Project 3 Report

Authors: Matthew Martin and Keaton Shelton

April 21st, 2022

ECE 4120-001 Fundamentals of Computer Design

Single-Cycle Implementation Modified Block Diagram

ar- S —
sgrenendersgrenendsr ins

Figure 1. Modified Block Diagram of Single Cycle Implementation

Pipelined Implementation Modified Block Diagram

Figure 2. Modified Block Diagram of Pipelined Implementation

Pipelined Implementation with Hazard Detection & Full Forwarding

= — = !EB '
£ : 5=
L3 = + T
— ==
| —N : r
S N [] “I_f_] : 1
—3] = |
l— T H — I !
I = == =S | = I
|FHEF I,_;_H B ||{ = 1 i |- j
= I ‘—E I |\I] - !—“J:
== =1 ‘ R
‘] —t =] I "
— i —] =
& T~

Figure 3. Modified Block Diagram of Pipelined Implementation with Hazard Detection & Full Forwarding

Single Cycle Implementation Components

PC Incrementor

The ALU or “add4” component is a simple generic combinational unit that adds 2

numbers. It is instantiated with a 3-bit input “100” to add 4 to the PC each cycle.
Program Counter

The “PC (Program Counter)” is one of the sequential modules in our design. It is a
custom or “non-IP” block which takes an input called “PC in.” This input is simply the output of
the PC + 4 which is loaded at the next rising clock edge. This functionally means that the
program counts 4 bytes over a clock cycle equating to a 32-bit word per clock. It would be
equivalent to defining a 32-bit word in the instruction memory and incrementing the PC by 1
each cycle. To achieve this, the output is loaded from the signal holding the input prior to the

changing of this intermediary signal such that the incrementation is delayed by a clock cycle.

Instruction Memory (Quartus IP)

The “Instruction Memory” is an IP (Intellectual Property) block using the 1-Port RAM
block provided by Altera in Quartus. This memory block was initialized with a byte size of 8 bits
and with a byte-width of 256 bytes. Interestingly, the 32-bits needed by the system are
automatically read in a single clock cycle even though the address given to the RAM points only
to the first of four bytes. If this were not the case, 32-bit words would need to be defined since it

would require 4 clock cycles to read a single word as 8 bytes per word.
Data Memory

Data Memory is another IP 1-Port RAM block provided by Altera in Quartus. This unit is
used for storage of data which can be accessed from the registers of the processor. This unit can
be written to by the MIPs store word instruction and read from by the load word instruction. In
the single cycle implementation, it must be provided with a delayed clock relative to the
instruction memory such that the timing constraints are satisfied. In the pipelined
implementation, it is altered or accessed in the MEM/WB stage and therefore is the source of

data hazards.
Arithmetic Logic Unit

The “ALU” (ALU) [Arithmetic Logic Unit] is one of the combinational blocks of our
design. It is a “non-IP” component with inputs 32-bit ALU in0, 32-bit ALU inl, and four-bit
input ALU cntl. The ALU has a 32-bit ALU_out output vector and a 1-bit “zero” output. The
operations of this ALU are entirely dependent on the selected mode of the ALU using

“ALU cntl.” If ALU cntl is all zeros, then the ALU will perform an AND operation on the two

inputs and return its output on ALU out. If ALU cntl is “0001” then the ALU will perform an
OR operation on the two inputs and return the results into ALU out. If ALU cntl is “0010” then
the ALU will add the two inputs and return the output to ALU out. If ALU cntl is “0110” then
the ALU will subtract ALU inl from ALU in0 and return the result to ALU out. If ALU cntl is
“0111” then the ALU will XOR the two inputs together and place the result into ALU out. If
ALU cntl is “1100” the ALU will perform a NOR operation on the two inputs and return the
value into ALU out. The “zero” output will go to one if the value of ALU out zero, else it will

be zero.

ALU Control Unit

The “ALUControl” is one of the combinational blocks of our design. It is a “non-IP”
component with a six-bit input func (Function Code), two-bit input ALUop (ALU Op Code), and
returns a four-bit output Operation (ALU Operation Mode). Using concurrent operations, we set

each bit of ALU Operation Mode through a series of ORs, ANDs, and NOTs.

