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1

Introduction

This book is assembled from lectures given by the author over a period of
10 years at the School of Computing of DePaul University. The lectures
cover multiple classes, including Analysis and Design of Algorithms, Sci-
entific Computing, Monte Carlo Simulations, and Parallel Algorithms.
These lectures teach the core knowledge required by any scientist inter-
ested in numerical algorithms and by students interested in computa-
tional finance.

The notes are not comprehensive, yet they try to identify and describe
the most important concepts taught in those courses using a few common
tools and unified notation.

In particular, these notes do not include proofs; instead, they provide
definitions and annotated code. The code is built in a modular way and
is reused as much as possible throughout the book so that no step of the
computations is left to the imagination. Each function defined in the code
is accompanied by one or more examples of practical applications.

We take an interdisciplinary approach by providing examples in finance,
physics, biology, and computer science. This is to emphasize that, al-
though we often compartmentalize knowledge, there are very few ideas
and methodologies that constitute the foundations of them all. Ultimately,
this book is about problem solving using computers. The algorithms you



10 ANNOTATED ALGORITHMS IN PYTHON

will learn can be applied to different disciplines. Throughout history, it
is not uncommon that an algorithm invented by a physicist would find
application in, for example, biology or finance.

Almost all of the algorithms written in this book can be found in the nlib
library:

https://github.com/mdipierro/nlib

1.1 Main Ideas

Even if we cover many different algorithms and examples, there are a few
central ideas in this book that we try to emphasize over and over.

The first idea is that we can simplify the solution of a problem by using
an approximation and then systematically improve our approximation by
iterating and computing corrections.

The divide-and-conquer methodology can be seen as an example of this
approach. We do this with the insertion sort when we sort the first two
numbers, then we sort the first three, then we sort the first four, and so
on. We do it with merge sort when we sort each set of two numbers,
then each set of four, then each set of eight, and so on. We do it with the
Prim, Kruskal, and Dijkstra algorithms when we iterate over the nodes of
a graph, and as we acquire knowledge about them, we use it to update
the information about the shortest paths.

We use this approach in almost all our numerical algorithms because any
differentiable function can be approximated with a linear function:

flx+0x) = f(x) + f'(x)ox (1.1)

We use this formula in the Newton method to solve nonlinear equations
and optimization problems, in one or more dimensions.

We use the same approximation in the fix point method, which we use
to solve equations like f(x) = 0; in the minimum residual and conjugate
gradient methods; and to solve the Laplace equation in the last chapter of
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the book. In all these algorithms, we start with a random guess for the
solution, and we iteratively find a better one until convergence.

The second idea of the book is that certain quantities are random, but even
random numbers have patterns that we can capture using instruments
like distributions and correlations. The presence of these patterns helps
us model those systems that may have a random output (e.g., nuclear
reactions, financial systems) and also helps us in computations. In fact,
we can use random numbers to compute quantities that are not random
(Monte Carlo methods). The most common approximation that we make
in different parts of the book is that when a random variable x is localized
at a point with a given uncertainty, dx, then its distribution is Gaussian.
Thanks to the properties of Gaussian random numbers, we conclude the
following:

e Using the linear approximation (our first big idea), if z = f(x), the

uncertainty in the output is

0z = f'(x)éx (1.2)

e If we add two independent Gaussian random variables z = x + y, the
uncertainty in the output is

0z = \/6x2 + 5y? (1.3)

e If we add N independent and identically distributed Gaussian vari-
ables z = Y x;, the uncertainty in the output is

6z = VNox (1.4)

We use this over and over, for example, when relating the volatility
over different time intervals (daily, yearly).

¢ If we compute an average of N independent and identically distributed
Gaussian random variables, z = 1/N}_ x;, the uncertainty in the aver-
age is

6z = 6x/VN (1.5)
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We use this to estimate the error on the average in a Monte Carlo com-
putation. In that case, we write it as du = 0/+/ N, and ¢ is the standard
deviation of {x;}.

The third idea is that the time it takes to run an iterative algorithm is pro-
portional to the number of iterations. It is therefore our goal to minimize
the number of iterations required to reach a target precision. We develop
a language to compare algorithms based on their running time and clas-
sify algorithms into categories. This is useful to choose the best algorithm
based on the problem at hand.

In the chapter on parallel algorithms, we learn how to distribute those
iterations over multiple parallel processes and how to break individual
iterations into independent steps that can be executed concurrently on
parallel processes, to reduce the total time required to obtain a solution
within a given target precision. In the parallel case, the running time ac-
quires an overhead that depends on the communication patterns between
the parallel processes, the communication latency, and bandwidth.

