
The Addison-Wesley Signature Series

Refactoring
Improving the Design of Existing Code

Martin Fowler
with contributions by
Kent Beck

“ Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”

 —M. Fowler (1999)

S e c o n d E d i t i o n

Fow
ler

S
e

c
o

n
d

 E
d

it
io

n
R

efactoring

Refactoring
S e c o n d E d i t i o n
Fully Revised and Updated—Includes
New Refactorings and Code Examples

S o f t w a r e e n g i n e e r i n g

or more than twenty years, experienced programmers worldwide have relied on
 Martin Fowler’s Refactoring to improve the design of existing code and to enhance

 software maintainability, as well as to make existing code easier to understand.

This eagerly awaited new edition has been fully updated to reflect crucial changes in the
programming landscape. Refactoring, Second Edition, features an updated catalog of
refactorings and includes JavaScript code examples, as well as new functional examples that
demonstrate refactoring without classes.

Like the original, this edition explains what refactoring is; why you should refactor; how to
recognize code that needs refactoring; and how to actually do it successfully, no matter what
language you use.

 • Understand the process and general principles of refactoring

 • Quickly apply useful refactorings to make a program easier to comprehend and change

 • Recognize “bad smells” in code that signal opportunities to refactor

 • Explore the refactorings, each with explanations, motivation, mechanics, and

simple examples

 • Build solid tests for your refactorings

 • Recognize tradeoffs and obstacles to refactoring

Includes free access to the canonical web edition, with even more refactoring resources.
(See inside the book for details about how to access the web edition.)

MARTIN FOWLER is Chief Scientist at ThoughtWorks. He describes himself as “an author,
speaker, consultant and general loud-mouth on software development.” Fowler concentrates
on designing enterprise software: exploring what makes a good design and what practices are
needed to create one.

F

ISBN-13:
ISBN-10:

978-0-13-475759-9
0-13-475759-9

9 7 8 0 1 3 4 7 5 7 5 9 9

5 5 9 9 9

$59.99 U.S. / $74.99 CANADA

informit.com/awss | martinfowler.com

Cover photograph by Martin Fowler

9780134757599_Fowler_Refactoring_2e_Case.indd 1 9/19/18 12:15 PM

FREE
CHAPTER

How do I begin to talk about refactoring? The traditional way is by introducing
the history of the subject, broad principles, and the like. When somebody does
that at a conference, I get slightly sleepy. My mind starts wandering, with a
low-priority background process polling the speaker until they give an example.

The examples wake me up because I can see what is going on. With principles,
it is too easy to make broad generalizations—and too hard to figure out how to
apply things. An example helps make things clear.

So I’m going to start this book with an example of refactoring. I’ll talk about
how refactoring works and will give you a sense of the refactoring process. I can
then do the usual principles-style introduction in the next chapter.

With any introductory example, however, I run into a problem. If I pick a large
program, describing it and how it is refactored is too complicated for a mortal
reader to work through. (I tried this with the original book—and ended up
throwing away two examples, which were still pretty small but took over a hun-
dred pages each to describe.) However, if I pick a program that is small enough
to be comprehensible, refactoring does not look like it is worthwhile.

I’m thus in the classic bind of anyone who wants to describe techniques that
are useful for real-world programs. Frankly, it is not worth the effort to do all
the refactoring that I’m going to show you on the small program I will be using.
But if the code I’m showing you is part of a larger system, then the refactoring
becomes important. Just look at my example and imagine it in the context of a
much larger system.

The Starting Point

In the first edition of this book, my starting program printed a bill from a video
rental store, which may now lead many of you to ask: “What’s a video rental
store?” Rather than answer that question, I’ve reskinned the example to something
that is both older and still current.

1

Chapter 1

Refactoring: A First Example

Image a company of theatrical players who go out to various events performing
plays. Typically, a customer will request a few plays and the company charges
them based on the size of the audience and the kind of play they perform. There
are currently two kinds of plays that the company performs: tragedies and
comedies. As well as providing a bill for the performance, the company gives its
customers “volume credits” which they can use for discounts on future perfor-
mances—think of it as a customer loyalty mechanism.

The performers store data about their plays in a simple JSON file that looks
something like this:

plays.json…
 {
 "hamlet": {"name": "Hamlet", "type": "tragedy"},
 "as-like": {"name": "As You Like It", "type": "comedy"},
 "othello": {"name": "Othello", "type": "tragedy"}
 }

The data for their bills also comes in a JSON file:

invoices.json…
 [
 {
 "customer": "BigCo",
 "performances": [
 {
 "playID": "hamlet",
 "audience": 55
 },
 {
 "playID": "as-like",
 "audience": 35
 },
 {
 "playID": "othello",
 "audience": 40
 }
]
 }
]

The code that prints the bill is this simple function:

 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

Chapter 1 Refactoring: A First Example2

 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = 0;

 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;
 }

Running that code on the test data files above results in the following output:

 Statement for BigCo
 Hamlet: $650.00 (55 seats)
 As You Like It: $580.00 (35 seats)
 Othello: $500.00 (40 seats)
 Amount owed is $1,730.00
 You earned 47 credits

Comments on the Starting Program

What are your thoughts on the design of this program? The first thing I’d say is
that it’s tolerable as it is—a program so short doesn’t require any deep structure
to be comprehensible. But remember my earlier point that I have to keep examples

3Comments on the Starting Program

small. Imagine this program on a larger scale—perhaps hundreds of lines long.
At that size, a single inline function is hard to understand.

