Skip to content
Python implementation of projection losses.
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
tests Vectorize softmax. Oct 29, 2019
LICENSE Initial commit. Oct 28, 2019
README.rst Typo. Oct 29, 2019
data.py Initial commit. Oct 28, 2019
estimators.py Initial commit. Oct 28, 2019
fista.py Initial commit. Oct 28, 2019
fw.py Initial commit. Oct 28, 2019
ot.py Add reference. Oct 28, 2019
polytopes.py Cosmit. Nov 1, 2019
simplex.py Add reference to constrained softmax paper. Oct 28, 2019

README.rst

Projection losses

Python implementation of "Structured Prediction with Projection Oracles".

Supported polytopes

  • Probability simplex
  • Unit cube
  • Knapsack polytope
  • Birkhoff polytope
  • Permutahedron
  • Order simplex
  • Cartesian products

Installation

Simply copy relevant files to your project.

References

[1]SparseMAP: Differentiable Sparse Structured Inference. Vlad Niculae, André F. T. Martins, Mathieu Blondel, Claire Cardie. In Proc. of ICML 2018. [arXiv]
[2]Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms. Mathieu Blondel, André F. T. Martins, Vlad Niculae. In Proc. of AISTATS 2019. [arXiv]
[3]Learning with Fenchel-Young Losses. Mathieu Blondel, André F. T. Martins, Vlad Niculae. Preprint. [arXiv]
[4]Structured Prediction with Projection Oracles. Mathieu Blondel. In Proc. of NeurIPS 2019. [arXiv]

Author

  • Mathieu Blondel, 2019
You can’t perform that action at this time.