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Single-Cycle Implementation Modified Block Diagram 

 

Figure 1. Modified Block Diagram of Single Cycle Implementation 

 

Pipelined Implementation Modified Block Diagram 

Figure 2. Modified Block Diagram of Pipelined Implementation 
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Pipelined Implementation with Hazard Detection & Full Forwarding 

 

Figure 3. Modified Block Diagram of Pipelined Implementation with Hazard Detection & Full Forwarding 

 

Single Cycle Implementation Components 

PC Incrementor 

The ALU or “add4” component is a simple generic combinational unit that adds 2 

numbers. It is instantiated with a 3-bit input “100” to add 4 to the PC each cycle.  

Program Counter 

The “PC (Program Counter)” is one of the sequential modules in our design. It is a 

custom or “non-IP” block which takes an input called “PC in.” This input is simply the output of 

the PC + 4 which is loaded at the next rising clock edge. This functionally means that the 

program counts 4 bytes over a clock cycle equating to a 32-bit word per clock. It would be 

equivalent to defining a 32-bit word in the instruction memory and incrementing the PC by 1 

each cycle. To achieve this, the output is loaded from the signal holding the input prior to the 

changing of this intermediary signal such that the incrementation is delayed by a clock cycle.  
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Instruction Memory (Quartus IP) 

The “Instruction Memory” is an IP (Intellectual Property) block using the 1-Port RAM 

block provided by Altera in Quartus. This memory block was initialized with a byte size of 8 bits 

and with a byte-width of 256 bytes. Interestingly, the 32-bits needed by the system are 

automatically read in a single clock cycle even though the address given to the RAM points only 

to the first of four bytes. If this were not the case, 32-bit words would need to be defined since it 

would require 4 clock cycles to read a single word as 8 bytes per word. 

Data Memory 

Data Memory is another IP 1-Port RAM block provided by Altera in Quartus. This unit is 

used for storage of data which can be accessed from the registers of the processor. This unit can 

be written to by the MIPs store word instruction and read from by the load word instruction. In 

the single cycle implementation, it must be provided with a delayed clock relative to the 

instruction memory such that the timing constraints are satisfied. In the pipelined 

implementation, it is altered or accessed in the MEM/WB stage and therefore is the source of 

data hazards.  

Arithmetic Logic Unit 

The “ALU” (ALU) [Arithmetic Logic Unit] is one of the combinational blocks of our 

design. It is a “non-IP” component with inputs 32-bit ALU_in0, 32-bit ALU_in1, and four-bit 

input ALU_cntl. The ALU has a 32-bit ALU_out output vector and a 1-bit “zero” output. The 

operations of this ALU are entirely dependent on the selected mode of the ALU using 

“ALU_cntl.” If ALU_cntl is all zeros, then the ALU will perform an AND operation on the two 
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inputs and return its output on ALU_out. If ALU_cntl is “0001” then the ALU will perform an 

OR operation on the two inputs and return the results into ALU_out. If ALU_cntl is “0010” then 

the ALU will add the two inputs and return the output to ALU_out. If ALU_cntl is “0110” then 

the ALU will subtract ALU_in1 from ALU_in0 and return the result to ALU_out. If ALU_cntl is 

“0111” then the ALU will XOR the two inputs together and place the result into ALU_out. If 

ALU_cntl is “1100” the ALU will perform a NOR operation on the two inputs and return the 

value into ALU_out. The “zero” output will go to one if the value of ALU_out zero, else it will 

be zero. 

ALU Control Unit 

The “ALUControl” is one of the combinational blocks of our design. It is a “non-IP” 

component with a six-bit input func (Function Code), two-bit input ALUop (ALU Op Code), and 

returns a four-bit output Operation (ALU Operation Mode). Using concurrent operations, we set 

each bit of ALU Operation Mode through a series of ORs, ANDs, and NOTs. 