Given that the program works, isn’t any statement about its structure merely
an aesthetic judgment, a dislike of “ugly” code? After all, the compiler doesn’t
care whether the code is ugly or clean. But when I change the system, there is
a human involved, and humans do care. A poorly designed system is hard to
change—because it is difficult to figure out what to change and how these changes
will interact with the existing code to get the behavior I want. And if it is hard
to figure out what to change, there is a good chance that I will make mistakes
and introduce bugs.

Thus, if I’m faced with modifying a program with hundreds of lines of code,
I’d rather it be structured into a set of functions and other program elements that
allow me to understand more easily what the program is doing. If the program
lacks structure, it’s usually easier for me to add structure to the program first,
and then make the change I need.

When you have to add a fea-
ture to a program but the code
is not structured in a conve-
nient way, first refactor the
program to make it easy to add
the feature, then add the
feature.

In this case, I have a couple of changes
that the users would like to make. First,
they want a statement printed in HTML.
Consider what impact this change would
have. I’m faced with adding conditional
statements around every statement that
adds a string to the result. That will add
a host of complexity to the function.
Faced with that, most people prefer to
copy the method and change it to emit
HTML. Making a copy may not seem too
onerous a task, but it sets up all sorts of

problems for the future. Any changes to the charging logic would force me to
update both methods—and to ensure they are updated consistently. If I’m writing
a program that will never change again, this kind of copy-and-paste is fine. But
if it’s a long-lived program, then duplication is a menace.

This brings me to a second change. The players are looking to perform more
kinds of plays: they hope to add history, pastoral, pastoral-comical, historical-
pastoral, tragical-historical, tragical-comical-historical-pastoral, scene individable,
and poem unlimited to their repertoire. They haven’t exactly decided yet what
they want to do and when. This change will affect both the way their plays are
charged for and the way volume credits are calculated. As an experienced devel-
oper I can be sure that whatever scheme they come up with, they will change it
again within six months. After all, when feature requests come, they come not
as single spies but in battalions.

Again, that statement method is where the changes need to be made to deal with
changes in classification and charging rules. But if I copy statement to htmlStatement,
I’d need to ensure that any changes are consistent. Furthermore, as the rules

Chapter 1 Refactoring: A First Example4

grow in complexity, it’s going to be harder to figure out where to make the
changes and harder to do them without making a mistake.

Let me stress that it’s these changes that drive the need to perform refactoring.
If the code works and doesn’t ever need to change, it’s perfectly fine to leave it
alone. It would be nice to improve it, but unless someone needs to understand
it, it isn’t causing any real harm. Yet as soon as someone does need to under-
stand how that code works, and struggles to follow it, then you have to do
something about it.

The First Step in Refactoring

Whenever I do refactoring, the first step is always the same. I need to ensure I
have a solid set of tests for that section of code. The tests are essential because
even though I will follow refactorings structured to avoid most of the opportunities
for introducing bugs, I’m still human and still make mistakes. The larger a pro-
gram, the more likely it is that my changes will cause something to break
inadvertently—in the digital age, frailty’s name is software.

Since the statement returns a string, what I do is create a few invoices, give each
invoice a few performances of various kinds of plays, and generate the statement
strings. I then do a string comparison between the new string and some refer-
ence strings that I have hand-checked. I set up all of these tests using a testing
framework so I can run them with just a simple keystroke in my development
environment. The tests take only a few seconds to run, and as you will see, I run
them often.

An important part of the tests is the way they report their results. They either
go green, meaning that all the strings are identical to the reference strings, or
red, showing a list of failures—the lines that turned out differently. The tests are
thus self-checking. It is vital to make tests self-checking. If I don’t, I’d end up
spending time hand-checking values from the test against values on a desk pad,
and that would slow me down. Modern testing frameworks provide all the features
needed to write and run self-checking tests.

Before you start refactoring,
make sure you have a solid
suite of tests. These tests must
be self-checking.

As I do the refactoring, I’ll lean on the
tests. I think of them as a bug detector
to protect me against my own mistakes.
By writing what I want twice, in the code
and in the test, I have to make the mis-
take consistently in both places to fool
the detector. By double-checking my
work, I reduce the chance of doing
something wrong. Although it takes time to build the tests, I end up saving that
time, with considerable interest, by spending less time debugging. This is such
an important part of refactoring that I devote a full chapter to it (Building Tests
(85)).

5The First Step in Refactoring

Decomposing the statement Function

When refactoring a long function like this, I mentally try to identify points that
separate different parts of the overall behavior. The first chunk that leaps to my
eye is the switch statement in the middle.

function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = 0;

 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;
}

Chapter 1 Refactoring: A First Example6

As I look at this chunk, I conclude that it’s calculating the charge for one per-
formance. That conclusion is a piece of insight about the code. But as Ward
Cunningham puts it, this understanding is in my head—a notoriously volatile
form of storage. I need to persist it by moving it from my head back into the
code itself. That way, should I come back to it later, the code will tell me what
it’s doing—I don’t have to figure it out again.

The way to put that understanding into code is to turn that chunk of code into
its own function, naming it after what it does—something like amountFor(aPerformance).
When I want to turn a chunk of code into a function like this, I have a procedure
for doing it that minimizes my chances of getting it wrong. I wrote down this
procedure and, to make it easy to reference, named it Extract Function (106).

First, I need to look in the fragment for any variables that will no longer be in
scope once I’ve extracted the code into its own function. In this case, I have three:
perf, play, and thisAmount. The first two are used by the extracted code, but not
modified, so I can pass them in as parameters. Modified variables need more
care. Here, there is only one, so I can return it. I can also bring its initialization
inside the extracted code. All of which yields this:

function statement…
 function amountFor(perf, play) {
 let thisAmount = 0;
 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return thisAmount;
 }

When I use a header like “function someName…” in italics for some code, that means
that the following code is within the scope of the function, file, or class named in the
header. There is usually other code within that scope that I won’t show, as I’m not
discussing it at the moment.