In the ultimate analysis, we can even try to understand ourselves as a par-
allel machine that models the input from the world by approximations.
The brain is a graph that can be modeled by a neural network. The learn-
ing process is an ongoing optimization process in which the brain adjusts
its synapses to produce better and better responses. The decision process
mimics a search tree. We solve problems by searching for the most simi-
lar problems that we have encountered before, then we refine the solution.
Our DNA is a code that evolved to efficiently compress the information
necessary to grow us from a single cell into a complex being. We evolved
according to evolutionary mechanisms that can be modeled using genetic
algorithms. We can find our similarities with other organisms using the
longest common subsequence algorithm. We can reconstruct our evolu-
tionary tree using shortest-path algorithms and find out how we came to
be.
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1.2 About Python

The programming language used in this book is Python [? ] version 2.7.
This is because Python algorithms are very similar to the corresponding
pseudo-code, and therefore this language is easy to read and understand
compared to other languages such as C++ or Java. Moreover, Python
is a popular language in many Universities and Companies (including
Google).

The goal of the book is to explain the algorithms by building them from
scratch. It is not our goal to teach the user about existing libraries that may
be (and often are) faster than our implementation. Two notable examples
are NumPy [? ] and SciPy [? ]. These libraries provide a Python inter-
face to the BLAS and LaPack libraries for linear algebra and applications.
Although we wholeheartedly recommend using them when developing
production code, we believe they are not appropriate for teaching the
algorithms themselves because those algorithms are written in C, FOR-
TRAN, and assembly languages and are not easy to read.

1.3 Book Structure

This book is divided into the following chapters:
¢ This introduction.

¢ An introduction to the Python programming language. The introduc-
tion assumes the reader is not new to basic programming concepts,
such as conditionals, loops, and function calls, and teaches the basic
syntax of the Python language, with particular focus on those built-
in modules that are important for scientific applications (math, cmath,
decimal, random) and a few others.

¢ Chapter 3 is a short review of the general theory of algorithms with
applications. There we review how to determine the running time of
an algorithm from simple loops to more complex recursive algorithms.
We review basic data structures used to store information such as lists,
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arrays, stacks, queues, trees, and graphs. We also review the classifi-
cation of basic algorithms such as divide-and-conquer, dynamic pro-
gramming, and greedy algorithms. In the examples, we peek into com-
plex algorithms such as Shannon-Fano compression, a maze solver, a
clustering algorithm, and a neural network.

* In chapter 4, we talk about traditional numerical algorithms, in particu-
lar, linear algebra, solvers, optimizers, integrators, and Fourier-Laplace
transformations. We start by reviewing the concept of Taylor series and
their convergence to understand approximations, sources of error, and
convergence. We then use those concepts to build more complex algo-
rithms by systematically improving their first-order (linear) approxima-
tion. Linear algebra serves us as a tool to approximate and implement
functions of many variables.

¢ In chapter 5, we provide a review of probability and statistics and im-
plement basic Python functions to perform statistical analysis of ran-
dom variables.

¢ In chapter 6, we discuss algorithms to generate random numbers from
many distributions. Python already has a built-in module to generate
random numbers, and in subsequent chapters, we utilize it, yet in this
chapter, we discuss in detail how pseudo random number generators
work and their pitfalls.

¢ In chapter 7, we write about Monte Carlo simulations. This is a numer-
ical technique that utilizes random numbers to solve otherwise deter-
ministic problems. For example, in chapter 4, we talk about numerical
integration in one dimension. Those algorithms can be extended to
perform numerical integration in a few (two, three, sometimes four)
dimensions, but they fail for very large numbers of dimensions. That
is where Monte Carlo integration comes to our rescue, as it increasingly
becomes the integration method of choice as the number of variables
increases. We present applications of Monte Carlo simulations.

¢ In chapter 8, we discuss parallel algorithms. There are many paradigms
for parallel programming these days, and the tendency is toward
inhomogeneous architectures. Although we review many different
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types of architectures, we focus on three programming paradigms that
have been very successful: message-passing, map-reduce, and multi-
threaded GPU programming. In the message-passing case, we create a
simple “parallel simulator” (psim) in Python that allows us to under-
stand the basic ideas behind message passing and issues with different
network topologies. In the GPU case, we use pyOpenCL [? ] and ocl [?
], a Python-to-OpenCL compiler that allows us to write Python code
and convert it in real time to OpenCL for running on the GPU.

Finally, in the appendix, we provide a compendium of useful formulas
and definitions.