Control Unit 

The “Control” (control) is one of the combinational blocks of our design. It is a “non-IP” 

component that takes one six-bit input opcode and returns a series one of one-bit outputs: 

RegDst, Branch, MemRead, MemWrite, MemtoReg, ALUOp, ALUSrc, RegWrite, and Jump as 

specified by the control diagram from our Zybooks homework. This block is the primary 

controller for deciphering an instructions opcode and sending the correct values to the currently 

implemented ALU, Register File, the mux going into “ALU_in1” and the mux going into Write 

Register.  
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Register File 

The “Register File” is a sequential block in our design. It is also a “non-IP” block with 

inputs: readreg1 (Read Register 1), readreg2 (Read Register 2), writeReg (Write Register), 

writeData (Write Data), RegWrite (Register Write Enable), and clk (Clock). This block has 

outputs readData1 (Read Data 1) and readData2 (Read Data 2). Using sub-components and2c, 

decoder, register32, and mux32to1 we can create the diagram specified in Figure 2 and Figure 3 

to create the main “Registers” specified in Figure 1. First, using the decoder we can take the 

Write Register number and put it into a 32-bit vector (decoder_out) to hold the intermediate 

values from the decoder to feed into the AND gates. Using a VHDL generate statement, we 

generate 32 instances of the “register32” and the “and2c” component. Each AND gate take one 

input of register write enable and a bitwise input from the 32-bit vector from the decoder 

(decoder_out(i)). Finally, this returns a 32-bit vector called “and_out”. The and_out vector 

contains the AND results of all the AND gate operations to be fed into each subsequent register. 

Within this generate statement are the “register32” instances which take an input from the clock, 

the bitwise input “and_out(i)” at location “i” vector, and the Write Data. The “register32” then 

outputs into an array of 32-bit vectors known as “regOut(i)” at location “i”. Finally, the data 

array regOut(i) at location “i” is then fed into each input of the “mux32to1” IN1-IN32. With the 

select line being the Read Register 1 and the output being Read Data 1. This process with 

“mux32to1” is then repeated for Read Register 2 and output Read Data 2. 
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Primitives 

The “AND Gate” (and2c) is one of the combinational blocks of our design. It is modeled 

after the standard primitive AND gate. The AND gate takes two, one-bit inputs and returns a 

one-bit output. This is primarily used as a component in the Register File to help enable the write 

lines to a specific register from the write-enable line and the selected register.  

The “MUX” (mux_generic32) is one of the combinational blocks of our design. It is a 

“non-IP” block that takes two data inputs of (N-1) bits, a one-bit control line, and outputs a (N-1) 

bits vector. Using the one-bit control line you can select which data-path needs to flow through 

the MUX. The size of the input data is specified using a generic block called N. For a 32-bit mux 

you would specify this blank to be 32 and the mux will auto initialize for 32-bits of data. 

The “Memory MUX” (mux32to1) is one of the combinational blocks of our design. It is 

a “non-IP” block that takes 32, 32-bit inputs (IN1-IN32), a five-bit select line (sel), and a 32-bit 

output (F). This mux will pass one of the inputs selected to its output F. For example, if sel is all 

zeros then F will be IN1, or on the contrary if sel is all ones then F will be IN32.  

The “Decoder” (decoder) is also another combination block in our design. It is a “non-

IP” block with an input A that is five-bits and returns an output F that is 32-bits. Given an input 

A the output F will reflect on a bit-wise operation that selects the equivalent location on F to go 

to high. For example, if A is zero then F(0) will be one while the rest are zeros. Likewise, if A is 

all ones, then F(31) will be one while the rest are zeros. This component is primarily used as a 

sub-component for the Register File to help enable the write lines to a specific register from the 

write-enable line and the selected register. 
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The “Registers” (register32) is a primitive sequential block in our design. It is a “non-

IP” block with inputs one-bit C, one-bit clock, and a 32-bit D. It has one 32-bit output named Q. 

This simple register file first checks if the clock is one a rising edge and if the C line (enable) is 

high. If these conditions are met, then D will over-write Q and the new data will be output. This 

sequential primitive is primarily used in the Register File as a sub-component to act as the 

registers. 

The “sign-extender” unit is a simple combinational unit which receives a 16-bit VHDL 

vector and extends the MSb, resulting in a signed 32-bit output.  

The “Shift-left-2” unit is another simple combinational unit which receives a 32-bit 

VHDL vector and shifts it to the left by 2 bits. This unit is implemented in a MIPs processor to 

increase the range of jump instructions.  