Control Unit

The “Control” (control) is one of the combinational blocks of our design. It is a “non-1P”
component that takes one six-bit input opcode and returns a series one of one-bit outputs:
RegDst, Branch, MemRead, MemWrite, MemtoReg, ALUOp, ALUSrc, RegWrite, and Jump as
specified by the control diagram from our Zybooks homework. This block is the primary
controller for deciphering an instructions opcode and sending the correct values to the currently
implemented ALU, Register File, the mux going into “ALU _in1” and the mux going into Write

Register.

Register File

The “Register File” is a sequential block in our design. It is also a “non-IP” block with
inputs: readregl (Read Register 1), readreg2 (Read Register 2), writeReg (Write Register),
writeData (Write Data), RegWrite (Register Write Enable), and clk (Clock). This block has
outputs readDatal (Read Data 1) and readData2 (Read Data 2). Using sub-components and2c,
decoder, register32, and mux32tol we can create the diagram specified in Figure 2 and Figure 3
to create the main “Registers” specified in Figure 1. First, using the decoder we can take the
Write Register number and put it into a 32-bit vector (decoder out) to hold the intermediate
values from the decoder to feed into the AND gates. Using a VHDL generate statement, we
generate 32 instances of the “register32” and the “and2¢” component. Each AND gate take one
input of register write enable and a bitwise input from the 32-bit vector from the decoder
(decoder out(i)). Finally, this returns a 32-bit vector called “and_out”. The and out vector
contains the AND results of all the AND gate operations to be fed into each subsequent register.
Within this generate statement are the “register32” instances which take an input from the clock,
the bitwise input “and _out(i)” at location “1” vector, and the Write Data. The “register32” then
outputs into an array of 32-bit vectors known as “regOut(i)” at location “i”. Finally, the data
array regOut(i) at location “i” is then fed into each input of the “mux32to1” IN1-IN32. With the
select line being the Read Register 1 and the output being Read Data 1. This process with

“mux32tol” is then repeated for Read Register 2 and output Read Data 2.

Primitives

The “AND Gate” (and2c) is one of the combinational blocks of our design. It is modeled
after the standard primitive AND gate. The AND gate takes two, one-bit inputs and returns a
one-bit output. This is primarily used as a component in the Register File to help enable the write

lines to a specific register from the write-enable line and the selected register.

The “MUX” (mux_generic32) is one of the combinational blocks of our design. It is a
“non-IP” block that takes two data inputs of (N-1) bits, a one-bit control line, and outputs a (N-1)
bits vector. Using the one-bit control line you can select which data-path needs to flow through
the MUX. The size of the input data is specified using a generic block called N. For a 32-bit mux

you would specify this blank to be 32 and the mux will auto initialize for 32-bits of data.

The “Memory MUX” (mux32tol) is one of the combinational blocks of our design. It is
a “non-IP” block that takes 32, 32-bit inputs (IN1-IN32), a five-bit select line (sel), and a 32-bit
output (F). This mux will pass one of the inputs selected to its output F. For example, if sel is all

zeros then F will be IN1, or on the contrary if sel is all ones then F will be IN32.

The “Decoder” (decoder) is also another combination block in our design. It is a “non-
IP” block with an input A that is five-bits and returns an output F that is 32-bits. Given an input
A the output F will reflect on a bit-wise operation that selects the equivalent location on F to go
to high. For example, if A is zero then F(0) will be one while the rest are zeros. Likewise, if A is
all ones, then F(31) will be one while the rest are zeros. This component is primarily used as a
sub-component for the Register File to help enable the write lines to a specific register from the

write-enable line and the selected register.

The “Registers” (register32) is a primitive sequential block in our design. It is a “non-
IP” block with inputs one-bit C, one-bit clock, and a 32-bit D. It has one 32-bit output named Q.
This simple register file first checks if the clock is one a rising edge and if the C line (enable) is
high. If these conditions are met, then D will over-write Q and the new data will be output. This
sequential primitive is primarily used in the Register File as a sub-component to act as the

registers.

The “sign-extender” unit is a simple combinational unit which receives a 16-bit VHDL

vector and extends the MSb, resulting in a signed 32-bit output.

The “Shift-left-2” unit is another simple combinational unit which receives a 32-bit
VHDL vector and shifts it to the left by 2 bits. This unit is implemented in a MIPs processor to

increase the range of jump instructions.