1.4 Book Software

We utilize the following software libraries developed by the author and

available under an Open Source BSD License:

http://github.com/mdipierro/nlib
http://github.com/mdipierro/buckingham
http://github.com/mdipierro/psim

http://github.com/mdipierro/ocl

We also utilize the following third party libraries:

http://www.numpy.org/

http://matplotlib.org/
https://github.com/michaelfairley/mincemeatpy
http://mpidpy.scipy.org/

http://mathema.tician.de/software/pyopencl

All the code included in these notes is released by the author under the

three-clause BSD License.
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2

Overview of the Python Language

2.1 About Python

Python is a general-purpose high-level programming language. Its design
philosophy emphasizes programmer productivity and code readability. It
has a minimalist core syntax with very few basic commands and simple
semantics. It also has a large and comprehensive standard library, includ-
ing an Application Programming Interface (API) to many of the under-
lying operating system (OS) functions. Python provides built-in objects
such as linked lists (list), tuples (tuple), hash tables (dict), arbitrarily
long integers (long), complex numbers, and arbitrary precision decimal
numbers.

Python supports multiple programming paradigms, including object-
oriented (class), imperative (def), and functional (lambda) programming.
Python has a dynamic type system and automatic memory management
using reference counting (similar to Perl, Ruby, and Scheme).

Python was first released by Guido van Rossum in 1991 [? ]. The lan-
guage has an open, community-based development model managed by
the nonprofit Python Software Foundation. There are many interpreters
and compilers that implement the Python language, including one in Java
(Jython), one built on .Net (IronPython), and one built in Python itself
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(PyPy). In this brief review, we refer to the reference C implementation
created by Guido.

You can find many tutorials, the official documentation, and library refer-
ences of the language on the official Python website. [? ]

For additional Python references, we can recommend the books in ref. [?
] and ref. [? ].

You may skip this chapter if you are already familiar with the Python
language.

2.1.1 Python versus Java and C++ syntax

Java/C++ Python
assignment | a =b; a=1>b
comparison | if (1 ==b) ifa==
loops for(a = 0;a < m;a++) | for a in range(0, n):
block Braces {...} indentation
function float f(float a) { def f(a):
function call | f(a) f(a)
arrays/lists | ai] ali]
member a.member a.member
nothing null / voidx* None

As in Java, variables that are primitive types (bool, int, float) are passed by
copy, but more complex types, unlike C++, are passed by reference. This
means when we pass an object to a function, in Python, we do not make
a copy of the object, we simply define an alternate name for referencing
the object in the function.

2.1.2 help, dir

The Python language provides two commands to obtain documentation
about objects defined in the current scope, whether the object is built in
or user defined.
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“u_n

We can ask for help about an object, for example, “1”:

>>> help(1l)
Help on int object:

class int(object)
| dint(x[, base]) -> integer

|

| Convert a string or number to an integer, if possible. A floating point

| argument will be truncated towards zero (this does not include a string

| representation of a floating point number!) When converting a string, use
| the optional base. It is an error to supply a base when converting a

| non-string. If the argument is outside the integer range a long object

| will be returned instead.
|

|

|

|

|

Methods defined here:

__abs__(...)
X.__abs__() <==> abs(x)

“"_r

and because “1” is an integer, we get a description about the int class and
all its methods. Here the output has been truncated because it is very
long and detailed.

Similarly, we can obtain a list of object attributes (including methods) for
any object using the command dir. For example:

>>> dir(1)

['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__coerce__"',
'__delattr__', '__div__', '__divmod__', '__doc__', '__float__",
'__floordiv__', '__getattribute__', '__getnewargs__', '__hash__', '__hex__"',
'__index__', '__init_ ', '__int__', '__invert__', '__long__', '__lshift__',
‘“mod__', '__mul__', '__neg ', '__new__', '__nonzero__', '__oct ',
'‘"‘or__', '_pos__', '__pow__', '__radd__', '__rand__', '__rdiv__"',
'__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__"',
'__rlshift__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__',
‘__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__',
‘__str__', '__sub__', '__truediv__', '__xor__"']

2.2 Types of variables

Python is a dynamically typed language, meaning that variables do not
have a type and therefore do not have to be declared. Variables may also
change the type of value they hold through their lives. Values, on the
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other hand, do have a type. You can query a variable for the type of value
it contains:

>>> a = 3

>>> print type(a)
<type 'int'>

>>> a = 3.14

>>> print type(a)
<type 'float'>

>>> a = 'hello python'
>>> print type(a)
<type 'str's>

Python also includes, natively, data structures such as lists and dictionar-
ies.

