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Abstract
Arthropods are known to harbor several endosymbionts, such as Cardinium, Rickettsia, Spiroplasma, and Wolbachia. Wol-
bachia, for example, are the most widespread known endosymbionts in the world, which are found in about half of all 
arthropod species. To increase their transmission, these endosymbionts must manipulate their hosts in several ways such as 
cytoplasmic incompatibility and male killing. In tropical regions, endosymbiont diversity has not been studied exhaustively. 
Here, we checked four endosymbionts, including Cardinium, Rickettsia, Spiroplasma, and Wolbachia, in eleven Drosophila 
species found in Thai Peninsula. The Wolbachia strain wRi-like was found in all populations of Drosophila ananassae 
and Drosophila simulans. Furthermore, we found two new strains, wMalA and wMalB, in two populations of Drosophila 
malerkotliana. Besides Wolbachia, we did not find any of the above endosymbionts in all fly species. This work reveals the 
hidden diversity of endosymbionts in Drosophila and is the first exhaustive study on Drosophila in the region.
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Introduction

Insects harbor several symbiotic bacterial species inside 
their cells. These endosymbionts manipulate their hosts to 
obtain maximal transmission to the next generation via vari-
ous mechanisms, such as cytoplasmic incompatibility (i.e., 
death of embryos in crosses between infected males with 
uninfected females), male killing (i.e., death of infected male 
embryos), and thelytokous parthenogenesis (i.e., infected 
females can produce offspring without mating with males) 
[1, 2]. Many endosymbionts are parasites or mutualists, 
while some of them are obligate mutualists [3]. Bacterial 
endosymbionts are transmitted vertically, but horizontal 
transmission between different insect species can also be 
observed [4–6]. Common bacterial endosymbionts in insects 
are Cardinium, Rickettsia, Spiroplasma, and Wolbachia [3].

Bacterial endosymbionts are diverse, and their diversity 
is poorly understood [7, 8]. Wolbachia, for example, are the 
most widespread known endosymbionts in the world but 
just less than 1% of their diversity is currently known [7]. It 

is expected that around 40–60% of all arthropod species are 
infected by Wolbachia, 24% by Rickettsia, and 13% by Car-
dinium [9, 10].There are more than 2000 Drosophila species 
worldwide [11], and hundreds of species are found in tropi-
cal parts of Thai-Malay Peninsula (https://​www.​taxod​ros.​
uzh.​ch, retrieved on September 15, 2020). Yet, although the 
fruit fly is found in every part of Thailand, research on Dros-
ophila is lacking, both traditional and molecular systematics.

Despite their extreme diversity in terms of both described 
species and symbiotic associations, the evolution and diver-
sity of endosymbionts in Drosophila are still poorly under-
stood. Knowing endosymbiont diversity can help us under-
stand evolution of both hosts and endosymbionts because 
their interactions are one of the factors influencing host 
biology and speciation [12, 13]. Here, we aimed to fill this 
knowledge gap by investigating and characterizing endosym-
bionts, Cardinium, Rickettsia, Spiroplasma, and Wolbachia, 
in Drosophila species found in Peninsula Thailand. We used 
COI barcoding to identify fly species. Furthermore, we used 
endosymbiont specific primers to understand the relation-
ship between Drosophila and their endosymbionts. We 
found eleven fly species. Wolbachia infections were found 
in every fly checked in all populations of Drosophila anana-
ssae. In addition, two new Wolbachia strains of supergroups 
A and B were found in Drosophila malerkotliana.
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Methods

Drosophila species were caught using fruit bait in various 
habitats in the Thai Peninsula, ranging from dry evergreen 
forests (TK, SL, and SK), orchards (PT, SR, and SN), peat 
swamp (NK), tropical evergreen rainforests (NS, NN, and 
PA), and urban areas (SC, SH, and PM) (Fig. 1, Table 1). 
The samples were collected during the rainy season in 2020. 
Flies were stored immediately in 96% ethanol and kept in a 
cool place until arriving at the laboratory. We identified the 
flies based on morphology according to Mather [14], Bock 
[15], and Hihara & Lin [16]. Spermatheca, male and female 
genitalia were dissected using 10% potassium hydroxide, 
stored in glycerol, and photographed (Leica Microsystems, 
Switzerland). Additionally, molecular barcoding was used 
to confirm the fly species. Briefly, the DNA of an individual 
female fly was extracted using NucleoSpin tissue mini kit 
(Macherey–Nagel, Germany) and we amplified cytochrome 
c oxidase subunit I (COI) gene using LCO and HCO prim-
ers [17].