The original statement code now calls this function to populate thisAmount:

7Decomposing the statement Function

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = amountFor(perf, play);

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Once I’ve made this change, I immediately compile and test to see if I’ve broken
anything. It’s an important habit to test after every refactoring, however simple.
Mistakes are easy to make—at least, I find them easy to make. Testing after each
change means that when I make a mistake, I only have a small change to consider
in order to spot the error, which makes it far easier to find and fix. This is the
essence of the refactoring process: small changes and testing after each change.
If I try to do too much, making a mistake will force me into a tricky debugging
episode that can take a long time. Small changes, enabling a tight feedback loop,
are the key to avoiding that mess.

I use compile here to mean doing whatever is needed to make the JavaScript executable.
Since JavaScript is directly executable, that may mean nothing, but in other cases it
may mean moving code to an output directory and/or using a processor such as Babel
[babel].

Refactoring changes the pro-
grams in small steps, so if you
make a mistake, it is easy to
find where the bug is.

This being JavaScript, I can extract
amountFor into a nested function of statement.
This is helpful as it means I don’t have
to pass data that’s inside the scope of the
containing function to the newly
extracted function. That doesn’t make a
difference in this case, but it’s one less
issue to deal with.

Chapter 1 Refactoring: A First Example8

In this case the tests passed, so my next step is to commit the change to my
local version control system. I use a version control system, such as git or mercu-
rial, that allows me to make private commits. I commit after each successful
refactoring, so I can easily get back to a working state should I mess up later. I
then squash changes into more significant commits before I push the changes to
a shared repository.

Extract Function (106) is a common refactoring to automate. If I was programming
in Java, I would have instinctively reached for the key sequence for my IDE to
perform this refactoring. As I write this, there is no such robust support for this
refactoring in JavaScript tools, so I have to do this manually. It’s not hard, although
I have to be careful with those locally scoped variables.

Once I’ve used Extract Function (106), I take a look at what I’ve extracted to see
if there are any quick and easy things I can do to clarify the extracted function.
The first thing I do is rename some of the variables to make them clearer, such
as changing thisAmount to result.

function statement…
 function amountFor(perf, play) {
 let result = 0;
 switch (play.type) {
 case "tragedy":

result = 40000;
 if (perf.audience > 30) {

result += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":

result = 30000;
 if (perf.audience > 20) {

result += 10000 + 500 * (perf.audience - 20);
 }

result += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return result;
 }

It’s my coding standard to always call the return value from a function “result”.
That way I always know its role. Again, I compile, test, and commit. Then I move
onto the first argument.

9Decomposing the statement Function

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return result;
 }

Again, this is following my coding style. With a dynamically typed language
such as JavaScript, it’s useful to keep track of types—hence, my default name for
a parameter includes the type name. I use an indefinite article with it unless there
is some specific role information to capture in the name. I learned this convention
from Kent Beck [Beck SBPP] and continue to find it helpful.

Any fool can write code that a
computer can understand.
Good programmers write code
that humans can understand.

Is this renaming worth the effort? Ab-
solutely. Good code should clearly com-
municate what it is doing, and variable
names are a key to clear code. Never be
afraid to change names to improve
clarity. With good find-and-replace tools,
it is usually not difficult; testing, and
static typing in a language that supports

it, will highlight any occurrences you miss. And with automated refactoring tools,
it’s trivial to rename even widely used functions.

The next item to consider for renaming is the play parameter, but I have a
different fate for that.

Removing the play Variable

As I consider the parameters to amountFor, I look to see where they come from.
aPerformance comes from the loop variable, so naturally changes with each iteration

Chapter 1 Refactoring: A First Example10

through the loop. But play is computed from the performance, so there’s no need
to pass it in as a parameter at all—I can just recalculate it within amountFor. When
I’m breaking down a long function, I like to get rid of variables like play, because
temporary variables create a lot of locally scoped names that complicate
extractions. The refactoring I will use here is Replace Temp with Query (178).

I begin by extracting the right-hand side of the assignment into a function.

function statement…
 function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = playFor(perf);
 let thisAmount = amountFor(perf, play);

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I compile-test-commit, and then use Inline Variable (123).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

11Decomposing the statement Function

 for (let perf of invoice.performances) {
const play = playFor(perf);

 let thisAmount = amountFor(perf, playFor(perf));

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I compile-test-commit. With that inlined, I can then apply Change Function
Declaration (124) to amountFor to remove the play parameter. I do this in two steps.
First, I use the new function inside amountFor.

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }

I compile-test-commit, and then delete the parameter.

Chapter 1 Refactoring: A First Example12

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 let thisAmount = amountFor(perf, playFor(perf));

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }

And compile-test-commit again.

13Decomposing the statement Function

This refactoring alarms some programmers. Previously, the code to look up
the play was executed once in each loop iteration; now, it’s executed thrice. I’ll
talk about the interplay of refactoring and performance later, but for the moment
I’ll just observe that this change is unlikely to significantly affect performance,
and even if it were, it is much easier to improve the performance of a well-factored
code base.

The great benefit of removing local variables is that it makes it much easier to
do extractions, since there is less local scope to deal with. Indeed, usually I’ll
take out local variables before I do any extractions.

