore sequencing for M. tuberculosis transmission clustering

Threshold SACR SACP XCR

0 1.0 1.0 0.015 (2/137)
2 1.0 0.966 0.008 (1/128)
5 1.0 0.949  0.057 (7/122)

12 (11) 1.0 0.845 0.031 (3/97)

Table 3.4: Summary of bcftools clustering metrics for four (Illumina) SNP distance thresholds. The
threshold(s) in parentheses are the Nanopore equivalent threshold used. The fractions in parentheses for
XCR indicate the underlying numbers. SACR=sample-averaged cluster recall; SACP=sample-averaged
cluster precision; XCR=excess clustering rate.

The bcftools clustering results are summarised in Table 3.4 for all four SNP
thresholds analysed. Of note, bcftools achieves a SACR of 1.0 at all thresholds -

meaning Nanopore does not miss any samples from their correct clustering.

For the SNP threshold of O (Figure 3.7; top-right), bcftools perfectly recreated
the Illumina clusters, with the addition of a cluster of two samples that were singletons
(not clustered) in [llumina. At the SNP threshold of 2 (Figure 3.8; top-right), bcftools
clustering only differed from Illumina by the addition of one singleton to a cluster of
three (cluster 1). SNP threshold 5 (Figure 3.9; top-right) had the highest XCR (0.057)
due to two new singleton clusters of size 2 and 3 and the addition of 2 singletons to a
cluster of 5 (cluster 1). The lowest SACP was at threshold 12 (Figure 3.10; top-right)
due to the joining of clusters 1 and 2, and clusters 7 and 8, and with three singletons

being added to existing clusters.

Pandora single-sample

For pandora single-sample (pandora map), we also chose to use the hand-picked
SNP distance thresholds from analysis in Section B.5. These are 16, 18, 18, and 27 for
the Illumina thresholds of interest 0, 2, 5, and 12, respectively. The clustering results

for each of these thresholds are summarised in Table 3.5.

At no threshold was pandora map clustering able to achieve perfect SACR, SACP
or XCR. In particular, all thresholds had an SACP value less than 0.69 and an XCR
greater than 0.11. These results outline the fact that many singletons were erroneously
clustered, and many clusters merged. In large part, this is expected due to the much
wider spread of distances along the y-axis, in the inset of Figure 3.5, when comparing
pandora map to bcftools or pandora compare. Although the SACR values are not

as low as the SACP, we place a higher value on them.
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Fig. 3.7: Agreement of Illumina and Nanopore transmission clustering at an Illumina SNP threshold of
0. The expected (Illumina) clusters are shown in the top-left panel. The other panels show the Nanopore-
based clustering from bcftools (top-right), pandora map (bottom-left), and pandora compare
(bottom-right), with the title indicating the SNP threshold used for clustering. Nodes are coloured
and numbered according to their Illumina cluster membership. Samples not clustered (singletons) in
Illumina are represented as white boxes with red stripes and are named "S". Clusters are horizontally
aligned and connected with black lines. Where a sample that Illumina clustered is not clustered by
Nanopore, the sample retains its original colour and number but is represented as an unconnected node
on the top row of the plot. Each Nanopore panel has a legend showing the SACR, SACP, and XCR value
with respect to the Illumina clustering. SACR=sample-averaged cluster recall; SACP=sample-averaged
cluster precision; XCR=excess clustering rate.
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Fig. 3.8: Agreement of Illumina and Nanopore transmission clustering at an Illumina SNP threshold of
2. The expected (Illumina) clusters are shown in the top-left panel. The other panels show the Nanopore-
based clustering from bcftools (top-right), pandora map (bottom-left), and pandora compare
(bottom-right), with the title indicating the SNP threshold used for clustering. Nodes are coloured
and numbered according to their Illumina cluster membership. Samples not clustered (singletons) in
Illumina are represented as white boxes with red stripes and are named "S". Clusters are horizontally
aligned and connected with black lines. Where a sample that Illumina clustered is not clustered by
Nanopore, the sample retains its original colour and number but is represented as an unconnected node
on the top row of the plot. Each Nanopore panel has a legend showing the SACR, SACP, and XCR value
with respect to the Illumina clustering. SACR=sample-averaged cluster recall; SACP=sample-averaged