Using these modules, we created we were able to then link and connect them together in 

our “top_level” to add onto our original design from Project Phase 1. The Instruction output 

from our Instruction Memory is then fed into the correct spots on the Register File. The 

subsequent lines from the Register File are then connected to the ALU and Mux to ALU. The 

output of the ALU result is then fed back into the Write Data of the Register File. Currently there 

are no hardware pins used as the processor is self-contained using only the initialized memory. 

There are virtual pins used to show the progress of the system as virtual time moves. The probes 

include: ALU in/out (This is the Add4 ALU), ALU add by (Add4 ALU), PC in/out, instruction 

in/out, Register File Read Data 1 and 2, Register Write Enable, Write Register Number, and 

finally Write Register Data. 
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Pipelined (No Hazard Detection or Forwarding) 

 In addition to the components explained above which were used in all 3 implementations, 

the following components were used in the pipelined implementation. 

IF/ID Register 

The IF/ID register is the first auxiliary register, or “first-stage” in the pipelined 

implementation. It receives the incremented PC signal directly from the PC after incrementation, 

as well as the instruction directly from instruction memory. 

ID/EX Register 

The ID/Ex register is the second stage of the pipelined implementation. It receives the 

incremented PC count from IF/ID, the 2 outputs of the register file, the output of the sign-

extender, and the Rd and Rt registers of the decoded instruction. It also receives all output 

signals of the control unit. On each rising clock edge, this register passes all control signals 

except those which are used in the execution stage to the Ex/Mem register.  

EX/MEM Register 

The Ex/Mem register is the third stage of the pipelined implementation. It receives the 

offset PC value, the ALU result and ALU zero signals, the “read data 2” signal passed from the 

Id/Ex register, and the output of the destination register selecting mux. It also receives the 

memWrite, memRead, and Branch control signals. On each rising clock edge, this register passes 

all control signals except those used in the memory accessing stage to the Mem/WB register.  
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MEM/WB Register  

The Mem/WB register is the fourth and final stage of the pipelined implementation. It 

receives the MemToReg and RegWrite signals from the Ex/Mem register, as well as the output 

of data memory and ALU result passed from Ex/Mem. The Datapath outputs of this register are 

passed to the final multiplexer in the pipeline which is then sent back to the instruction decode 

stage for writing data back into the register file.  

Pipelined Implementation (W/Hazard Detection and Full Forwarding) 

 

Hazard Unit 

The hazard unit is used in the pipelined bonus implementation to detect data hazards that 

require a stall. It receives the RT register from the Decode / Execution register, as well as the RS 

register from the Fetch / Decode register, the RT register from the Fetch / Decode register, and 

finally the MemRead control signal from the Decode / Execution register. It then checks to see if 

the MemRead signal is high and checks if the Decode / Exection RT register is equal to the Fetch 

/ Decode RS register or if the Decode / Execution RT register is equal to the Fetch / Decode RT 

register. If that condition is met it then proceeds to set the stallSig output to one, sets the Fetch / 

Decode Write signal to zero and sets the PC write signal to zero as well. With stallSig set to one 

that forces all the control signals to be zero to be written to the Decode / Execution register 

which then implements our stall.  
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Forward Unit 

The forward unit is used in the pipelined bonus implementation to detect data hazards 

that require forwarding. It receives the RT register from the Decode / Execution register, the RS 

register from the Decode / Execution register, the RD register from the Execution / Memory 

register, the RD register from the Memory / Writeback register, the RegWrite control signal from 

the Execution / Memory register and finally the RegWrite control signal from the Memory / 

Writeback register. It then proceeds to check several different conditions. It first checks if any 

data needs to be forwarded from the Execution / Memory register and will set the outputs 

forwardA and forwardB to “10” if needed. Both do not need to be set, only one of them can be 

set if necessary. The next set of checks determine if any data needs to be forwarded from the 

Memory / Writeback register and will set the outputs forwardA and forwardB to “01” if needed. 

As stated, both do not need to be set, only one of them can be set if necessary. 