Using these modules, we created we were able to then link and connect them together in
our “top_level” to add onto our original design from Project Phase 1. The Instruction output
from our Instruction Memory is then fed into the correct spots on the Register File. The
subsequent lines from the Register File are then connected to the ALU and Mux to ALU. The
output of the ALU result is then fed back into the Write Data of the Register File. Currently there
are no hardware pins used as the processor is self-contained using only the initialized memory.
There are virtual pins used to show the progress of the system as virtual time moves. The probes
include: ALU in/out (This is the Add4 ALU), ALU add by (Add4 ALU), PC in/out, instruction
in/out, Register File Read Data 1 and 2, Register Write Enable, Write Register Number, and

finally Write Register Data.

Pipelined (No Hazard Detection or Forwarding)

e [n addition to the components explained above which were used in all 3 implementations,

the following components were used in the pipelined implementation.
IF/ID Register

The IF/ID register is the first auxiliary register, or “first-stage” in the pipelined
implementation. It receives the incremented PC signal directly from the PC after incrementation,

as well as the instruction directly from instruction memory.
ID/EX Register

The ID/Ex register is the second stage of the pipelined implementation. It receives the
incremented PC count from IF/ID, the 2 outputs of the register file, the output of the sign-
extender, and the Rd and Rt registers of the decoded instruction. It also receives all output
signals of the control unit. On each rising clock edge, this register passes all control signals

except those which are used in the execution stage to the Ex/Mem register.
EX/MEM Register

The Ex/Mem register is the third stage of the pipelined implementation. It receives the
offset PC value, the ALU result and ALU zero signals, the “read data 2” signal passed from the
Id/Ex register, and the output of the destination register selecting mux. It also receives the
memWrite, memRead, and Branch control signals. On each rising clock edge, this register passes

all control signals except those used in the memory accessing stage to the Mem/WB register.

10
MEM/WB Register

The Mem/WB register is the fourth and final stage of the pipelined implementation. It
receives the MemToReg and RegWrite signals from the Ex/Mem register, as well as the output
of data memory and ALU result passed from Ex/Mem. The Datapath outputs of this register are
passed to the final multiplexer in the pipeline which is then sent back to the instruction decode

stage for writing data back into the register file.

Pipelined Implementation (W/Hazard Detection and Full Forwarding)

Hazard Unit

The hazard unit is used in the pipelined bonus implementation to detect data hazards that
require a stall. It receives the RT register from the Decode / Execution register, as well as the RS
register from the Fetch / Decode register, the RT register from the Fetch / Decode register, and
finally the MemRead control signal from the Decode / Execution register. It then checks to see if
the MemRead signal is high and checks if the Decode / Exection RT register is equal to the Fetch
/ Decode RS register or if the Decode / Execution RT register is equal to the Fetch / Decode RT
register. If that condition is met it then proceeds to set the stallSig output to one, sets the Fetch /
Decode Write signal to zero and sets the PC write signal to zero as well. With stallSig set to one
that forces all the control signals to be zero to be written to the Decode / Execution register

which then implements our stall.

11

Forward Unit

The forward unit is used in the pipelined bonus implementation to detect data hazards
that require forwarding. It receives the RT register from the Decode / Execution register, the RS
register from the Decode / Execution register, the RD register from the Execution / Memory
register, the RD register from the Memory / Writeback register, the RegWrite control signal from
the Execution / Memory register and finally the RegWrite control signal from the Memory /
Writeback register. It then proceeds to check several different conditions. It first checks if any
data needs to be forwarded from the Execution / Memory register and will set the outputs
forwardA and forwardB to “10” if needed. Both do not need to be set, only one of them can be
set if necessary. The next set of checks determine if any data needs to be forwarded from the
Memory / Writeback register and will set the outputs forwardA and forwardB to “01” if needed.

As stated, both do not need to be set, only one of them can be set if necessary.