Different gene fragments of endosymbionts were ampli-
fied using PCR. We checked every sample for Cardinium 
16S gene using primers CLO‐f1 and CLO‐r1 [18] and Ch‐F 
and Ch‐R [19]; Spiroplasma dnaA and p18 genes using 
ApDnaAF1 and ApDnaAR1 [20] and p18‐f and p18‐r 

[21], respectively; Rickettsia 17-kDa antigen gene using 
R1 and R2 [22]; and Wolbachia wsp gene using wsp81F 
and wsp691R [23]. For samples with Wolbachia infection, 
five additional genes (coxA, fbpA, ftsZ, gatB, and hcpA) of 
the multilocus sequence typing (MLST) were used for Wol-
bachia strain identification [24]. The PCR products were 
sequenced using dideoxy method. The MLST sequences 
were checked against the Wolbachia MLST database on 
PubMLST [25]. The DNA sequences were deposited on 
GenBank under accession numbers MZ520835-MZ520856 
for COI gene and MZ566522-MZ566563 for Wolbachia 
MLST and wsp genes.

For phylogenetic analysis, we added COI sequences 
from GenBank (JQ679118, KP863293, EU493590, 
EU493585, KX052956, KX052951, KX052947, EU493593, 
MN448089, KX052975, and EU493584) and MLST and 
wsp sequences from PubMLST [25]. The alignments of 
both COI gene and concatenated MLST and wsp genes 
were conducted using Clustal Omega version 1.1.0 [26] 
implemented in Seaview version 5.0.4 [27]. Evolutionary 
models were calculated using jModelTest version 2.1.10 
[28]. For phylogenetic tree construction of Drosophila COI 
gene, GTR + F + I + G4 model was used, and Hirtodrosoph-
ila duncani was selected as an outgroup. For concatenated 
Wolbachia MLST and wsp genes, we used TPM2u + F + G4, 
TPM3 + F + G4, TIM + F + I, TIM + F + G4, TN + F + G4, 
and TIM2 + F + G4 models for coxA, fbpA, ftsZ, gatB, hcpA, 
and wsp genes, respectively. Wolbachia strain wBm was cho-
sen as an outgroup. The maximum likelihood phylogenetic 
trees were constructed using IQ-TREE version 2.1.3 [29] 
with 10,000 ultrafast bootstraps.

Results

We decided to use molecular barcoding of Drosophila col-
lected in this work because many of them had similar mor-
phology especially genitalia of those within the same group, 
for example, between Drosophila neohypocausta and Dros-
ophila nasuta (Fig. S1d, f). With species identification using 
a fragment of the COI gene, we identified eleven Drosophila 
species from thirteen locations across Peninsula Thailand. 
Among all the habitats, the highest fly diversity was in the 
dry evergreen forests (Table 1).

We found Drosophila ananassae most frequently, fol-
lowed by D. malerkotliana (262 and 180 flies, respectively). 
Apart from the two most collected species, there were 97 
Drosophila neohypocausta, 45 Drosophila rubida, 23 Dros-
ophila nasuta, 17 Drosophila eugracilis, 14 Drosophila 
pseudoananassae, 14 Drosophila hypocausta, 12 Drosoph-
ila simulans, 10 Drosophila mimetica, and 6 Drosophila 
albomicans (Table 1).
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Fig. 1   Thirteen sampling sites in various habitats across Peninsula 
Thailand. Pie charts shows percent of positive samples in three spe-
cies infected with Wolbachia. Drosophila ananassae (gray pies) 
and Drosophila simulans (yellow) were 100% infected. Wolbachia 
infections in Drosophila malerkotliana (dark blue) were between 40 
and 76%
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The flies were classified into several groups, namely, 
D. malerkotliana and D. pseudoananassae of Drosophila 
bipectinata species complex; D. hypocausta and D. rubida 
within D. hypocausta subgroup; and D. albomicans, D. 
nasuta, and D. neohypocausta within D. nasuta subgroup 
(Fig. 2a).