 

 

 

 

Device Selection 

 
  Figure 4. Snapshot of Device Selection (Same For all three Implementations) 
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Flow summaries 

 

Figure 5. Single-cycle Flow Summary 

 

 

Figure 6. Pipelined Flow Summary 
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Figure 7. Bonus Flow Summary 

 

 

RTL Views 

 

Figure 8. Single-cycle RTL Viewer 
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Figure 9. Pipelined RTL Viewer 

 

 

Figure 10. Bonus RTL Viewer 
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Technology Mapping 

 

Figure 11. Single-Cycle Technology Map (Post-Fitting) 
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Figure 12. Single-Cycle Technology Map (Post-Mapping) 

 

Figure 13. Pipelined Technology Map (Post-Fitting) 
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Figure 14. Pipelined Technology Map (Post-Mapping) 
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Figure 15. Bonus Technology Map (Post-Fitting) 

 

 

Figure 16. Bonus Technology Map (Post-Mapping) 
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Elaboration on Testbenches 

As was done for the previous phases of the project, the instructions (and this time the data 

memory) were loaded by use of “mif” files, and so the testbench is simply the process of 

providing a clock signal to the input of the system and reading/comparing the waveforms with 

the expected outputs. This is true for all 3 implementations and their associated 

testbenches/waveforms.  

 

Waveform Elaborations  

Single-Cycle Implementation 

 Figure 17. Single-cycle Waveforms 

Signal Breakdown 

From the above waveform we can see that we have the following signals: clk (the 

incoming clock), pc_out_probe (the output of the program counter), instruction_probe (the ouput 

of the instruction memory), readData1_probe (the Read Data 1 output out of the register file), 

readData2_probe (the Read Data 2 output out of the register file), writeData_probe (the data that 

gets written to the register file), dataMemoryAddress_probe (the address input to the data 

memory), dataMemory_writeData (the write data input to the data memory), 

dataMemory_out_probe (the output of the data memory), ALU_operation_probe (the control 
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signal to set the ALU operation), writeEnable_probe (control line that enables writes to the 

register file), branch_probe (this is the control signal branch, not the true branch signal PCSrc), 

ALUSrc_probe (the control signal ALUSrc), RegWrite_probe (the control write enable for the 

register file), MemWrite_probe (the control write enable for the data memory), and finally 

writeReg_sel_probe (the destination register number for the register file). 

Waveform Analysis 

The first four instructions preload our registers (addi t1 zero 0x8, addi t2 zero 0x4, addi t3 

zero 0x10, addi s0 zero 0x9, addi s1 zero 0x9). We can see at time 2.5 ns that an eight 

(writeData_probe) gets written to register nine (writeReg_sel_probe) (t1). This is confirmed as 

RegWrite_probe goes high at the same time. The next instruction then executes at time 7.5 ns 

that shows that a four (writeData_probe) gets written to register ten (writeReg_sel_probe) (t2). 

This is confirmed as RegWrite_probe goes high at the same time. The next instruction then 

executes at time 12.5 ns that shows that a sixteen (writeData_probe) gets written to register 

eleven (writeReg_sel_probe) (t3). This is confirmed as RegWrite_probe goes high at the same 

time. The next instruction then executes at time 17.5 ns that shows that a nine (writeData_probe) 

gets written to register sixteen (writeReg_sel_probe) (s0). This is confirmed as RegWrite_probe 

goes high at the same time. The next instruction then executes at time 22.5 that shows that a nine 

(writeData_probe) gets written to register seventeen (writeReg_sel_probe) (s1). This is 

confirmed as RegWrite_probe goes high at the same time. The next instruction is beq t1 t1 t2. 

This is executed at time 27.5 ns and we can see that the control line branchEnable_probe goes 

high but the PC does not jump. The value on the writeData_porbe does not get written as the 

RegWrite_probe goes low at that time. The next instruction is add t1 t1 t2. This instruction gets 

executed at 32.5 ns. We can see that twelve (writeData_probe) is set to write to register nine 



21 
 

  
 

(writeReg_sel_probe) (t1). This is confirmed by RegWrite_probe going high at the time which is 

expected. The next instruction to be executed is sw t3 0x64(t2). This is executed at time 37.5 ns 

and we can see that dataMemoryMem_write is set to sixteen at the time. This is confirmed to 

write as the control signal MemWrite_probe goes high at the time. The last instruction to execute 

is or t1 t1 t2. This executes at time 42.5 ns. We see on the waveform that writeData_probe writes 

a twelve to register number nine (writeReg_sel_probe) (t1) which is the correct result of twelve 

or four is equal to twelve. 