Now that I’m done with the arguments to amountFor, I look back at where it’s
called. It’s being used to set a temporary variable that’s not updated again, so I
apply Inline Variable (123).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Extracting Volume Credits

Here’s the current state of the statement function body:

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

Chapter 1 Refactoring: A First Example14

 for (let perf of invoice.performances) {

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Now I get the benefit from removing the play variable as it makes it easier to
extract the volume credits calculation by removing one of the locally scoped
variables.

I still have to deal with the other two. Again, perf is easy to pass in, but
volumeCredits is a bit more tricky as it is an accumulator updated in each pass of
the loop. So my best bet is to initialize a shadow of it inside the extracted function
and return it.

function statement…
 function volumeCreditsFor(perf) {
 let volumeCredits = 0;
 volumeCredits += Math.max(perf.audience - 30, 0);
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);
 return volumeCredits;
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I remove the unnecessary (and, in this case, downright misleading) comment.

15Decomposing the statement Function

I compile-test-commit that, and then rename the variables inside the new
function.

function statement…
 function volumeCreditsFor(aPerformance) {
 let result = 0;

result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

I’ve shown it in one step, but as before I did the renames one at a time, with
a compile-test-commit after each.

Removing the format Variable

Let’s look at the main statement method again:

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

As I suggested before, temporary variables can be a problem. They are only
useful within their own routine, and therefore they encourage long, complex
routines. My next move, then, is to replace some of them. The easiest one is
format. This is a case of assigning a function to a temp, which I prefer to replace
with a declared function.

function statement…
 function format(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber);
 }

Chapter 1 Refactoring: A First Example16

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Although changing a function variable to a declared function is a refactoring, I haven’t
named it and included it in the catalog. There are many refactorings that I didn’t feel
important enough for that. This one is both simple to do and relatively rare, so I didn’t
think it was worthwhile.

I’m not keen on the name—“format” doesn’t really convey enough of what it’s
doing. “formatAsUSD” would be a bit too long-winded since it’s being used in a
string template, particularly within this small scope. I think the fact that it’s for-
matting a currency amount is the thing to highlight here, so I pick a name that
suggests that and apply Change Function Declaration (124).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

function statement…
 function usd(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

17Decomposing the statement Function

Naming is both important and tricky. Breaking a large function into smaller
ones only adds value if the names are good. With good names, I don’t have to
read the body of the function to see what it does. But it’s hard to get names right
the first time, so I use the best name I can think of for the moment, and don’t
hesitate to rename it later. Often, it takes a second pass through some code to
realize what the best name really is.

As I’m changing the name, I also move the duplicated division by 100 into the
function. Storing money as integer cents is a common approach—it avoids
the dangers of storing fractional monetary values as floats but allows me to use
arithmetic operators. Whenever I want to display such a penny-integer number,
however, I need a decimal, so my formatting function should take care of the
division.

Removing Total Volume Credits

My next target variable is volumeCredits. This is a trickier case, as it’s built up during
the iterations of the loop. My first move, then, is to use Split Loop (227) to
separate the accumulation of volumeCredits.

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;

 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

With that done, I can use Slide Statements (223) to move the declaration of the
variable next to the loop.

Chapter 1 Refactoring: A First Example18

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 let volumeCredits = 0;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Gathering together everything that updates the volumeCredits variable makes it
easier to do Replace Temp with Query (178). As before, the first step is to apply
Extract Function (106) to the overall calculation of the variable.

function statement…
 function totalVolumeCredits() {
 let volumeCredits = 0;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }
 return volumeCredits;
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 let volumeCredits = totalVolumeCredits();
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Once everything is extracted, I can apply Inline Variable (123):

19Decomposing the statement Function

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

Let me pause for a bit to talk about what I’ve just done here. Firstly, I know
readers will again be worrying about performance with this change, as many
people are wary of repeating a loop. But most of the time, rerunning a loop like
this has a negligible effect on performance. If you timed the code before and
after this refactoring, you would probably not notice any significant change in
speed—and that’s usually the case. Most programmers, even experienced ones,
are poor judges of how code actually performs. Many of our intuitions are broken
by clever compilers, modern caching techniques, and the like. The performance
of software usually depends on just a few parts of the code, and changes anywhere
else don’t make an appreciable difference.

But “mostly” isn’t the same as “alwaysly.” Sometimes a refactoring will have a
significant performance implication. Even then, I usually go ahead and do it, be-
cause it’s much easier to tune the performance of well-factored code. If I introduce
a significant performance issue during refactoring, I spend time on performance
tuning afterwards. It may be that this leads to reversing some of the refactoring
I did earlier—but most of the time, due to the refactoring, I can apply a more ef-
fective performance-tuning enhancement instead. I end up with code that’s both
clearer and faster.

So, my overall advice on performance with refactoring is: Most of the time you
should ignore it. If your refactoring introduces performance slow-downs, finish
refactoring first and do performance tuning afterwards.

The second aspect I want to call your attention to is how small the steps were
to remove volumeCredits. Here are the four steps, each followed by compiling, testing,
and committing to my local source code repository:

Split Loop (227) to isolate the accumulation

Slide Statements (223) to bring the initializing code next to the accumulation

Extract Function (106) to create a function for calculating the total

Inline Variable (123) to remove the variable completely

Chapter 1 Refactoring: A First Example20

I confess I don’t always take quite as short steps as these—but whenever things
get difficult, my first reaction is to take shorter steps. In particular, should a test
fail during a refactoring, if I can’t immediately see and fix the problem, I’ll revert
to my last good commit and redo what I just did with smaller steps. That works
because I commit so frequently and because small steps are the key to moving
quickly, particularly when working with difficult code.