2.2.1 int and long

There are two types representing integer numbers: int and long. The dif-
ference is that int corresponds to the microprocessor’s native bit length.
Typically, this is 32 bits and can hold signed integers in range [—231, +231 ),
whereas the long type can hold almost any arbitrary integer. It is impor-
tant that Python automatically converts one into the other as necessary,
and you can mix and match the two types in computations. Here is an
example:

>>> a = 1024

>>> type(a)

<type 'int'>

>>> b = axx128

>>> print b
20815864389328798163850480654728171077230524494533409610638224700807216119346720
59602447888346464836968484322790856201558276713249664692981627981321135464152584
82590187784406915463666993231671009459188410953796224233873542950969577339250027
68876520583464697770622321657076833170056511209332449663781837603694136444406281
042053396870977465916057756101739472373801429441421111406337458176

>>> print type(b)

<type 'long'>

Computers represent 32-bit integer numbers by converting them to base
2. The conversion works in the following way:

def int2binary(n, nbits=32):
if n<0:
return [1 if bit==0 else 0 for bit in int2binary(-n-1,nbits)]
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bits = [0]*nbits
for i in range(nbits):

n, bits[i] = divmod(n,?2)
if n: raise OverflowError
return bits

The case n < 0 is called two’s complement and is defined as the value
obtained by subtracting the number from the largest power of 2 (232 for
32 bits). Just by looking at the most significant bit, one can determine the
sign of the binary number (1 for negative and o for zero or positive).

2.2.2 float and decimal

There are two ways to represent decimal numbers in Python: using the
native double precision (64 bits) representation, float, or using the decimal
module.

Most numerical problems are dealt with simply using float:

>>> pi = 3.141592653589793
>>> two_pi = 2.0 x pi

Floating point numbers are internally represented as follows:

x = +m2° (2.1)

where x is the number, m is called the mantissa and is zero or a num-
ber in the range [1,2), and ¢ is called the exponent. The sign, m, and e
can be computed using the following algorithm, which also writes their
representation in binary:

def float2binary(x,nm=4,ne=4):

if x==0:

return 0, [0]xnm, [0]*ne
sign,mantissa, exponent = (1 if x<0 else 0),abs(x),0
while abs(mantissa)>=2:

mantissa,exponent = 0.5*mantissa,exponent+l
while O<abs(mantissa)<l:

mantissa,exponent = 2.0*mantissa,exponent-1
mantissa = int2binary(int(2x*(nm-1)*mantissa),nm)
exponent = int2binary(exponent,ne)
return sign, mantissa, exponent
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Because the exponent is stored in a fixed number of bits (11 for a 64-bit
floating point number), exponents smaller than —1022 and larger than
1023 cannot be represented. An arithmetic operation that returns a num-

1022~ 10-308

ber smaller than 2~ cannot be represented and results in

an underflow error. An operation that returns a number larger than
21023 ~ 103% also cannot be represented and results in an overflow er-

ror.

Here is an example of overflow:

>>> g = 10.0%*x200
>>> axa
inf

And here is an example of underflow:

>>> a = 10.0x%*-200
>>> a*xa

3 0.0

1
2
3
4

Another problem with finite precision arithmetic is the loss of precision
in computation. Consider the case of the difference between two numbers
with very different orders of magnitude. To compute the difference, the
CPU reduces them to the same exponent (the largest of the two) and then
computes the difference in the two mantissas. If two numbers differ for
a factor 2F, then the mantissa of the smallest number, in binary, needs to
be shifted by k positions, thus resulting in a loss of information because
the k least significant bits in the mantissa are ignored. If the difference be-
tween the two numbers is greater than a factor 2°2, all bits in the mantissa
of the smallest number are ignored, and the smallest number becomes
completely invisible.

Following is a practical example that produces an incorrect result:

>>> a = 1.0

>>> b = 2.0%x53

>>> a+b-b

0.0

a simple example of what occurs internally in a processor to add two
floating point numbers together. The IEEE 754 standard states that for

32-bit floating point numbers, the exponent has a range of —126 to +127:

262 in IEEE 754: 0 10000111 00000110000000000000000 (+ e:8 m:1.0234375)
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3 in IEEE 754: 0 10000000 10000000000000000000000 (+ e:1 m:1.5)
265 in IEEE 754: 0 10000111 00001001000000000000000

To add 262.0 to 3.0, the exponents must be the same. The exponent of the
lesser number is increased to the exponent of the greater number. In this
case, 3’s exponent must be increased by 7. Increasing the exponent by 7
means the mantissa must be shifted seven binary digits to the right:

0 10000111 60000110000000000000000
0 10000111 00000011000000000000000 (The implied *"1'' is also pushed seven
places to the right)

0 10000111 00001001000000000000000 which is the IEEE 754 format for 265.0

In the case of two numbers in which the exponent is greater than the
number of digits in the mantissa, the smaller number is shifted right off
the end. The effect is a zero added to the larger number.