Device Selection

‘ T10MS50DAF484CTG 1.2V 49760 360 360 1677312 288
Figure 4. Snapshot of Device Selection (Same For all three Implementations)

Flow summaries

Flow Summary

e -

<Filter=»

Quartus Prime Version
Revision Name
Top-level Entity Name
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins
Total memory bits

Total PLLs
UFM blocks
ADC blocks

20.1.7 Build 720 11/11/2020 5J Lite Edition £
Blake Proj3

top_level

MAX 10
TOM50DAF484CTG

Final

1,862 [49,760 (4 %)

1054

247/ 360 (69 %)

0

16,384/ 1,677,312 (<1 %)

Embedded Multiplier 9-bit elements 0/ 288(0%)

0/4(0%)
0/1(0%)
0/2(0%)

& <<Filter>>

Figure 5. Single-cycle Flow Summary

Flow Summary

Flow Status

" |Quartus Prime Version
Revision Name
Top-level Entity Name
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins
Total memory bits

Total PLLs
UFM blocks
ADC blocks

Embedded Multiplier 9-bit elements

Successful - Thu Apr 21 21:22:53 2022
20.1.1 Build 720 11/11/2020 SJ Lite Edition
MIPS_Project1

top_level

MAX 10

10M50DAF484C7G

Final

2,001 /49,760 (4 %)

1380

237 /360 (66 %)

0

16,384 /1,677,312 (<1 %)
0/288(0%)

0/4(0%)

0/1(0%)

0/2(0%)

Figure 6. Pipelined Flow Summary

12

& <<Filter>>

Flow Summary

Flow Statu
Quartus Prime Version

Revision Name

Top-level Entity Name

Family

Device

Timing Models

Total logic elements

Total registers

Total pins

Total virtual pins

Total memory bits

Embedded Multiplier 9-bit elements
Total PLLs

UFM blocks

ADC blocks

RTL Views

Successful - Thu Apr 21 20:31:15 2022
20.1.1 Build 720 11/11/2020 SJ Lite Edition
MIPS_Project1

top_level

MAX 10

10M50DAF484C7G

Final

2,081/49,760 (4 %)

1385

242 /360 (67 %)

0

16,384 /1,677,312 (<1 %)
0/288(0%)

0/4(0%)

0/1(0%)

0/2(0%)

Figure 7. Bonus Flow Summary

dstattamon e tattamon Fle_nst

25

[cotabemon_oue_prone31.0]

Lntenesis1)

en

| [wmesas_wobeis o

Reacrsizt _prave(in o

Reazcarea_protels®.

[A comtin bmiz o]

5 Ssr_prabe

w“>

[wrsasg_sa_prosis o)

sgrinercacuge mencer st

arcichmrcnNazen

) nstucnn,_probe(s1.1

Figure 8. Single-cycle RTL Viewer

[oot rotetz 1

13

Figure 9. Pipelined RTL Viewer

Figure 10. Bonus RTL Viewer

14

Technology Mapping

Figure 11. Single-Cycle Technology Map (Post-Fitting)

15

Figure 12. Single-Cycle Technology Map (Post-Mapping)

Figure 13. Pipelined Technology Map (Post-Fitting)

16

i!!

Figure 14. Pipelined Technology Map (Post-Mapping)

17

M=
==

Figure 15. Bonus Technology Map (Post-Fitting)

Il

Figure 16. Bonus Technology Map (Post-Mapping)

18

19

Elaboration on Testbenches

As was done for the previous phases of the project, the instructions (and this time the data
memory) were loaded by use of “mif” files, and so the testbench is simply the process of
providing a clock signal to the input of the system and reading/comparing the waveforms with
the expected outputs. This is true for all 3 implementations and their associated

testbenches/waveforms.

Waveform Elaborations

Single-Cycle Implementation

1w| Wave -Default

& ftop_level_thjdk
7

ftop_level_th/ALU_operation_probe
ftop_level_th/writeEnable_probe

* Irop_jevel_th/branch_probe

* Itop_level_th/ALLISrc_probe.

* top_level_thR=girite_probe

? Jtop_evel_thMemWiite_probe
ftop_level_thfwriteReg: sel probe

EXy
Cursor 1 33.32ns

Figure 17. Single-cycle Waveforms
Signal Breakdown

From the above waveform we can see that we have the following signals: clk (the
incoming clock), pc_out probe (the output of the program counter), instruction_probe (the ouput
of the instruction memory), readDatal probe (the Read Data 1 output out of the register file),
readData2 probe (the Read Data 2 output out of the register file), writeData probe (the data that
gets written to the register file), dataMemoryAddress_probe (the address input to the data
memory), dataMemory_ writeData (the write data input to the data memory),

dataMemory out probe (the output of the data memory), ALU_operation probe (the control

20

signal to set the ALU operation), writeEnable probe (control line that enables writes to the
register file), branch probe (this is the control signal branch, not the true branch signal PCSrc),
ALUSrc_probe (the control signal ALUSrc), RegWrite probe (the control write enable for the
register file), MemWrite probe (the control write enable for the data memory), and finally

writeReg sel probe (the destination register number for the register file).