cluster precision; XCR=excess clustering rate.
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Fig. 3.9: Agreement of Illumina and Nanopore transmission clustering at an Illumina SNP threshold of
5. The expected (Illumina) clusters are shown in the top-left panel. The other panels show the Nanopore-
based clustering from bcftools (top-right), pandora map (bottom-left), and pandora compare
(bottom-right), with the title indicating the SNP threshold used for clustering. Nodes are coloured
and numbered according to their Illumina cluster membership. Samples not clustered (singletons) in
Illumina are represented as white boxes with red stripes and are named "S". Clusters are horizontally
aligned and connected with black lines. Where a sample that Illumina clustered is not clustered by
Nanopore, the sample retains its original colour and number but is represented as an unconnected node
on the top row of the plot. Each Nanopore panel has a legend showing the SACR, SACP, and XCR value
with respect to the Illumina clustering. SACR=sample-averaged cluster recall; SACP=sample-averaged
cluster precision; XCR=excess clustering rate.
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Fig. 3.10: Agreement of Illumina and Nanopore transmission clustering at an Illumina SNP threshold of
12. The expected (Illumina) clusters are shown in the top-left panel. The other panels show the Nanopore-
based clustering from bcftools (top-right), pandora map (bottom-left), and pandora compare
(bottom-right), with the title indicating the SNP threshold used for clustering. Nodes are coloured
and numbered according to their Illumina cluster membership. Samples not clustered (singletons) in
Illumina are represented as white boxes with red stripes and are named "S". Clusters are horizontally
aligned and connected with black lines. Where a sample that Illumina clustered is not clustered by
Nanopore, the sample retains its original colour and number but is represented as an unconnected node
on the top row of the plot. Each Nanopore panel has a legend showing the SACR, SACP, and XCR value
with respect to the Illumina clustering. SACR=sample-averaged cluster recall; SACP=sample-averaged
cluster precision; XCR=excess clustering rate.
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Threshold SACR SACP XCR

0(16) 0.846 0.628 0.146 (20/137)

2 (18) 0.909 0.688 0.141 (18/128)

5(18) 0.857 0.643 0.115(11/122)

12 (27) 0.852 0.621 0.124 (12/97)
Table 3.5: Summary of pandora single-sample clustering metrics for four (Illumina) SNP distance
thresholds. The threshold(s) in parentheses are the Nanopore equivalent threshold used. The fractions

in parentheses for XCR indicate the underlying numbers. SACR=sample-averaged cluster recall;
SACP=sample-averaged cluster precision; XCR=excess clustering rate.

For the (Illumina) SNP threshold of O (Figure 3.7; bottom-left), pandora map
failed to recreate cluster 4. In addition, clusters 1 and 2 were merged with a singleton
added, and four new clusters of singletons (one with 9 members) we created. At
the SNP threshold of 2 (Figure 3.8; bottom-left), pandora map clustering failed to
recreate cluster 7, joined clusters 4 and 5, and clustered 18 singletons. SNP threshold
5 (Figure 3.9; bottom-left) failed to recreate clusters 8 and 9; merged clusters 4, 5,
and 6; and clustered an additional 14 singletons. Finally, at threshold 12 (Figure 3.10;
bottom-left), pandora map failed to recreate clusters 11, 12, and 13; missed one
sample from cluster 9; merged clusters 1, 2, and 5 and also joined clusters 7 and 8;

and clustered 12 singletons.

Pandora multi-sample

The SNP thresholds we use for pandora compare (multi-sample) clustering are O, 1,
3, and 7. The results of this clustering are summarised in Table 3.6. One important
result is that unlike the single-sample approach of pandora, the multi-sample mode
leads to perfect SACR across all thresholds. Additionally, clustering at the threshold of
0 (Figure 3.7; bottom-right) perfectly mirrors Illumina. At a threshold of 2 (Figure 3.8;
bottom-right), there was one singleton added to an otherwise perfect cluster (cluster 1)

and two additional singleton clusters of size 2 (doubletons).