I then repeat that sequence to remove totalAmount. I start by splitting the loop
(compile-test-commit), then I slide the variable initialization (compile-test-commit),
and then I extract the function. There is a wrinkle here: The best name for the
function is “totalAmount”, but that’s the name of the variable, and I can’t have
both at the same time. So I give the new function a random name when I extract
it (and compile-test-commit).

function statement…
 function appleSauce() {
 let totalAmount = 0;
 for (let perf of invoice.performances) {
 totalAmount += amountFor(perf);
 }
 return totalAmount;
 }

top level…
 function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 let totalAmount = appleSauce();

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

Then I inline the variable (compile-test-commit) and rename the function to
something more sensible (compile-test-commit).

top level…
 function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

21Decomposing the statement Function

function statement…
 function totalAmount() {
 let totalAmount = 0;
 for (let perf of invoice.performances) {
 totalAmount += amountFor(perf);
 }
 return totalAmount;
 }

I also take the opportunity to change the names inside my extracted functions
to adhere to my convention.

function statement…
 function totalAmount() {
 let result = 0;
 for (let perf of invoice.performances) {

result += amountFor(perf);
 }
 return result;
 }
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {

result += volumeCreditsFor(perf);
 }
 return result;
 }

Status: Lots of Nested Functions

Now is a good time to pause and take a look at the overall state of the code:

function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += amountFor(perf);
 }
 return result;
 }

Chapter 1 Refactoring: A First Example22

function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += volumeCreditsFor(perf);
 }
 return result;
 }

function usd(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }
 }

The structure of the code is much better now. The top-level statement function
is now just seven lines of code, and all it does is laying out the printing of the
statement. All the calculation logic has been moved out to a handful of supporting
functions. This makes it easier to understand each individual calculation as well
as the overall flow of the report.

23Status: Lots of Nested Functions

Splitting the Phases of Calculation and Formatting

So far, my refactoring has focused on adding enough structure to the function so
that I can understand it and see it in terms of its logical parts. This is often the
case early in refactoring. Breaking down complicated chunks into small pieces is
important, as is naming things well. Now, I can begin to focus more on the
functionality change I want to make—specifically, providing an HTML version of
this statement. In many ways, it’s now much easier to do. With all the calculation
code split out, all I have to do is write an HTML version of the seven lines
of code at the top. The problem is that these broken-out functions are nested
within the textual statement method, and I don’t want to copy and paste them
into a new function, however well organized. I want the same calculation functions
to be used by the text and HTML versions of the statement.

There are various ways to do this, but one of my favorite techniques is Split
Phase (154). My aim here is to divide the logic into two parts: one that calculates
the data required for the statement, the other that renders it into text or HTML.
The first phase creates an intermediate data structure that it passes to the second.

I start a Split Phase (154) by applying Extract Function (106) to the code that
makes up the second phase. In this case, that’s the statement printing code, which
is in fact the entire content of statement. This, together with all the nested functions,
goes into its own top-level function which I call renderPlainText.

function statement (invoice, plays) {
 return renderPlainText(invoice, plays);
}

function renderPlainText(invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {...}
 function totalVolumeCredits() {...}
 function usd(aNumber) {...}
 function volumeCreditsFor(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}

Chapter 1 Refactoring: A First Example24

I do my usual compile-test-commit, then create an object that will act as my
intermediate data structure between the two phases. I pass this data object in as
an argument to renderPlainText (compile-test-commit).

function statement (invoice, plays) {
 const statementData = {};
 return renderPlainText(statementData, invoice, plays);
}

function renderPlainText(data, invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {...}
 function totalVolumeCredits() {...}
 function usd(aNumber) {...}
 function volumeCreditsFor(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}

I now examine the other arguments used by renderPlainText. I want to move
the data that comes from them into the intermediate data structure, so that all the
calculation code moves into the statement function and renderPlainText operates
solely on data passed to it through the data parameter.

My first move is to take the customer and add it to the intermediate object
(compile-test-commit).

function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 return renderPlainText(statementData, invoice, plays);
}

function renderPlainText(data, invoice, plays) {
 let result = `Statement for ${data.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

25Splitting the Phases of Calculation and Formatting

Similarly, I add the performances, which allows me to delete the invoice
parameter to renderPlainText (compile-test-commit).

top level…
 function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances;
 return renderPlainText(statementData, invoice, plays);
 }

 function renderPlainText(data, plays) {
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function renderPlainText…
 function totalAmount() {
 let result = 0;
 for (let perf of data.performances) {
 result += amountFor(perf);
 }
 return result;
 }
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of data.performances) {
 result += volumeCreditsFor(perf);
 }
 return result;
 }

Now I’d like the play name to come from the intermediate data. To do this, I
need to enrich the performance record with data from the play (compile-test-
commit).

Chapter 1 Refactoring: A First Example26

function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 return renderPlainText(statementData, plays);

 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 return result;
 }

At the moment, I’m just making a copy of the performance object, but I’ll
shortly add data to this new record. I take a copy because I don’t want to modify
the data passed into the function. I prefer to treat data as immutable as much as
I can—mutable state quickly becomes something rotten.

The idiom result = Object.assign({}, aPerformance) looks very odd to people unfamiliar to
JavaScript. It performs a shallow copy. I’d prefer to have a function for this, but it’s one
of those cases where the idiom is so baked into JavaScript usage that writing my own
function would look out of place for JavaScript programmers.

Now I have a spot for the play, I need to add it. To do that, I need to apply
Move Function (198) to playFor and statement (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

I then replace all the references to playFor in renderPlainText to use the data instead
(compile-test-commit).