Waveform Analysis

The first four instructions preload our registers (addi t1 zero 0x8, addi t2 zero 0x4, addi t3
zero 0x10, addi s0O zero 0x9, addi s1 zero 0x9). We can see at time 2.5 ns that an eight
(writeData_probe) gets written to register nine (writeReg_sel probe) (t1). This is confirmed as
RegWrite probe goes high at the same time. The next instruction then executes at time 7.5 ns
that shows that a four (writeData probe) gets written to register ten (writeReg_sel probe) (t2).
This is confirmed as RegWrite probe goes high at the same time. The next instruction then
executes at time 12.5 ns that shows that a sixteen (writeData probe) gets written to register
eleven (writeReg_sel probe) (t3). This is confirmed as RegWrite probe goes high at the same
time. The next instruction then executes at time 17.5 ns that shows that a nine (writeData_probe)
gets written to register sixteen (writeReg_sel probe) (s0). This is confirmed as RegWrite probe
goes high at the same time. The next instruction then executes at time 22.5 that shows that a nine
(writeData_probe) gets written to register seventeen (writeReg_sel probe) (s1). This is
confirmed as RegWrite probe goes high at the same time. The next instruction is beq t1 t1 t2.
This is executed at time 27.5 ns and we can see that the control line branchEnable probe goes
high but the PC does not jump. The value on the writeData porbe does not get written as the
RegWrite probe goes low at that time. The next instruction is add t1 t1 t2. This instruction gets

executed at 32.5 ns. We can see that twelve (writeData_probe) is set to write to register nine

21

(writeReg_sel probe) (t1). This is confirmed by RegWrite probe going high at the time which is
expected. The next instruction to be executed is sw t3 0x64(t2). This is executed at time 37.5 ns
and we can see that dataMemoryMem_write is set to sixteen at the time. This is confirmed to
write as the control signal MemWrite probe goes high at the time. The last instruction to execute
is or t1 t1 t2. This executes at time 42.5 ns. We see on the waveform that writeData probe writes
a twelve to register number nine (writeReg sel probe) (t1) which is the correct result of twelve

or four is equal to twelve.

Pipelined Implementation

mliae bt —4— — + 2 x]

.

Jtop_level_tb/dataMemWriteEnable
Itop_level_th/MEMWB_regWrite

7
5
o
B
o
4
o
5
o
o
o
o
s

Figure 18. Pipeline Waveforms

Signal Breakdown

From the above waveform we can see that we have the following signals: clk (the
incoming clock), branchEnable (from the pipeline diagram this is PCSrc), pc_out (the program
counter output), instruction (the output of the instruction memory), EXMEM _DataMemln (the
write data input to the data memory), dataMemWriteEnable (the control write enable line to
write to the data memory), WB_writeData (the data that gets fed into the write data port on the

register file), MEMWB_RegWrite (the write enable line for the register file), ALU Operation

22

(the ALU control signal), MEMWB_ writeReg_sel (the destination register to be written to on the
register file), instructionDE readDatal probe (data coming immediately off of Read Data 1 of
the register file from the Decode / Execution pipeline register), instuctionDE readData2 probe
(data coming immediately off of Read Data 2 of the register file from the Decode / Execution
pipeline register), and finally instructionDE_signExtend probe (data coming off of the sign

extender from the Decode / Execution pipeline register).

Waveform Analysis

The first four instructions we have executing are preloading the registers (addi tl zero
0x8, addi t2 zero 0x4, addi t3 zero 0x10, addi sO zero 0x9, addi s1 zero 0x9). Due to the nature of
pipelining this does not truly begin unit four clock cycles after the loading of the first instruction.
Beginning at 17.5 ns we can see that an eight (WB_writeData) is being stored to register number
nine (MEMWB_writeReg_sel) (t1) as expected. One clock cycle later at time 22.5 ns we can see
that a four (WB_writeData) is being written to register number ten (MEMWB_writeReg_sel) (t2)
as expected. One clock cycle later at time 27.5 ns we can see that a sixteen (WB_writeData) is
being written to register number eleven (MEMWB_ writeReg_sel) (t3) as expected. One clock
cycle later at time 32.5 ns we can see that a nine is being written to register number sixteen
(MEMWB_writeReg_sel) (s0) as expected. One clock cycle later at time 37.5 ns we can see that
a nine (WB_writeData) is also being written to register number seventeen
(MEMWB_writeReg_sel) (s1) as expected. We know that it has been successfully written due to
the MEMWB_regWrite signal going high through these commands. The next instruction to
execute is beq t1 t2 0x5. This command will check if t1 and t2 are equal then the PC will jump
ahead by the commands offset, otherwise the PC will continue to count normally. Since t1 is

loaded with eight and t2 is loaded with four the command fails and branchEnable does not go