The tested Drosophila samples were not infected by Car-
dinium, Rickettsia, and Spiroplasma (Fig. S2). Wolbachia 

were found in three fly species, D. simulans, D. ananas-
sae, and D. malerkotliana, collected from seven locations 
(TK, SK, PT, SR, SC, SH, and PM) (Table 1). We found 
100% Wolbachia infection in D. ananassae collected 
from orchards (PT) and urban areas (SC and SH), and D. 
simulans collected from dry evergreen forest (SK). For D. 
malerkotliana, the Wolbachia infection ranged from 0–76%. 
No Wolbachia were detected in the samples collected from 

Table 1   Prevalence of Wolbachia in female Drosophila species collected from thirteen locations, number of flies collected, number of positive/
number of samples checked, percent of infection, and Wolbachia strains found. Asterisks indicate the new Wolbachia strains

Habitat Site Code Species Flies collected Positive/checked (%) Wolbachia strain

Dry evergreen forest TK, Trang, Kantang 
(7°24′14.1″N 99°31′14.0″E, 
72 m.a.s.l.)

TK01 D. malerkotliana 12 2/5 (40) wMalA*

SL, Satun, La-ngu 
(6°56′19.1″N 99°48′57.0″E, 
21 m.a.s.l.)

SL01 D. albomicans 6 0/3 (0) -

SK, Songkhla, Kho 
Hong (7°00′23.1″N 
100°30′38.1″E, 97 m.a.s.l.)

SK01 D. malerkotliana 77 0/44 (0) -
SK02 D. rubida 22 0/13 (0) -
SK03 D. eugracilis 17 0/7 (0) -
SK04 D. neohypocausta 66 0/48 (0) -
SK05 D. hypocausta 9 0/4 (0) -
SK06 D. simulans 12 5/5 (100) wRi-like

Orchards PT, Phuket, Thalang 
(8°04′28.9″N 98°20′22.7″E, 
37 m.a.s.l.)

PT01 D. ananassae 25 16/16 (100) wRi-like

SR, Songkhla, Rat-
taphum (7°02′25.2″N 
100°12′59.2″E, 82 m.a.s.l.)

SR01 D. malerkotliana 35 19/25 (76) wRi-like

SN, Songkhla, Na-
mom (6°58′06.3″N 
100°35′10.2″E, 46 m.a.s.l.)

SN01 D. rubida 8 0/6 (0) -
SN02 D. hypocausta 5 0/3 (0) -

Peat swamp NK, Narathiwat, Su-ngai 
Kolok (6°04′05.5″N 
101°58′06.9″E, 12 m.a.s.l.)

NK01 D. neohypocausta 8 0/5 (0) -

Tropical evergreen forest NS, Narathiwat, Sukhi-
rin (5°49′51.2″N 
101°50′21.5″E, 
103 m.a.s.l.)

NS01 D. malerkotliana 40 0/27 (0) -
NS02 D. pseudoananassae 14 0/3 (0) -
NS03 D. neohypocausta 9 0/5 (0) -

NN, Narathiwat, Su-ngai 
Kolok (6°06′08.3″N 
101°50′53.8″E, 40 m.a.s.l.)

NN01 D. nasuta 10 0/6 (0) -
NN02 D. mimetica 10 0/7 (0) -

PA, Pattani, Khok 
Pho (6°39′26.1″N 
101°05′57.6″E, 
275 m.a.s.l.)

PA01 D. albomicans 15 0/8 (0) -
PA02 D. rubida 13 0/7 (0) -

Urban areas SC, Surat-thani, Chaiya 
(9°22′03.7″N 99°11′22.2″E, 
9 m.a.s.l.)

