Introduction.

Mdhiggins has created a fantastic IR Blaster project that uses ModeMCU ESP8266 10T micro
controllers, that allows you to record infra red remote control commands from your existing remotes,
then use various IoT home bridges to replay these to control your devices over local WiFi for things
like Amazon Alexa, Apple Home, potentially Samsung SmartThings or your own locally hosted web
page(what I'm doing).

The following is a step by step guide built by stresser] based on information he sourced from
Mdhiggins, various references, various esp tutorials, and guides to use PlatformIO and Arduino IDE.

The guide is based on the skill level of someone who has some IT background but this is the first time
they've ever tried to do anything with home experimenter level micro controllers such as this.

Background

Many people have devices in their homes that are controlled solely by infra red remote controls. While
there are bridging devices made by various little known manufacturers for 50-100 dollars or Logitech
for hundreds of dollars; they have poor reviews and generally require you to expose your home
automation to a 2" cloud service beyond Amazon/Apple/Samsung etc. Some of us are uncomfortable
using even the 1* layer of Amazon/Apple/Samsung home automation to begin with.

Enter the IR Blaster project. The components are readily available, cheap, customizable and best of all,
you control how the data is transmitted and used. If you are like myself and don't want to have anything

external to your home network have access to this project, you are able to do so.

Getting started

1. You will have to purchase components to build the hardware.

a) ModeMCU ESP8266 WiFi IoT micro controllers. The recommended is:
https://www.amazon.com/gp/product/BO1TIK9OGEQG/ - NodeMCU LUA CP2102 ESP-12E
Internet WiFi Development Board Serial Wireless Module Internet for Arduino
IDE/Micropython

[used a v3 board, which appears to be an odd duck. Due to misunderstanding some of the
documentation I thought I had a 0.9 version, but it appears I have a 1.0 non standard version
(https://www.pcboard.ca/nodemcu-v3?search=nodemcu) based on this
(https://frightanic.com/iot/comparison-of-esp8266-nodemcu-development-boards/)
information, while my board is not like the v3 board shown there, it looks identical to the
v2(except slightly larger) which is probably some of the reason I got confused and thought
the pic of the v3 was the v2 etc.

This likely caused some of my issues early on that Mdhiggins helped me through.

Regardless... the point of all this babbling is that there are various makes and models out
there, so you will need to carefully research whatever you get, and you may need to try
selecting 0.9 or 1.0 board when it comes time to upload the firmware.

b) Prototyping equipment:

c)

d)

1. Breadboard
I purchased the (https://www.pcboard.ca/nodemcu-esp8266-breadboard), note this is not
a breadboard it's a breakout board. I am making this work, but honestly a real solder-less
breadboard (https://www.pcboard.ca/experimenters-solderless-breadboard.html?
search=breadboard) would work much more conveniently with appropriate wires

2. Connecting Wires
use solid core 22 awg wires — door bell wire works, or you can pick up some made wires
like (https://www.pcboard.ca/deluxe-breadboard-jumper-wires.html?search=jumper
%20wires) .

Infra red receiver.

You need this to capture your existing device IR remote control codes. You will only
absolutely need one, but they aren't expensive so there is no reason not to get one per
NodeMCU-esp8266. I got these ones that come with IR LEDs of unknown specs
(https://www.amazon.ca/gp/product/BO7TFFQIBI9H/ref=ppx_yo_dt b_asin_title 002 _s00?
1e=UTF8&psc=1)

Mdhiggins recommends these (https://www.amazon.com/gp/product/BOOEFOQEUM/)

Infrared LEDs

These need to be able to withstand a fairly high momentary amperage. The ones Mdhiggins
recommends (https://www.amazon.com/gp/product/BOOULB0OU44/) are spec'd to handle 1A
momentarily I don't know if the ones I picked out above will withstand that over time. I
recommend these ones based on his and other people's success.

The reason these need to be able to handle high current, is so they can be put somewhere
convenient to hit all the devices it will need to control from a decent distance, otherwise,
you will need to use different resistors to lower the output (or just hope they don't burn out
like me) and thus shorten the range. Some people hide the finished IR Blaster behind their
devices and run an LED on a cable to it's IR receiver and affix them to it.