23

high at time 42.5 ns. MEMWB_regWrite also goes low at this time to prevent the calculated
value from being written to register ten (t2). The next instruction to execute is add t1 t1 t2. This
should result in a twelve as t1 currently holds eight and t2 currently holds a four. Looking at our
waveform at time 47.5 ns we can see that it does correctly calculate a twelve and proceeds to
write the twelve (WB_writeData) to register number nine (MEMWB_ writeReg sel) (t1) as
expected. The next instruction to execute is sw t3 0x64(t2). Looking at our waveform we can see
the value of WB_writeData goes to 104 as it is the immediate value of 0x64 added to the value
of t2 which is four. This value is being thrown from the Execution/Memory register to the
address input of the data memory. This is shown at time 52.5 ns but since the value shown is
from the Memory / Writeback register the correct time of arrival to the data memory is at time
47.5 ns. At time 47.5 ns we can see that the value on EXMEM_dataMemlIn goes to sixteen as
expected due to the value of t3 being sixteen. The write is shown to be successful as the control
value of dataMemWriteEnable goes high at time 47.5 ns. The final instruction to be executed is
or t1,t1, t2. This should cause an or condition for the registers t1 and t2 and store into t1. The
correct result of 8 (t1) or 4 (t2) should result in twelve which it does. This is shown at time 57.5
ns with the twelve (WB_writeData) being written to register number eleven

(MEMWB_ writeReg_sel) (t1) which is expected.

24

Bonus Implementation

Jtop_level_th/instructionDE_readData1_probe
ftop_level_th/instructionDE_readData2_probe
Jtop_level_th/instructionDE_signExtend_probe
Jtop_level _tb fforwardaval
Jtop_level_th forwardBval

5

]
o
o’

3
e

3
o
n

3
o
o
o
o
o
5’

o B) s 5] |
Figure 19. Pipeline Bonus Waveform

Signal Breakdown

From the above waveform we can see that we have the following signals: clk (the
incoming clock), branchEnable (From the Pipeline diagram this is PCSrc), pc_out (The program
counter output), instructOUT (the output of the instruction memory),

MEMWB dataMemory_out (the output read data of the data me), dataMemWriteEnable (the
control write enable line to write to the data memory), stallBit (one of the control signals off of
the hazard unit to show that a stall has been issued), WB_writeData (the data that gets fed into
the write data port on the register file), MEMWB_RegWrite (the write enable line for the register
file), ALU_ Operation (the ALU control signal), MEMWB_writeReg_sel (the destination register
to be written to on the register file), MEMWB_memToReg (control value coming out of the
Memory / Writeback register that controls MUX 3 to determine which data needs be forwarded
to the write data of the register file), instructionDE readDatal probe (data coming immediately
off of Read Data 1 of the register file from the Decode / Execution pipeline register),
instuctionDE readData2 probe (data coming immediately off of Read Data 2 of the register file

from the Decode / Execution pipeline register), instructionDE_signExtend probe (data coming

25

off of the sign extender from the Decode / Execution pipeline register), forwardAval (the output
of the forward unit to control the forward A mux), and finally fowardBval (the output of the

forward unit to control the forward B mux).