Pipelined Implementation 

Figure 18. Pipeline Waveforms 

 

Signal Breakdown 

From the above waveform we can see that we have the following signals: clk (the 

incoming clock), branchEnable (from the pipeline diagram this is PCSrc), pc_out (the program 

counter output), instruction (the output of the instruction memory), EXMEM_DataMemIn (the 

write data input to the data memory), dataMemWriteEnable (the control write enable line to 

write to the data memory), WB_writeData (the data that gets fed into the write data port on the 

register file), MEMWB_RegWrite (the write enable line for the register file), ALU_Operation 
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(the ALU control signal), MEMWB_writeReg_sel (the destination register to be written to on the 

register file), instructionDE_readData1_probe (data coming immediately off of Read Data 1 of 

the register file from the Decode / Execution pipeline register), instuctionDE_readData2_probe 

(data coming immediately off of Read Data 2 of the register file from the Decode / Execution 

pipeline register), and finally instructionDE_signExtend_probe (data coming off of the sign 

extender from the Decode / Execution pipeline register). 

Waveform Analysis 

The first four instructions we have executing are preloading the registers (addi t1 zero 

0x8, addi t2 zero 0x4, addi t3 zero 0x10, addi s0 zero 0x9, addi s1 zero 0x9). Due to the nature of 

pipelining this does not truly begin unit four clock cycles after the loading of the first instruction. 

Beginning at 17.5 ns we can see that an eight (WB_writeData) is being stored to register number 

nine (MEMWB_writeReg_sel) (t1) as expected. One clock cycle later at time 22.5 ns we can see 

that a four (WB_writeData) is being written to register number ten (MEMWB_writeReg_sel) (t2) 

as expected. One clock cycle later at time 27.5 ns we can see that a sixteen (WB_writeData) is 

being written to register number eleven (MEMWB_writeReg_sel) (t3) as expected. One clock 

cycle later at time 32.5 ns we can see that a nine is being written to register number sixteen 

(MEMWB_writeReg_sel) (s0) as expected. One clock cycle later at time 37.5 ns we can see that 

a nine (WB_writeData) is also being written to register number seventeen 

(MEMWB_writeReg_sel) (s1) as expected. We know that it has been successfully written due to 

the MEMWB_regWrite signal going high through these commands. The next instruction to 

execute is beq t1 t2 0x5. This command will check if t1 and t2 are equal then the PC will jump 

ahead by the commands offset, otherwise the PC will continue to count normally. Since t1 is 

loaded with eight and t2 is loaded with four the command fails and branchEnable does not go 
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high at time 42.5 ns. MEMWB_regWrite also goes low at this time to prevent the calculated 

value from being written to register ten (t2). The next instruction to execute is add t1 t1 t2. This 

should result in a twelve as t1 currently holds eight and t2 currently holds a four. Looking at our 

waveform at time 47.5 ns we can see that it does correctly calculate a twelve and proceeds to 

write the twelve (WB_writeData) to register number nine (MEMWB_writeReg_sel) (t1) as 

expected. The next instruction to execute is sw t3 0x64(t2). Looking at our waveform we can see 

the value of WB_writeData goes to 104 as it is the immediate value of 0x64 added to the value 

of t2 which is four. This value is being thrown from the Execution/Memory register to the 

address input of the data memory. This is shown at time 52.5 ns but since the value shown is 

from the Memory / Writeback register the correct time of arrival to the data memory is at time 

47.5 ns. At time 47.5 ns we can see that the value on EXMEM_dataMemIn goes to sixteen as 

expected due to the value of t3 being sixteen. The write is shown to be successful as the control 

value of dataMemWriteEnable goes high at time 47.5 ns. The final instruction to be executed is 

or t1,t1, t2. This should cause an or condition for the registers t1 and t2 and store into t1. The 

correct result of 8 (t1) or 4 (t2) should result in twelve which it does. This is shown at time 57.5 

ns with the twelve (WB_writeData) being written to register number eleven 

(MEMWB_writeReg_sel) (t1) which is expected. 
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Bonus Implementation 