27Splitting the Phases of Calculation and Formatting

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

 function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

 function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

I then move amountFor in a similar way (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 return result;
 }

function amountFor(aPerformance) {...}

Chapter 1 Refactoring: A First Example28

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

 function totalAmount() {
 let result = 0;
 for (let perf of data.performances) {
 result += perf.amount;
 }
 return result;
 }

Next, I move the volume credits calculation (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

function volumeCreditsFor(aPerformance) {...}

function renderPlainText…
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of data.performances) {
 result += perf.volumeCredits;
 }
 return result;
 }

Finally, I move the two calculations of the totals.

function statement…
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 statementData.totalAmount = totalAmount(statementData);
 statementData.totalVolumeCredits = totalVolumeCredits(statementData);
 return renderPlainText(statementData, plays);

 function totalAmount(data) {...}
 function totalVolumeCredits(data) {...}

29Splitting the Phases of Calculation and Formatting

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(data.totalAmount)}\n`;
 result += `You earned ${data.totalVolumeCredits} credits\n`;
 return result;

Although I could have modified the bodies of these totals functions to use the
statementData variable (as it’s within scope), I prefer to pass the explicit parameter.

And, once I’m done with compile-test-commit after the move, I can’t resist a
couple quick shots of Replace Loop with Pipeline (231).

function renderPlainText…
 function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }
 function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

I now extract all the first-phase code into its own function (compile-test-commit).

top level…
 function statement (invoice, plays) {
 return renderPlainText(createStatementData(invoice, plays));
 }

 function createStatementData(invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 statementData.totalAmount = totalAmount(statementData);
 statementData.totalVolumeCredits = totalVolumeCredits(statementData);
 return statementData;

Since it’s clearly separate now, I move it to its own file (and alter the name of
the returned result to match my usual convention).

statement.js…
 import createStatementData from './createStatementData.js';

Chapter 1 Refactoring: A First Example30

createStatementData.js…
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

 function enrichPerformance(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}
 function volumeCreditsFor(aPerformance) {...}
 function totalAmount(data) {...}
 function totalVolumeCredits(data) {...}

One final swing of compile-test-commit—and now it’s easy to write an HTML
version.

statement.js…
 function htmlStatement (invoice, plays) {
 return renderHtml(createStatementData(invoice, plays));
 }
 function renderHtml (data) {
 let result = `<h1>Statement for ${data.customer}</h1>\n`;
 result += "<table>\n";
 result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
 for (let perf of data.performances) {
 result += ` <tr><td>${perf.play.name}</td><td>${perf.audience}</td>`;
 result += `<td>${usd(perf.amount)}</td></tr>\n`;
 }
 result += "</table>\n";
 result += `<p>Amount owed is ${usd(data.totalAmount)}</p>\n`;
 result += `<p>You earned ${data.totalVolumeCredits} credits</p>\n`;
 return result;
 }

function usd(aNumber) {...}

(I moved usd to the top level, so that renderHtml could use it.)

Status: Separated into Two Files (and Phases)

This is a good moment to take stock again and think about where the code is
now. I have two files of code.

31Status: Separated into Two Files (and Phases)

statement.js
 import createStatementData from './createStatementData.js';
function statement (invoice, plays) {

 return renderPlainText(createStatementData(invoice, plays));
 }
function renderPlainText(data, plays) {

 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(data.totalAmount)}\n`;
 result += `You earned ${data.totalVolumeCredits} credits\n`;
 return result;
 }
function htmlStatement (invoice, plays) {

 return renderHtml(createStatementData(invoice, plays));
 }
function renderHtml (data) {

 let result = `<h1>Statement for ${data.customer}</h1>\n`;
 result += "<table>\n";
 result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
 for (let perf of data.performances) {
 result += ` <tr><td>${perf.play.name}</td><td>${perf.audience}</td>`;
 result += `<td>${usd(perf.amount)}</td></tr>\n`;
 }
 result += "</table>\n";
 result += `<p>Amount owed is ${usd(data.totalAmount)}</p>\n`;
 result += `<p>You earned ${data.totalVolumeCredits} credits</p>\n`;
 return result;
 }
function usd(aNumber) {

 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

createStatementData.js
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

Chapter 1 Refactoring: A First Example32

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

I have more code than I did when I started: 70 lines (not counting htmlStatement)
as opposed to 44, mostly due to the extra wrapping involved in putting things
in functions. If all else is equal, more code is bad—but rarely is all else equal.
The extra code breaks up the logic into identifiable parts, separating the calcula-
tions of the statements from the layout. This modularity makes it easier for me
to understand the parts of the code and how they fit together. Brevity is the soul
of wit, but clarity is the soul of evolvable software. Adding this modularity allows
to me to support the HTML version of the code without any duplication of the
calculations.

33Status: Separated into Two Files (and Phases)

When programming, follow the
camping rule: Always leave the
code base healthier than when
you found it.

There are more things I could do to
simplify the printing logic, but this will
do for the moment. I always have to
strike a balance between all the refactor-
ings I could do and adding new features.
At the moment, most people under-
prioritize refactoring—but there still is a
balance. My rule is a variation on the

camping rule: Always leave the code base healthier than when you found it. It
will never be perfect, but it should be better.

Reorganizing the Calculations by Type

Now I’ll turn my attention to the next feature change: supporting more categories
of plays, each with its own charging and volume credits calculations. At the mo-
ment, to make changes here I have to go into the calculation functions and edit
the conditions in there. The amountFor function highlights the central role the type
of play has in the choice of calculations—but conditional logic like this tends to
decay as further modifications are made unless it’s reinforced by more structural
elements of the programming language.