Waveform Analysis

The first four instructions we have executing are preloading the registers (addi tl zero
0x8, addi t2 zero 0x4, addi t4 zero 0x0, addi s3 zero 0x0, addi s1 zero 0x9). Due to the nature of
pipelining this does not truly begin till four clock cycles after the loading of the first instruction.
Beginning at 17.5 ns we can see that an eight (WB_writeData) is being stored to register number
nine (MEMWB_writeReg_sel) (t1) as expected. One clock cycle later at time 22.5 ns we can see
that a four (WB_writeData) is being written to register number ten (MEMWB_writeReg_sel) (t2)
as expected. One clock cycle later at time 27.5 ns we can see that a zero (WB_writeData) is
being written to register number twelve (MEMWB_writeReg_sel) (t4) as expected. One clock
cycle later at time 32.5 ns we can see that a zero is being written to register number nineteen
(MEMWB_writeReg_sel) (s3) as expected. One clock cycle later at time 37.5 ns we can see that
a nine (WB_writeData) is also being written to register number seventeen
(MEMWB_writeReg_sel) (s1) as expected. We know that it has been successfully written due to
the MEMWB_regWrite signal going high through these commands. The next instruction to
execute is beq t1 t2 0x5. This command will check if t1 and t2 are equal then the PC will jump
ahead by the commands offset, otherwise the PC will continue to count normally. Since t1 is
loaded with eight and t2 is loaded with four the command fails and branchEnable does not go
high at time 42.5 ns. MEMWB_regWrite also goes low at this time to prevent the calculated
value from being written to register ten (t2). The next instruction to execute is Iw t1 0x8(t2). This

instruction will load the value in the data memory at location twelve as it takes the immediate

26

value of eight and adds it with the four in t2. In our data memory mif file we have location
twelve set to 24. We can see at time 47.5 ns that the signal MEMWB_dataMemory_out goes to
twenty-four. We can see that this value (WB_writeData) is being written to register nine
(MEMWB_ writeReg sel) (t1) with MEMWB_regWrite going high to enable write as well as the
control signal MEMWB_memToReg going high to forward the data from the data memory to the
register file using MUX 3. The next instruction to execute is add t1 t1 t2. However, since this is
after a load word this presents a data hazard, to resolve a data hazard a stall must have been
introduced to allow for the value from the data, then this value needs to be forwarded to the
execution unit during the execution of the add t1 t1 t2 instruction. We can see that stallBit goes
high at time 37.5 ns earlier in the pipeline. This is then shown on writeback at time 52.5 ns as
there is the wrong result of six-teen that is trying to write to register 10 (t2) but is blocked by the
stall as the control line MEMWB regWrite has been set to zero. The correct result is then shown
on the next cycle at time 57.5 ns of a twenty-eight (WB_writeData) being written to register nine
(MEMWB_ writeReg sel) (t1). This is confirmed to write as MEMWB_regWrite goes high at
this time. This is only possible due to the stall letting the value of twenty-four being written to
the Memory / Writeback register and then being forwarded to the execution unit by forwardA
with a value of one as shown on the waveform at time 47.5 ns. The next instruction is or t1 t1 t2.
For this instruction to execute we need to forward the result of the previous instruction (add t1 t1
t2) back to the execution unit so that the right value can be calculated, as the twenty-eight has not
been written to t1 yet. For this to execute correctly we need to take the twenty-eight that is now
in the Execution / Memory register and forward its value to the Forward A Mux. This is shown
on the waveform as the value of forwardA goes to two earlier in the pipeline at time 52.5 ns. The

correct result of twenty-eight or four is equal to twenty-eight (WB_writeData) is then shown to

be written to register nine (MEMWB_writeReg sel) (t1) at time 62.5 ns. This is confirmed to

write as MEMWB_regWrite goes high at this time.

Setup Slack Analysis

Path #1: Setup slack is 0.079

PathSummary Statistics

DataPath Waveform

0758 ns
Launch Clock LémCHJ I
Lateh Clock J | Lmnl
Data érrival >C
Slack L &
Data Required
Tine (ns) 0.0 .93 L.987 2,981 3975 4968 5.962 695 7.99 6.943 9957 10931 11923 12918 13912 14.906 15,9 16.893 17.867 18.801

-0.635 ns

Figure 20. Single-Cycle Setup Slack Analysis

Launch Clock, Lamil

Latch Clock J

Data Arrival

Slack

Data Requiret

Time (ns) 0.0

‘ Latchl
0.038 n
<
1.3 2.6 3.9 5.2 6.5 7.8 9.1 10.4 11.7 13.0

Figure 21. Pipelined Setup Slack Analysis

27

28

1915 ns
Launch Clock La‘"‘cﬂ | |
Latch Clock J | '-aw'l
Data Arrival X
Slack (‘,00'6 n
Data Reguired X
Time (ns) 0.0 0.796 1.593 2.39 3.187 3.984 4.781 5.578 6.375 7471 7.968 8.765 9.562 10.359 11.156 11.953 12.75 13.546 14.343 15.14 15.937
.
0 ac narysis.
.
Path #1: Hold slack is 0.266
Pathsummary Statistics | DataPah Waveform
Launch Cloek. Launﬂ’\l
Lateh Clock L‘“’:"‘I
Data frrival X
St o.885 s
Data Required X
Tine ey 00 0208 0.9 045 .90 L2 1.9 4730 L9867 2.2 2480 2732 2980 .20 347 3736 397 4220 b