Figure 19. Pipeline Bonus Waveform 

Signal Breakdown 

From the above waveform we can see that we have the following signals: clk (the 

incoming clock), branchEnable (From the Pipeline diagram this is PCSrc), pc_out (The program 

counter output), instructOUT (the output of the instruction memory), 

MEMWB_dataMemory_out (the output read data of the data me), dataMemWriteEnable (the 

control write enable line to write to the data memory), stallBit (one of the control signals off of 

the hazard unit to show that a stall has been issued), WB_writeData (the data that gets fed into 

the write data port on the register file), MEMWB_RegWrite (the write enable line for the register 

file), ALU_Operation (the ALU control signal), MEMWB_writeReg_sel (the destination register 

to be written to on the register file), MEMWB_memToReg (control value coming out of the 

Memory / Writeback register that controls MUX 3 to determine which data needs be forwarded 

to the write data of the register file),  instructionDE_readData1_probe (data coming immediately 

off of Read Data 1 of the register file from the Decode / Execution pipeline register), 

instuctionDE_readData2_probe (data coming immediately off of Read Data 2 of the register file 

from the Decode / Execution pipeline register), instructionDE_signExtend_probe (data coming 
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off of the sign extender from the Decode / Execution pipeline register), forwardAval (the output 

of the forward unit to control the forward A mux), and finally fowardBval (the output of the 

forward unit to control the forward B mux). 

Waveform Analysis 

The first four instructions we have executing are preloading the registers (addi t1 zero 

0x8, addi t2 zero 0x4, addi t4 zero 0x0, addi s3 zero 0x0, addi s1 zero 0x9). Due to the nature of 

pipelining this does not truly begin till four clock cycles after the loading of the first instruction. 

Beginning at 17.5 ns we can see that an eight (WB_writeData) is being stored to register number 

nine (MEMWB_writeReg_sel) (t1) as expected. One clock cycle later at time 22.5 ns we can see 

that a four (WB_writeData) is being written to register number ten (MEMWB_writeReg_sel) (t2) 

as expected. One clock cycle later at time 27.5 ns we can see that a zero (WB_writeData) is 

being written to register number twelve (MEMWB_writeReg_sel) (t4) as expected. One clock 

cycle later at time 32.5 ns we can see that a zero is being written to register number nineteen 

(MEMWB_writeReg_sel) (s3) as expected. One clock cycle later at time 37.5 ns we can see that 

a nine (WB_writeData) is also being written to register number seventeen 

(MEMWB_writeReg_sel) (s1) as expected. We know that it has been successfully written due to 

the MEMWB_regWrite signal going high through these commands. The next instruction to 

execute is beq t1 t2 0x5. This command will check if t1 and t2 are equal then the PC will jump 

ahead by the commands offset, otherwise the PC will continue to count normally. Since t1 is 

loaded with eight and t2 is loaded with four the command fails and branchEnable does not go 

high at time 42.5 ns. MEMWB_regWrite also goes low at this time to prevent the calculated 

value from being written to register ten (t2). The next instruction to execute is lw t1 0x8(t2). This 

instruction will load the value in the data memory at location twelve as it takes the immediate 
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value of eight and adds it with the four in t2. In our data memory mif file we have location 

twelve set to 24. We can see at time 47.5 ns that the signal MEMWB_dataMemory_out goes to 

twenty-four. We can see that this value (WB_writeData) is being written to register nine 

(MEMWB_writeReg_sel) (t1) with MEMWB_regWrite going high to enable write as well as the 

control signal MEMWB_memToReg going high to forward the data from the data memory to the 

register file using MUX 3. The next instruction to execute is add t1 t1 t2. However, since this is 

after a load word this presents a data hazard, to resolve a data hazard a stall must have been 

introduced to allow for the value from the data, then this value needs to be forwarded to the 

execution unit during the execution of the add t1 t1 t2 instruction. We can see that stallBit goes 

high at time 37.5 ns earlier in the pipeline. This is then shown on writeback at time 52.5 ns as 

there is the wrong result of six-teen that is trying to write to register 10 (t2) but is blocked by the 

stall as the control line MEMWB_regWrite has been set to zero. The correct result is then shown 

on the next cycle at time 57.5 ns of a twenty-eight (WB_writeData) being written to register nine 

(MEMWB_writeReg_sel) (t1). This is confirmed to write as MEMWB_regWrite goes high at 

this time. This is only possible due to the stall letting the value of twenty-four being written to 

the Memory / Writeback register and then being forwarded to the execution unit by forwardA 

with a value of one as shown on the waveform at time 47.5 ns. The next instruction is or t1 t1 t2. 