SC01 D. ananassae 214 25/25 (100) wRi-like

SH, Songkhla, Hat 
Yai (7°00′18.8″N 
100°28′16.9″E, 28 m.a.s.l.)

SH01 D. ananassae 23 8/8 (100) wRi-like

PM, Patthalung, 
Mueang (7°37′01.1″N 
100°05′04.0″E, 11 m.a.s.l.)

PM01 D. neohypocausta 14 0/6 (0) -
PM02 D. malerkotliana 16 6/8 (75) wMalB*
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peat swamp (NK01) and tropical evergreen forests (SL01, 
NS01-03, NN01-02, and PA01-02).

For Wolbachia strain characterization using concatenated 
MLST and wsp genes, it was found that D. ananassae and 
D. simulans samples from every location were infected 
with Wolbachia strain wRi-like (supergroup A). Drosoph-
ila malerkotliana collected from site SR01 were infected 
by wRi-like, but the same species collected from the other 
two locations, TK01 and PM02, were infected with two new 
different Wolbachia strains, wMalA and wMalB, belonging 
to supergroups A and B, respectively (Fig. 2b). In detail, 
there were 48 position differences at the coxA locus between 
wMalA and wRi-like strains. The wMalB, however, is highly 
divergent from other supergroup B strains (Fig. 2b). Based 
on the wsp sequences, wMalA and wMalB were identical 
to those found in Psyttalia incise and Fopius vandenboschi 

(Hemiptera: Braconidae), parasitoids of the tephritid fruit 
flies.

Discussion

This study is the most exhaustive survey on endosymbionts 
of wild-caught Drosophila species in the tropical Peninsula 
of Thailand. Eleven Drosophila species were found. This 
diversity is higher than ever reported in the TaxoDros data-
base, which records the distributions of Drosophila in Thai-
land from 1958 (https://​www.​taxod​ros.​uzh.​ch/, retrieved on 
September 15, 2020). Of the four tested endosymbionts, we 
only found Wolbachia infections in three species. The low 
Wolbachia prevalence we found conformed to other Dros-
ophila studies in other regions [30, 31].
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Fig. 2   Rooted maximum likelihood phylogenetic trees of Drosophila 
species collected across Peninsula Thailand based on cytochrome c 
oxidase subunit I gene (a) and Wolbachia strains based on five con-
catenated multilocus sequence typing (MLST) and wsp genes (b). 

Bootstrap values more than 70% are shown. Wolbachia supergroups 
are indicated with capital letters. Samples from this study are in bold. 
Brown color indicates samples with Wolbachia infection. Drosophila 
samples and their Wolbachia are linked with lines
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We depended on molecular barcoding to identify the flies 
because of morphological similarities among species (e.g., 
between D. neohypocausta and D. nasuta) and because there 
were taxonomic conflicts regarding the description species 
using just morphology, such as between D. rubida and D. 
hypocausta [16, 15]. A recent study also found that the shape 
of the male genitalia can change with respect to tempera-
ture [32], and this may provide an explanation for taxon-
omy incongruence among drosophilids. The phylogenetic 
tree based on COI gene confirmed several species complex 
groups (Fig. 2a). Yet, we might expect better classification 
of our samples using whole-genome data, as shown in the 
D. nasuta species complex [33].

Drosophila malerkotliana was found in almost every site, 
from urban areas to tropical evergreen forests. It is a cosmo-
politan species that originated and is widely spread in South-
east Asia [34]. Another cosmopolitan species, D. ananassae, 
was frequently found in urban areas and orchards because 
its distribution is mainly associated with human activities 
[35]. This study also reported the first information about 
the habitats (i.e., forest types and elevation) of Drosophila 
eugracilis and D. mimetica in the Thai Peninsula.