For threshold 5 (Figure 3.9; bottom-right), pandora compare merged clusters 4,
5, and 6, as well as clusters 1 and 2. Three singletons were added to the merged cluster
1/2 and four new doubletons were created. Threshold 12 (Figure 3.10; bottom-right)
likewise saw cluster mergers (1/2/5 and 7/8), two new doubletons, and six singletons

added to existing clusters; however, SACR remained perfect.
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Threshold SACR SACP XCR

0 1.0 1.0 0.0 (0/137)
2(1) 1.0 0.966 0.039 (5/128)
5@) 1.0 0.690 0.090 (11/122)

12 (7) 1.0 0.772  0.103 (10/97)

Table 3.6: Summary of pandora multi-sample clustering metrics for four (Illumina) SNP distance
thresholds. The threshold(s) in parentheses are the Nanopore equivalent threshold used. The fractions
in parentheses for XCR indicate the underlying numbers. SACR=sample-averaged cluster recall;
SACP=sample-averaged cluster precision; XCR=excess clustering rate.

3.8.3 Summary

The results presented in this section show that when using bcftools for variant-
calling, Nanopore is capable of producing transmission clusters with a high degree
of similarity to Illumina. Most importantly, no samples deemed part of a cluster by
[Nllumina were missed by bcftools (i.e., SACR = 1.0). However, as the SNP threshold
increases, bcftools erroneously adds more samples to clusters - or joins existing
clusters - with an SACP of 0.845 at a SNP threshold of 12. That is, on average, 84.5%

of the members in a sample’s Nanopore cluster are also in its [llumina cluster.

We have also shown that the Illumina SNP thresholds of 0, 2, and 5 are also valid
for Nanopore variant calls from bcftools and the threshold of 12 needs only decrease
to 11.

We additionally investigated whether the genome graph method of pandora can
produce accurate transmission clusters. While the single-sample approach did not yield
outstanding results, the multi-sample method shows promise. For all SNP thresholds
assessed, pandora compare did not miss any samples from clustering. The SACP
values for thresholds 0 and 2 were as good as bcftools, but at thresholds 5 and 12
pandora compare did not perform as well. For example, at threshold 12, bcftools
erroneously added two doubleton clusters and three singletons to larger clusters, while

pandora compare added three doubletons and six singletons.

In conclusion, we recommend clustering Nanopore data based on bcftools SNP calls

for concordant clusters with Illumina.
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3.9 Mixed Illumina and Nanopore transmission clus-

ters

Having established that Nanopore data can recreate Illumina-defined transmission
clusters with high recall and acceptable precision, we turn to the question of whether

this holds when mixing Illumina and Nanopore data.

Inferring transmission clusters from a mixture of sequencing modalities would
allow greater integration across datasets from various sources and prevent laboratories
from being locked into one sequencing technology. As the uptake of Nanopore
sequencing increases, it seems inevitable that there will be cases where comparisons
between these sequencing modalities are necessary. To address this question, we
simulate varying degrees of Nanopore/Illumina mixtures and look at how this impacts
clustering. To this end, we investigate what the impact (if any) of combining Illumina
and Nanopore datasets is on SACR, SACP and XCR (see Section 3.8.1 for definitions).
For the Nanopore data, we use the bcftools distance matrices as they were shown to

be the most concordant with Illumina (Section 3.8.3).

First, we get a sense of how comparable the distances are likely to be by looking
at the "self-distance" for each sample - the distance between a sample’s Illumina and
Nanopore data. As the sequencing data originate from the same source, we know the
self-distance for any sample should be 0. However, we also know there are major
technical differences between Illumina and Nanopore; therefore, small variability in
self-distance is likely. We plot the self-distances in Figure 3.11 and see that 64%
(96/150) of the samples have a distance of 0 between their Illumina (COMPASS)
and Nanopore (bcftools) data, with 84% (126/150) less than 2 SNPs apart. All
samples have a self-distance of less than 9, except one sample (mada_1-33), which
has a self-distance of 53. We investigated the possibility of a sample mix-up being the

cause of this discrepancy but could not find any such convincing evidence.