2N2222 transistor.

The transistor is important, because this allows the high powered LED to be driven by the
higher current available right off the power input. The micro controller does not have the
ability to output high current from the data pins, which will be used to send the signal. The
transistor in this case would be described to work like an amplifier, in that you input the
data signal, and it uses that to modulate the input voltage to the LED, outputting a much
stronger identical signal. If you just connected the LED directly to the data pin it wouldn't
be able to output as strong of a signal. As long as the transistor is an 2n2222 it will work.
(https://www.amazon.com/gp/product/BOOR1M3DA4/) (https://www.pcboard.ca/2N2222-
NPN-Transistor?search=2n2222)

Resistors

You will need a 10 ohm and a 1k ohm resistor. The 1 k Ohm is used to connect the base or
control pin on the transistor to the data output pin on the NodeMCU-esp8266. The 10 ohm
resistor will protect the IR Led used to transmit the signal from the IR Blaster. Any resistors

will work as long as they are the right ohms and can handle 4 watt. Note the Amazon listing
says 14watt, that's a formatting issue I believe.
(https://www.amazon.com/gp/product/BO0Y X7505M/) (https://www.pcboard.ca/56-value-
resistor-assortment.html?search=resistors)

NOTE in my pack, all the 10 ohm resistors were bad. Not a single one worked, so I adapted
by putting 2 x 4.7 ohms in series. I've since lowered my resistor to 2.6 to more closely
match the output of my remote... I strongly suspect I'm running into a limited current to the
entire device situation, because I'm powering my device from my computer front port at the
moment, this may be limiting me to 500ma, and therefore the resistor is further current
limiting me and if I plug this into a wall wart I'll promptly burn out the ir led... I will have to
do some more experimenting.

CONSTRUCTION

The schematic that Mdhiggins provided:

NodeMCU ESP8266
& USB i
—1l3v3 Vin (5V) 22
2 29 R2
GhR GND 100 ohms
—3 17X (GPIO1) RST}-2E-
—4 |RX (GPIO3) enb27
—21p8 (GPIO15) 3v3| 26
—8 1p7 (GP1013) GND25 < RED
z 24 N
IRRECEIVER — D6 (GPIO12) CLK == N
. | data 8 15 (GP1014) spol23.
\'C i Rane CMD 22 _I;2N2222
+ 10 {3y3 sp1|2L
11 1p4 (GPIO2) sD2 (GP109)|-20-
12 Ip3 (GPI00) SD3 (GPIO10) L2)ASJ il
13 D2 (GPI04) RSvL18 1k ohms
14 1p1 (GPIOS) rRsvILZ
= 16

DO (GPIO16)

AO

NodeMCU AMICA V2

\.

NOTE: Mdhiggins's schematic relies on using Vin(pin30) and Gnd(pin 29) assuming these are
paralleled to the usb port. However, on the V3 I bought, these are not the same. On the V3 Vin only
outputs 0.25v so there is probably power grooming circuit between the usb port and the vin so it can't
be used to feed the transistor. Instead I used USBV and the adjacent ground between A0 and S3 to get
Svolts. These are pins 18 for USB V and 17 for Gnd. On most boards those pins are not used however.

See the picture of the Mdhiggins's breadboard for orientation of components.
Notes:
1. The IR Receiver bulb is pointed away from the board

2. The transistor flat side is towards the board, the emitter (connection to negative) is the leg closest to
the board. The base is the center pin which connects to the 1k resistor that connects to D2, the collector
is the pin the negative side of the LED connects to.

3. the IR LED connects to a current limiting resistor. You will need to look up how to size this resistor
based on the specs of your LED at 5volts. If you use the ones Mdhiggins recommends, then it should
be 10 not 100 ohms.

4. The button shown in the middle is an (optional) normally open momentary switch that shorts pin
sd3(GPIO10) to ground. When pressed and you trigger a reset, the device will reboot into AP mode so
you can change the AP it's connecting to. This will be covered in the configuration section later.