Figure 23. Single-Cycle Hold Slack Analysis

29

0.233 ns

Launch Clock LWI

Latch Clock m“f"l
Data Arrival X

Sk LT
Data Required X
Time (ns) 0.0 0.325 0.65 0.975 1.3 1.625 1.95 2.275 2.6 2.925 3.25 3.575 3.9 4.225 4.55

Figure 24. Pipelined Hold Slack Analysis

-0.268 ns

Launch Clock Launcnl

Latch Clock LaW*‘I
Data Arrival X

Slack 0.437 ns
Data Requirec X
Time (ns) 0.0 0199 0398 0.597 0.79% 0.9 1.195 1.394 1.593 1.792 1.992 2.191 2.39 2589 2.789 2.988 3.187 3.386 3.585 3.785 3.984 4.183

Figure 25. Bonus Hold Slack Analysis

Fmax Analysis:

r

Slow 1200mV 85C Model

Frnax Restricted Frmax Clock Mame

1 83.21MHz 63.21 MHz clk

Figure 26. Single-Cycle Fmax

Fmax Restricted Fmax Clock Name

1 96.51MHz 96.51 MHz clk

Figure 27. Pipelined Fmax

30

Slow 1200mV 85C Model
Fmax Restricted Fmax Clock Name
1 78.72 MHz 78.72 MHz clk

Figure 28. Bonus Fmax

Improvements from Pipelining

There is no improvement in latency from utilizing a pipelined design, and in fact it is
worse under conditions where the pipeline is frequently flushed. However, the real potential
benefit for a pipelined implementation comes from the increase in throughput of the system

when the pipeline is kept full for much of the time.

Due to the decreased amount of logic between each set of launch and latch flipflops in the
system, the clock frequency can be increased from 63.21 MHz to 96.51 MHz for the pipelined
implementation, yielding an improvement in the Fmax metric of ~52.68%. With full-forwarding

and infrequent branch operations, the increase in performance is significant.

Hardware overhead related to pipelining

Table 1. Hardware Requirements for Single cycle vs. Pipelined Implementations

Single Cycle Pipelined
Logic Gates 1,862 gates 2,001 gates
Memory 16,384 Mem Elements 16,384 Mem Elements
Total Registers 1,054 registers 1,380 registers

The pipelined implementation requires a 7% increase in logic gates, and a 30.92% increase in
total registers relative to the single-cycle implementation. The number of memory elements required

remains the same for both implementations.

31

Performance Penalty of Hazard Detection and Forwarding Units

Table 2. Performance Penalty of Hazard Detection/Forwarding

Single Cycle Pipelined Pipelined W/Hazard &
Forwarding Units
Fmax 63.21 MHz 96.51 MHz 78.72 MHz

Implementing the hazard detection & forwarding units results in an 18.43% reduction in

performance. However, even with the hazard and forwarding units installed, the processor is still

24.53% faster than the single cycle implementation. Therefore, it can potentially provide a boost in

throughput performance under circumstances where the pipeline remains filled for most of the

execution time of a given program.

Hardware Overhead of Hazard Detection and Forwarding Units

Table 2. Hardware Requirements for all 3 Implementations

Single Cycle Pipelined Pipelined W/Hazard &
Forwarding Units
Logic Gates 1,862 gates 2,001 gates 2,081 gates
Memory 16,384 Mem Elements | 16,384 Mem Elements | 16,384 Mem Elements

Total Registers

1,054 registers

1,380 registers

1,385 registers

For our design, implementing hazard detection and forwarding requires a 11.76% increase in

logic gates relative to the single cycle implementation and a 3% increase in logic gates relative to the

pipelined implementation. It requires a 31.4% increase in total registers relative to the single cycle

implementation and a 0.36% increase in total registers relative to the pipelined implementation.