Next, we look at the pairwise SNP distance relationship, akin to that in Section 3.7. Fig-
ure 3.12 shows that the mixed SNP distances have a similar relationship to the single-
technology correlation in Figure 3.5. The difference, however, is that in Figure 3.12,
the y-axis represents the distance between one sample’s Illumina data and the other’s
Nanopore. There are twice as many data points in this plot as the distance between two
samples is not necessarily reciprocal for mixed modality distances (as we saw with the
self-distances). That is, for two samples a and b, distance(ay,by) # distance(ay,by),

where I and N refer to [llumina and Nanopore data respectively.
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Fig. 3.11: Mixed modality "self-distance". This plot shows the SNP distance (x-axis) between each
sample’s COMPASS (Illumina) and bcftools (Nanopore) VCF calls.

In the zoomed inset window of Figure 3.12, there is a cluster of outlying points
with a higher mixed distance than Illumina distance. All of these points relate to
combinations of 6 particular samples. We investigated these samples for evidence of a
sample swap or low data quality, but nothing was found to support such a claim. In
reality, it just seems the Nanopore data for some of the samples are quite different to

the Illumina data of the other samples.

We now examine transmission clusters for mixtures of Nanopore and Illumina data
using the same SNP thresholds from Section 3.8. The SNP threshold we use when
comparing different modalities is the Illumina SNP threshold. The mixture ratios we
investigate are 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, and 0.9. That is, for a ratio of 0.25, we
randomly allocate 25% of the samples to Nanopore and the remainder to Illumina.
For each SNP threshold and ratio, we calculate the XCR, SACR and SACP that the
clustering produces. We repeat this process 1000 times for each threshold and ratio to
simulate different mixtures of sample/technology pairs. The intention for simulating
so many different mixed pairs is to provide insight into how robust clustering is to

different ratios of sequencing datasets.

The results of these simulations are shown in Figure 3.13 (full summary statistics
in Table B.1). We found that for all SNP thresholds and ratios, the median SACR
was 1.0. In other words, regardless of the Nanopore/Illumina mixture ratio, for all

thresholds we used, no sample is missed from its expected clustering - on average. The
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Fig. 3.12: The relationship of the distance between all pairs of samples based on Illumina (COMPASS)
VCF calls (X-axis) and mixed COMPASS-bcftools calls (Y-axis). The black, dashed line indicates
the relationship we would expect if the distance between a pair of samples were the same for both
approaches. The blue line indicates the line of best fit based on fitting a robust linear regression model
to the data. The inset gives a closer look at the relationship for all sample pairs where the COMPASS
distance is less than or equal to 100 SNPs. The legend indicates the linear equations for the lines. Note:
to prevent model skew, we do not include self-distance pairs.
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Nanopore sequencing for M. tuberculosis transmission clustering

SACP values decrease somewhat as the Nanopore ratio increases. However, the lowest
median SACP value was 0.845 (threshold 12, ratio 0.9), which is also the SACP value
obtained for the Nanopore-only clustering in Section 3.8.2 with the same threshold.
The XCR values tend to increase slightly with the addition of more Nanopore samples.
In the most extreme case, 0.057 was the highest XCR value in any simulation (SNP
threshold 5). Incidentally, this is the same as the XCR obtained for the Nanopore-only
clustering of the same SNP threshold, which equates to 7 of the 122 non-clustered
samples being clustered. However, regardless of the XCR, no samples that should

have been clustered were missed (on average).

3.9.1 Summary

In this section, we have shown that putative transmission clusters constructed using
mixtures of [llumina and Nanopore data are consistent with those produced by Illumina
data alone. As such, datasets from different sequencing technologies can be combined

for transmission clustering analysis using the methods in this chapter.

3.10 Discussion

Recent work from Smith et al. is the first effort to assess Nanopore for the clustering
of M. tuberculosis samples based on genetic distance [91]. While their work had more
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