Lol B k
-ni:i:tﬁ%i

SOFTWARE

Drivers — to use the USB port on the board, you will need the drivers for it.
(https://www.silabs.com/developers/usb-to-uart-bridge-vep-drivers)

Arduino IDE this is a piece of software used to program Arduino, with an additional board manager
plugin to make it compatible with ESP based boards.

1. Download Arduino IDE (https://www.arduino.cc/en/software) WARNING do not install it via the
windows store(selection called windows app — they mean the windows store not an app installer)... it
won't function correctly and finding folders becomes a hassle since it puts it in temp folders and buries
them in app data. Download the standard EXE.

2. Install Arduino Core for ESP 8266. This is fairly easy to do, you need to:
a. open Arduino IDE,
b. go to file, then choose preferences. A new window will open,
c. paste the following link into the “Additional Boards Manager URLs”:
https://arduino.esp8266.com/stable/package esp8266com_index.json
Note: If you need to add more board managers in the future, you can separate them with
commas.
d. restart Arduino IDE

Note: Aurdino IDE seems to be less than ideal. It seems the libraries are not fetched by referring to
the .ino and the serial monitor causes the NodeMCU-esp8266 to crash when running commands.

Although, it appears that PlatformIO cannot fully erase flash memory (pio run --target erase) s0 you still need
to use this to condition boards. Go into tools in Arduino IDE, in tools section, set the “Erase” option
from “only sketch” to “all flash contents” then upload blink (this is explained more later) to clear any
conflicting settings that can cause exceptions and reboot loop the NodeMCU-esp8266. This has been a
problem multiple times... it might be because my boards are the “unofficial” v3 variants.

3. Install libraries: This is where things become murky and you'll want to use PlatformlO instead of
Arduino IDE because PlatformlIO will find the libraries needed automatically, while Arduino IDE will
not. Over time the library names change and it becomes difficult to find the right ones, PlatformIO
removes that from the equation.

Currently, Mdhiggins recommends installing these libraries:

ESP8266WebServer (is not in the library anymore I suspect it's covered in a combined ESP8255 and 32 library)
ESP8266WiFi (also not in the library)

ArduinoJson (available)

Time(available)

IrremoteESP8266(available)

1. In Arduino IDE, go to “Tools” then choose Manage Libraries to open the Library Manager.
2. filter for the above libraries and install them.
3. then restart Arduino IDE.

Next, to install Cryptosuite (This has to be installed manually, it won't be in the libraries) first you need
to Clone the crypto suite from Git Hub to your local libraries.

1. install Git on your computer. (you can skip this and go to the PlatformlO because it can also clone
repositories, but I did it this way. https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Create a folder in the libraries directory (usually C:\users\<username>\Documents\Arduino\Libraries\)
called “Sha”.

Find the cryptosuite project on Git Hub (https://github.com/bebo-dot-
dev/Cryptosuite) click on the green Code button, press the clipboard icon next to the html link.

Open the Git terminal you installed on your local computer and navigate to the
C:\Users\<username>\Documents\arduino\Libraries folder using unix/linux commands.

MIMGWEL /U ser-]n cuments/Arduing/Libraries

_panteanc _mc

ntuser.ini

% cd Documents/Arduino/Libraries

y/Libraries
& git clone https://github. com/bebo-dot ryptosuite.git '

Then use the command git clone and paste in the copied web address. This will clone the repository
into a folder called CryptoSuite.

Copy the contents of it into the Sha folder you made there.

Then Clone WiFiManager with the same process, except don't copy it to the Sha folder.

Next we will install the Exception Decoder. This will be useful if we have a crash with a stack dump.
This will allow us to decode it so that the developer (mdhiggins) can troubleshoot the code. (it will
likely be something you're doing wrong though, as was the case with me)

1. Go to git hub, (https://github.com/me-no-dev/EspExceptionDecoder) download the
EspExceptionDecoder-1.1.0.zip (or whatever version is the latest stable)

2. In your c:\users\<username>\Documents\Arduino folder create a new folder called “tools”

3. unpack the trace decoder into the tools directory. It should look rather redundant:
c:\users\<username>\Documents\Arduino\tools\EspExceptionDecoder\tool\EspExceptionDecoder.jar
4. restart Arduino IDE to install the tool.