We expected to observe higher Drosophila diversity 
in the region due to great habitat diversity. For example, 
we found only one species in the peat swamp, despite the 
fact that it consisted of diverse topography and tree spe-
cies, which, in turn, gives rise to several microhabitats [36]. 
The sampling method we used, such as using only fruit bait 
and seasonal factors, could affect the number of flies we 
caught. Having a different kind of bait other than the fruit 
bait may help to catch different fly species. For example, 
using fungus bait might help catching mycophagous spe-
cies [37, 38]. Some Drosophila species are specialists [39, 
40], and even generalist species can be seasonal specialists 
[41]. Yet, knowledge on the food source of drosophilids in 
this region is poorly known. Precipitation is another factor 
that determines the abundance of Drosophila. Drosophila 
malerkotliana, for example, was less abundant, while some 
species like Drosophila willistoni and Drosophila paulisto-
rum were more abundant during the rainy season [42, 43].

All D. ananassae samples were infected with Wolbachia 
wRi-like. This is in line with other studies of D. ananas-
sae populations [44, 45]. However, we could not specify the 
exact strain because several wRi-like strains, such as wAna 
and wRi, are closely related, having the same MLST and 
wsp profiles, and only minor differences were found between 
genomes [46–48].The low sensitivity of Wolbachia strain 
characterization using MLST method has been demonstrated 
in some Wolbachia strains and, thus, whole genome data are 
preferred over MLST for characterization [49, 50]. Bleidorn 
and Gerth [50] compared the MLST loci with over two hun-
dred single copy loci and showed that many of these loci 
are better at strains characterization than the five loci used 

in MLST. However, the use of whole genome data for strain 
characterization can be costly and time consuming in some 
studies.

Here, we found two new Wolbachia strains, wMalA and 
wMalB, in D. malerkotliana from two populations, TK01 
and PM02, with infection frequencies of 40% and 75%, 
respectively (Table 1). These two Wolbachia strains were not 
fixed in the populations. Other D. malerkotliana populations 
in this study were found not to be infected by any of these 
strains. By blasting the wsp sequences of the new strains, 
we found that the closest matches were from parasitoids of 
tephritid fruit flies. Thus, it is likely that the two new strains 
were horizontally transmitted from the parasitoids. How-
ever, there is no information that these parasitoids attack 
Drosophila species.

This study found 100% Wolbachia infection in all popula-
tions of D. ananassae and D. simulans. Cosmopolitan spe-
cies like D. ananassae, D. simulans, and D. melanogaster 
are commonly infected by Wolbachia and the infection 
frequency can rise up to 100% in many populations [45, 
51–54]. Apart from the cosmopolitan species, we found that 
the incidence of Wolbachia infections in many Drosophila 
species were at 0%, which were low like in other regions 
[30, 31].

Geographical barriers, such as mountain range, distance 
between populations, host genetic background, and Wol-
bachia themselves play essential roles in Wolbachia distri-
bution. For instance, less gene flow between geographically 
distant populations prevents Wolbachia transmission in the 
parasitoid Leptopilina clavipes [55]. As Wolbachia are only 
maternally transmitted, Wolbachia with strong cytoplasmic 
incompatibility can lead to high infection frequency of natu-
ral populations in a short period [54, 56]. Moreover, benefi-
cial effects on their hosts, such as protection against patho-
gens and providing nutrients, can help Wolbachia spread 
within a host population [13]. Apart from Wolbachia, Car-
dinium, Rickettsia, and Spiroplasma were not found in our 
samples. Some populations of D. simulans, D. melanogaster, 
and D. ananassae were infected by Spiroplasma but at low 
frequencies [57, 58]. For Cardinium, our results were in line 
with other studies on Drosophila [19, 59].

To our knowledge, this is the first analysis of Wolbachia 
infection in wild Drosophila in Thailand and the whole 
Malay Peninsula. We found two new Wolbachia strains in 
supergroups A and B in D. malerkotliana. There were no 
Cardinium, Rickettsia, and Spiroplasma infections in the 
wild Drosophila populations throughout Peninsula Thai-
land. With more than 200 Drosophila species reported in the 
whole Thai-Malay Peninsula, we expect high endosymbiont 
diversity to be discovered in the future.
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