For this instruction to execute we need to forward the result of the previous instruction (add t1 t1 

t2) back to the execution unit so that the right value can be calculated, as the twenty-eight has not 

been written to t1 yet. For this to execute correctly we need to take the twenty-eight that is now 

in the Execution / Memory register and forward its value to the Forward A Mux. This is shown 

on the waveform as the value of forwardA goes to two earlier in the pipeline at time 52.5 ns. The 

correct result of twenty-eight or four is equal to twenty-eight (WB_writeData) is then shown to 
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be written to register nine (MEMWB_writeReg_sel) (t1) at time 62.5 ns. This is confirmed to 

write as MEMWB_regWrite goes high at this time. 

 

Setup Slack Analysis 

 

 

Figure 20. Single-Cycle Setup Slack Analysis 

 

Figure 21. Pipelined Setup Slack Analysis 
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Figure 22. Bonus Setup Slack Analysis 

 

Hold Slack Analysis: 

 

 

Figure 23. Single-Cycle Hold Slack Analysis 
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Figure 24. Pipelined Hold Slack Analysis 

  

Figure 25. Bonus Hold Slack Analysis 

 

Fmax Analysis: 

 

Figure 26. Single-Cycle Fmax 

 

 
Figure 27. Pipelined Fmax 
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Figure 28. Bonus Fmax 

 

Improvements from Pipelining 

There is no improvement in latency from utilizing a pipelined design, and in fact it is 

worse under conditions where the pipeline is frequently flushed. However, the real potential 

benefit for a pipelined implementation comes from the increase in throughput of the system 

when the pipeline is kept full for much of the time.  

Due to the decreased amount of logic between each set of launch and latch flipflops in the 

system, the clock frequency can be increased from 63.21 MHz to 96.51 MHz for the pipelined 

implementation, yielding an improvement in the Fmax metric of ~52.68%. With full-forwarding 

and infrequent branch operations, the increase in performance is significant.  

 

Hardware overhead related to pipelining 

Table 1. Hardware Requirements for Single cycle vs. Pipelined Implementations 

 Single Cycle Pipelined 
Logic Gates 1,862 gates 2,001 gates 

Memory 16,384 Mem Elements 16,384 Mem Elements 
Total Registers 1,054 registers 1,380 registers 

 

The pipelined implementation requires a 7% increase in logic gates, and a 30.92% increase in 

total registers relative to the single-cycle implementation. The number of memory elements required 

remains the same for both implementations.  
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Performance Penalty of Hazard Detection and Forwarding Units 

Table 2. Performance Penalty of Hazard Detection/Forwarding 

 Single Cycle Pipelined Pipelined W/Hazard & 
Forwarding Units 

Fmax 63.21 MHz 96.51 MHz 78.72 MHz 

 

Implementing the hazard detection & forwarding units results in an 18.43% reduction in 

performance. However, even with the hazard and forwarding units installed, the processor is still 

24.53% faster than the single cycle implementation. Therefore, it can potentially provide a boost in 

throughput performance under circumstances where the pipeline remains filled for most of the 

execution time of a given program.  

 

Hardware Overhead of Hazard Detection and Forwarding Units 

Table 2. Hardware Requirements for all 3 Implementations 

 Single Cycle Pipelined Pipelined W/Hazard & 
Forwarding Units 

Logic Gates 1,862 gates 2,001 gates 2,081 gates 
Memory 16,384 Mem Elements 16,384 Mem Elements 16,384 Mem Elements 

Total Registers 1,054 registers 1,380 registers 1,385 registers 
 

For our design, implementing hazard detection and forwarding requires a 11.76% increase in 

logic gates relative to the single cycle implementation and a 3% increase in logic gates relative to the 

pipelined implementation. It requires a 31.4% increase in total registers relative to the single cycle 

implementation and a 0.36% increase in total registers relative to the pipelined implementation. 