It should now be under the tools menu as ESP Exception Decoder.

If you get a stack dump in the serial monitor, then you will need to copy it, and use the decoder. Bear in
mind, that you need to compile the sketch to build an .elf file so the decoder can function. This is why
you needed to install all the libraries even though we don't intend to use Arduino IDE to upload
firmware.

First program

Now, We can condition a board. Platform IO lacks the ability to fully erase a board's flash, while
Arduino IDE can. We can now plug an NodeMCU-esp8266 into our computer and test to make sure
things are working.

1. Open Arduino IDE.

2. Go to “Tools”,”Board Manager” and in the new window filter for “esp8266” Install it.

3. mouse over the ESP8266 entry below the board manager, and choose the appropriate board.

4. in the sketch paste the following code which will blink the LED on and off every second, and write
to the serial monitor:

/*
ESP8266 Blink
Blink the blue LED on the ESP8266 module

*/
#define LED 2 //Define blinking LED pin

void setup() {
pinMode(LED, OUTPUT); // Initialize the LED pin as an output
Serial.begin(115200);

}

// the loop function runs over and over again forever

void loop() {
digitalWrite(LED, LOW); // Turn the LED on (Note that LOW is the voltage level)
Serial.printin("on");
delay(1000); // Wait for a second
digitalWrite(LED, HIGH); // Turn the LED off by making the voltage HIGH

Serial.printin("off");
delay(1000); // Wait for two seconds

}

5. Then go to tools again, and choose “erase flash” and set it to “All Flash Contents” This is important
for conditioning boards. If you put a sketch onto the board and it's not quite right, loading a new sketch
in PlatformIO may not clear the flash properly and cause random crashes and reboot loops.

6. Plug in your NodeMC-esp8266 that you want to put this program onto. Open Device Manager on
your computer to figure out what Com Port the drivers will establish the board on. Once you know, go
to tools, and set the port to the right com, in my case it is COM 3.

—= O .

B Device Manager

File Action View Help
e T EH HE B2 EXG

i Audio inputs and outputs
B Computer
- Disk drives
O Display adapters
B Firmware
) Human Interface Devices
= |DE ATASATAPI controllers
= Keyboards
@ Mice and other pointing devices
[Monitors
Metwork adapters
v i Ports (COM &LPT)
ﬁ Communications Port (COMT)

Eﬂ USB-SERIAL CH340 (COM3) v‘
™ Print queues
1 Processors
!t Software components

B Software devices
i Sound, video and game controllers

&y Storage controllers
i3 System devices
i Universal Senal Bus controllers

Then go to Sketch>Upload to compile and load this sketch into the board. Once it's done compiling it
will load the sketch and reset. At this point your board LED should be blinking on and off, changing

every 1000 ms.

7. Lets now view the serial monitor; go to tools, and choose Serial Monitor, a new window will open
and you will see the device printing On/Off repeatedly as it blinks the led on and off. Press the rest
button on the board to see the boot up sequence.

This board is now ready for use.
Note: you cannot have the Serial Monitor Running while uploading.
PlatformlIO.

1. install Visual Studio Code (https://code.visualstudio.com/)

2. once that is installed, then install PlatformlIO (https://platformio.org/)
Open VSCode Extension Manager
Search for official PlatformIO IDE extension
Install PlatformIO IDE.

Review the quick start guide. (https://docs.platformio.org/en/latest//integration/ide/vscode.html#quick-
start)

NO REALLY, Go through the quick start guide, it has a lot of functions you will need that we will be
talking about in a bit.

IRBIlaster Project — Compile and Upload

Finally we are here, you've built the board, you've installed the suite of software you need to
troubleshoot and condition boards, and test ran a blinky light firmware that's probably annoying you
right now blinking in your face...

Now we want to upload MdHiggins's IR Blaster program and start doing the cool things you wanted to
do when you started reading 10 pages ago.

1))

2)

3)

4)

5)

6)
7)
8)

9)

Go to Git Hub, IR Blaster by Mdhiggins and choose the green code button, press the clipboard
button to grab the repository link. https://github.com/mdhiggins/ESP8266-HTTP-IR-Blaster

Open VSC (Visual Studio Code) and click on the Platform IO Home button — You found it in
the quick reference guide right? (little house on the tool bar along the bottom)

Click on the alien head on the tool bar on the left. This will open the quick access for
PlatformlIO.