There are various ways to introduce structure to make this explicit, but in this
case a natural approach is type polymorphism—a prominent feature of classical
object-orientation. Classical OO has long been a controversial feature in the
JavaScript world, but the ECMAScript 2015 version provides a sound syntax and
structure for it. So it makes sense to use it in a right situation—like this one.

My overall plan is to set up an inheritance hierarchy with comedy and tragedy
subclasses that contain the calculation logic for those cases. Callers call a poly-
morphic amount function that the language will dispatch to the different calcula-
tions for the comedies and tragedies. I’ll make a similar structure for the volume
credits calculation. To do this, I utilize a couple of refactorings. The core refactor-
ing is Replace Conditional with Polymorphism (272), which changes a hunk of con-
ditional code with polymorphism. But before I can do Replace Conditional with
Polymorphism (272), I need to create an inheritance structure of some kind. I need
to create a class to host the amount and volume credit functions.

I begin by reviewing the calculation code. (One of the pleasant consequences
of the previous refactoring is that I can now ignore the formatting code, so long
as I produce the same output data structure. I can further support this by adding
tests that probe the intermediate data structure.)

Chapter 1 Refactoring: A First Example34

createStatementData.js…
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

35Reorganizing the Calculations by Type

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

Creating a Performance Calculator

The enrichPerformance function is the key, since it populates the intermediate data
structure with the data for each performance. Currently, it calls the conditional
functions for amount and volume credits. What I need it to do is call
those functions on a host class. Since that class hosts functions for calculating
data about performances, I’ll call it a performance calculator.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance);
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

top level…
 class PerformanceCalculator {
 constructor(aPerformance) {
 this.performance = aPerformance;
 }
 }

So far, this new object isn’t doing anything. I want to move behavior into
it—and I’d like to start with the simplest thing to move, which is the play record.
Strictly, I don’t need to do this, as it’s not varying polymorphically, but this way
I’ll keep all the data transforms in one place, and that consistency will make the
code clearer.

To make this work, I will use Change Function Declaration (124) to pass the
performance’s play into the calculator.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

Chapter 1 Refactoring: A First Example36

class PerformanceCalculator…
 class PerformanceCalculator {
 constructor(aPerformance, aPlay) {
 this.performance = aPerformance;
 this.play = aPlay;
 }
 }

(I’m not saying compile-test-commit all the time any more, as I suspect
you’re getting tired of reading it. But I still do it at every opportunity. I do some-
times get tired of doing it—and give mistakes the chance to bite me. Then
I learn and get back into the rhythm.)

Moving Functions into the Calculator

The next bit of logic I move is rather more substantial for calculating the amount
for a performance. I’ve moved functions around casually while rearranging nested
functions—but this is a deeper change in the context of the function, so I’ll step
through the Move Function (198) refactoring. The first part of this refactoring is
to copy the logic over to its new context—the calculator class. Then, I adjust the
code to fit into its new home, changing aPerformance to this.performance and
playFor(aPerformance) to this.play.

class PerformanceCalculator…
 get amount() {
 let result = 0;
 switch (this.play.type) {
 case "tragedy":
 result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 break;
 default:
 throw new Error(`unknown type: ${this.play.type}`);
 }
 return result;
 }

I can compile at this point to check for any compile-time errors. “Compiling”
in my development environment occurs as I execute the code, so what I actually

37Reorganizing the Calculations by Type

do is run Babel [babel]. That will be enough to catch any syntax errors in the
new function—but little more than that. Even so, that can be a useful step.

Once the new function fits its home, I take the original function and turn it
into a delegating function so it calls the new function.

function createStatementData…
 function amountFor(aPerformance) {
 return new PerformanceCalculator(aPerformance, playFor(aPerformance)).amount;
 }

Now I can compile-test-commit to ensure the code is working properly in its
new home. With that done, I use Inline Function (115) to call the new function
directly (compile-test-commit).

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

I repeat the same process to move the volume credits calculation.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

class PerformanceCalculator…
 get volumeCredits() {
 let result = 0;
 result += Math.max(this.performance.audience - 30, 0);
 if ("comedy" === this.play.type) result += Math.floor(this.performance.audience / 5);
 return result;
 }

Making the Performance Calculator Polymorphic

Now that I have the logic in a class, it’s time to apply the polymorphism. The
first step is to use Replace Type Code with Subclasses (362) to introduce subclasses
instead of the type code. For this, I need to create subclasses of the performance

Chapter 1 Refactoring: A First Example38

calculator and use the appropriate subclass in createPerformanceData. In order to get
the right subclass, I need to replace the constructor call with a function, since
JavaScript constructors can’t return subclasses. So I use Replace Constructor with
Factory Function (334).

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = createPerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

top level…
 function createPerformanceCalculator(aPerformance, aPlay) {
 return new PerformanceCalculator(aPerformance, aPlay);
 }

With that now a function, I can create subclasses of the performance calculator
and get the creation function to select which one to return.

top level…
 function createPerformanceCalculator(aPerformance, aPlay) {
 switch(aPlay.type) {
 case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
 case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
 default:
 throw new Error(`unknown type: ${aPlay.type}`);
 }
 }

 class TragedyCalculator extends PerformanceCalculator {
 }
 class ComedyCalculator extends PerformanceCalculator {
 }

This sets up the structure for the polymorphism, so I can now move on to
Replace Conditional with Polymorphism (272).

I start with the calculation of the amount for tragedies.

class TragedyCalculator…
 get amount() {
 let result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 return result;
 }

39Reorganizing the Calculations by Type

Just having this method in the subclass is enough to override the superclass
conditional. But if you’re as paranoid as I am, you might do this:

class PerformanceCalculator…
 get amount() {
 let result = 0;
 switch (this.play.type) {
 case "tragedy":
 throw 'bad thing';
 case "comedy":
 result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 break;
 default:
 throw new Error(`unknown type: ${this.play.type}`);
 }
 return result;
 }

I could have removed the case for tragedy and let the default branch throw an error.
But I like the explicit throw—and it will only be there for a couple more minutes (which
is why I threw a string, not a better error object).

After a compile-test-commit of that, I move the comedy case down too.

class ComedyCalculator…
 get amount() {
 let result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 return result;
 }

I can now remove the superclass amount method, as it should never be called.
But it’s kinder to my future self to leave a tombstone.

class PerformanceCalculator…
 get amount() {
 throw new Error('subclass responsibility');
 }

The next conditional to replace is the volume credits calculation. Looking at
the discussion of future categories of plays, I notice that most plays expect to
check if audience is above 30, with only some categories introducing a variation.
So it makes sense to leave the more common case on the superclass as a default,

Chapter 1 Refactoring: A First Example40

and let the variations override it as necessary. So I just push down the case for
comedies:

class PerformanceCalculator…
 get volumeCredits() {
 return Math.max(this.performance.audience - 30, 0);
 }

class ComedyCalculator…
 get volumeCredits() {
 return super.volumeCredits + Math.floor(this.performance.audience / 5);
 }

Status: Creating the Data with the Polymorphic
Calculator

Time to reflect on what introducing the polymorphic calculator did to the code.

createStatementData.js
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const calculator = createPerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }
 }

41Status: Creating the Data with the Polymorphic Calculator

function createPerformanceCalculator(aPerformance, aPlay) {
 switch(aPlay.type) {
 case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
 case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
 default:
 throw new Error(`unknown type: ${aPlay.type}`);
 }
 }
class PerformanceCalculator {

 constructor(aPerformance, aPlay) {
 this.performance = aPerformance;
 this.play = aPlay;
 }

get amount() {
 throw new Error('subclass responsibility');
 }

get volumeCredits() {
 return Math.max(this.performance.audience - 30, 0);
 }
 }
class TragedyCalculator extends PerformanceCalculator {
get amount() {

 let result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 return result;
 }
 }
class ComedyCalculator extends PerformanceCalculator {
get amount() {

 let result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 return result;
 }

get volumeCredits() {
 return super.volumeCredits + Math.floor(this.performance.audience / 5);
 }
 }

Again, the code has increased in size as I’ve introduced structure. The benefit
here is that the calculations for each kind of play are grouped together. If most
of the changes will be to this code, it will be helpful to have it clearly separated
like this. Adding a new kind of play requires writing a new subclass and adding
it to the creation function.

The example gives some insight as to when using subclasses like this is useful.
Here, I’ve moved the conditional lookup from two functions (amountFor and
volumeCreditsFor) to a single constructor function createPerformanceCalculator. The more

Chapter 1 Refactoring: A First Example42

functions there are that depend on the same type of polymorphism, the
more useful this approach becomes.

An alternative to what I’ve done here would be to have createPerformanceData return
the calculator itself, instead of the calculator populating the intermediate data
structure. One of the nice features of JavaScript’s class system is that with it, using
getters looks like regular data access. My choice on whether to return the instance
or calculate separate output data depends on who is using the downstream data
structure. In this case, I preferred to show how to use the intermediate
data structure to hide the decision to use a polymorphic calculator.

Final Thoughts

This is a simple example, but I hope it will give you a feeling for what refactoring
is like. I’ve used several refactorings, including Extract Function (106), Inline Variable
(123), Move Function (198), and Replace Conditional with Polymorphism (272).

There were three major stages to this refactoring episode: decomposing the
original function into a set of nested functions, using Split Phase (154) to separate
the calculation and printing code, and finally introducing a polymorphic calculator
for the calculation logic. Each of these added structure to the code, enabling me
to better communicate what the code was doing.

As is often the case with refactoring, the early stages were mostly driven by
trying to understand what was going on. A common sequence is: Read the code,
gain some insight, and use refactoring to move that insight from your head back
into the code. The clearer code then makes it easier to understand it, leading to
deeper insights and a beneficial positive feedback loop. There are still some im-
provements I could make, but I feel I’ve done enough to pass my test of leaving
the code significantly better than how I found it.

The true test of good code is
how easy it is to change it.

I’m talking about improving the
code—but programmers love to argue
about what good code looks like. I know
some people object to my preference for
small, well-named functions. If we con-
sider this to be a matter of aesthetics, where nothing is either good or bad but
thinking makes it so, we lack any guide but personal taste. I believe, however,
that we can go beyond taste and say that the true test of good code is how easy
it is to change it. Code should be obvious: When someone needs to make a
change, they should be able to find the code to be changed easily and to make
the change quickly without introducing any errors. A healthy code base maximizes
our productivity, allowing us to build more features for our users both faster and
more cheaply. To keep code healthy, pay attention to what is getting between
the programming team and that ideal, then refactor to get closer to the ideal.

43Final Thoughts

But the most important thing to learn from this example is the rhythm of
refactoring. Whenever I’ve shown people how I refactor, they are surprised by
how small my steps are, each step leaving the code in a working state that com-
piles and passes its tests. I was just as surprised myself when Kent Beck showed
me how to do this in a hotel room in Detroit two decades ago. The key to effective
refactoring is recognizing that you go faster when you take tiny steps, the code
is never broken, and you can compose those small steps into substantial changes.
Remember that—and the rest is silence.

Chapter 1 Refactoring: A First Example44

	Free chapter cover
	Chapter 1 Refactoring