Go to miscellaneous and choose “Clone Git Project” a box at the top of the screen will open and
ask for the repository link, paste it in.

Press enter and choose a location to put the local clone. I suggest creating a folder far away
from Arduino IDE's folder. Perhaps Documents/PlatformIO/

choose open, then yes I trust the authors.
In the project explorer, expand the src folder and click on IRController.ino
You will get an error about C/C++ intelliSense, you can ignore this.

In the ino you can see a bunch of include statements then a set of user settings you can modify
for your use.

getExternalIP

getTime
timeZone -5;

enableMDNSServices
bypassLocalAuth =
captureBufSize = 1824;

toggleRC =

uintle t pinrl = 14;
uintlé t pinsl = 4;
uintl6e t configpin =
uintlé t pins2 = 5;
uintls t pins3 = 12;
uintle t pins4 = 13;

10. set your options, make sure the time zone is correct. More information on these options is available
on the Git Hub. I personally only changed:

getExternallP to false, since I don't want traffic outside my local network accessing this and I
don't intend to use Amazon or other services,

timeZone to ensure the time is correct and I don't end up with WiFi connection issues.

bypassLocalAuth to false to make it require a pass code to accept commands even on the local
network. This is more for access control than for security as the passcode is only protected by
your WiFi security. If you are using external links you are advised to use HMAC for
authentication. Note you may want this set to true if you are using HMAC during your setup
phase, as once HMAC is enabled, it is very hard to troubleshoot if you can't run local
commands. In the future versions there will be MQTT implemented as an alternative
authentication method. https://mqtt.org/

If you need to change these parameters you can usually get away with re uploading over top of the
existing and it won't even reset your wifi information unless you first upload blink with the erase all
flash function set in Arduino IDE.

Lower down is a spot that says “//Do not modify these values, these are placeholders that WiFi
manager will override.” You can change these to reflect your network, so when you configure via
WiFiManager you don't have to delete out all the ip addresses or retype your gateway/dns server every
time you set one of these up. Mdhiggins just doesn't want people to think setting those will bypass the
wifimanager config step — they will not, but setting these can save you a few seconds configuring the
AP connection info in WiFiManager on first boot.

First connect to your router and set up a reservation or static IP for the blaster to use. Record this
information as well as the gateway and DNS. On most home routers DNS and Gateway are both the
same and usually end in “xxx.xxx.xxx.1”.

11. compile and upload the code
a. click the alien head again, and under miscellaneous choose “PlatformIO Core CLI”
b. in the new terminal window in the bottom right quadrant, type “PIO run —t upload.
c. the program will compile and be uploaded to the board.
d. once it's done uploading, press the plug on the bottom bar to open PlatformIO's serial monitor

12. connect and configure the board to connect to your Local Access Point (AP)
a. on a wifi device connect to the new SSID “IR Controller Configuration”. If it doesn't
automatically open a browser to the WiFi Manager configure page, open one and go to
192.168.4.1. On the serial monitor you should see the traffic and a countdown until it reboots.

b. click on the configure button. It will pause as it draws the local SSIDs it can sense. If it stays
blank but you've seen the local SSIDs in serial monitor, you may need to refresh your browser.

c. click on the correct SSID, give it the WiFi password to connect, and fill out the information
as per the router and the IP address you created in step 11. User ID is your amazon user id if you
want to use Alexa. Leave it blank otherwise. And Passcode is the code you need to send (in the

clear) to trigger an IR code if you are coming in from external, and/or local traffic if you have
set bypasslocalauth to false.

d. click the save button and in the serial monitor you should see that it received the information
as required, and will switch over to connect to your AP.

13. Now you can connect your computer back to your AP, and in your browser navigate to the IP
address you gave your IR Blaster.

Note, add /?pass= <passcode> if you set one and bypasslocalauth is set to true or it will not allow you
to access it.

14. Assuming you have your IR Blaster wired correctly with the IR receiver, you should be able to start
recording codes, to start recording codes point your remote control you want to emulate at the receiver
at fairly close distance (1) and press it a couple of times with a pause between. Refresh the page and
you should see it listing the received codes. If it doesn't quite get all of a code it will be an odd size and
be unknown... look for a brand name and a code to be sure. Sometimes there will be a device that does
not fit a known standard, to deal with those, see the readme on the git hub.

Codes Received

Received Command Type Length Address
EGEBRTFE SAMSUNG 32 ax7
FCFE7096 UNKHOWN £l axa

18:19:05 TDBAE4TF UNKNOWN axe

18:19:05 EPEGRTFE SAMSUNG 32 ax7
76168728 UNKHOLWN 33 axa

[CEGRLY Receiving
Transmitter 1
G Transmitter 2

Leix ok P Transmitter 3
CEEEP) Transmitter 4

1073387ms uptime; EPOGH 1625006755/ 1625008757 (2)

This was several pushes of the same button, but you can see the codes were different except for the 2
identified as Samsung.

Once you have a code you can craft a URL to trigger it to transmit that IR code to the device you want
to control.

ie. http://192.168.2.152/msg?code=EO0E040BF:SAMSUNG:32&pulse=3&pdelay=10

Will send 3 pulses of the code “EOE040BF:SAMSUNG:32”, 10ms apart. This timing is similar to my
remote as near as I can tell. My remote sends pulses as long as you hold the remote, so 3 seems a good
number.

You can add or remove parameters by using an ampersand to add on codes.
Code words available are:

pass - password required to execute IR command sending

code - IR code such as A90:SONY:12

address - (optional) Additional address data for NEC codes. Hex format

pulse - (optional) Repeat a signal rapidly. Default 1

pdelay - (optional) Delay between pulses in milliseconds. Default 100

repeat - (optional) Number of times to send the signal. Default 1. Useful for emulating multiple button
presses for functions like large volume adjustments or sleep timer

rdelay - (optional) Delay between repeats in milliseconds. Default 1000

out - (optional) Set which IRsend present to transmit over. Default 1. Choose between 1-4.
Corresponding output pins set in the blueprint. Useful for a single ESP8266 that needs multiple LEDs
pointed in different directions to trigger different devices

Example: http://xxx.xxx.xxx.xxx:port/msg?code=A90:SONY:12&pass=yourpass

Note: The recorded codes are not stored long term on the device, you're just using it to get the data so
you can build your own triggers later. The blaster will just transmit the code given to it. It won't check
to see if a code sent to it was recorded prior, it will just transmit any codes given to it on demand.

15. Next try out your device by making URLs that trigger different codes to control the device.
Once you are at this point the rest of the readme will make it easy to add on additional functions such

as connecting this to Amazon Alexa, or as I'm doing, creating a locally hosted web page as a universal
remote control.

TROUBLESHOOTING

To see if the IR LED is actually transmitting, you can use the camera on your smart phone, any digital
camera will work generally. To test, first point your normal remote at your camera and press any
button. You should see the remote's IR LED pulsing on the camera in purple light that is invisible to the
naked eye, if you don't and you know the remote works, try a different camera. Once you have a digital
camera that can see IR in purple, you can then trigger a code on the IRBlaster and check to see if you
get purple light from it. A single pulse will be a fraction of a second, so I suggest 5 or more pulses to
ensure you see it.

If you are having errors compiling in PlatformlO, hit the garbage can in the bottom bar to clear out the
build folder. It may have something in a bad state causing it to fail. It should always compile.

If you are still having problems with stability, use Arduino IDE to condition the board by loading the
Blink program (page 9 — first program)

Reset WiFi

Once the AP has been set, if you want to go back to the configuration menu, short pin GPIO10(SD3) to
ground, and then press the reset button while this pin is grounded. - The program only checks for this
pin to be grounded on boot, it does not check in the main loop (Note this pin doesn't work on my v3
boards during start up, So I switched the configuration pin to GPIO12 and set output 3 to GPIO 16
since it was using 12.)

Mdhiggins comments that this is likely due to the V3 keeping a live current going through the default
config pin (10 in this case.)