In some cases, only some of the bits of the smaller number’s mantissa are
lost if a partial addition occurs.

This precision issue is always present but not always obvious. It may
consist of a small discrepancy between the true value and the computed
value. This difference may increase during the computation, in particular,
in iterative algorithms, and may be sizable in the result of a complex
algorithm.

Python also has a module for decimal floating point arithmetic that al-
lows decimal numbers to be represented exactly. The class Decimal incor-
porates a notion of significant places (unlike the hardware-based binary
floating point, the decimal module has a user-alterable precision):

>>> from decimal import Decimal, getcontext

>>> getcontext().prec = 28 # set precision

>>> Decimal(1l) / Decimal(7)

Decimal('0.1428571428571428571428571429" )

Decimal numbers can be used almost everywhere in place of floating
point number arithmetic but are slower and should be used only where
arbitrary precision arithmetic is required. It does not suffer from the over-

flow, underflow, and precision issues described earlier:

>>> from decimal import Decimal
>>> a = Decimal(10.0)**300
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>>> axa
Decimal('1.000000000000000000000000000E+600")

2.2.3 complex

Python has native support for complex numbers. The imaginary unit is
represented by the character j:

>>> ¢ = 142j

>>> print c

(1+23)

>>> print c.real

1.0

>>> print c.imag

2.0

>>> print abs(c)

2.2360679775

The real and imaginary parts of a complex number are stored as 64-bit

floating point numbers.

Normal arithmetic operations are supported. The cmath module contains
trigonometric and other functions for complex numbers. For example,
>>> phi = 1j

>>> import cmath

>>> print cmath.exp(phi)
(0.540302305868+0.8414709848087)

2.2.4 str

Python supports the use of two different types of strings: ASCII strings
and Unicode strings. ASCII strings are delimited by *...”, "...", ""..."",
or """...""". Triple quotes delimit multiline strings. Unicode strings start
with a u, followed by the string containing Unicode characters. A Unicode
string can be converted into an ASCII string by choosing an encoding (e.g.,
UTES):

>>> a = 'this is an ASCII string'
>>> b = u'This is a Unicode string'
>>> a = b.encode('utf8")

After executing these three commands, the resulting a is an ASCII string
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storing UTF8 encoded characters.

It is also possible to write variables into strings in various ways:

>>> print 'number is ' + str(3)
number is 3
>>> print 'number is %s' % (3)
number is 3

5 >>> print 'number is %(number)s' % dict(number=3)

number is 3

The final notation is more explicit and less error prone and is to be pre-
ferred.

Many Python objects, for example, numbers, can be serialized into strings
using str or repr. These two commands are very similar but produce
slightly different output. For example,

>>> for i in [3, 'hello']:

.. print str(i), repr(i)
33
hello ‘hello’

For user-defined classes, str and repr can be defined and redefined using
the special operators __str__ and __repr__. These are briefly described
later in this chapter. For more information on the topic, refer to the official

Python documentation [? ].
Another important characteristic of a Python string is that it is an iterable
object, similar to a list:

>>> for i in 'hello':
print i

o~~~ ® =T -

2.2,5 list and array

The distinction between lists and arrays is usually in their implementation
and in the relative difference in speed of the operations they can perform.
Python defines a type called list that internally is implemented more like
an array.
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The main methods of Python lists are append, insert, and delete. Other

useful methods include count, index, reverse, and sort:

>>>
>>>

b =[1, 2, 3]
print type(b)

<type 'list'>

>>>
>>>
>>>
>>>
[2,

>>>
4

>>>
>>>
>>>

[3,

b.append(8)

b.insert(2, 7) # insert 7 at index 2 (3rd element)
del b[0]

print b

7, 3, 8]

print len(b)

b.append(3)

b.reverse()

print b," 3 appears ", b.count(3), " times. The number 7 appears at index "
, b.index(7)

8, 3, 7, 2] 3 appears 2 times. The number 7 appears at index 3

Lists can be sliced:

>>>
>>>
[2,
>>>
[7,
>>>

[3,

a= [2, 7, 3, 8]
print a[:3]

7, 31

print a[l:]

3, 8]

print a[-2:]

8]

and concatenated /joined:

>>>
>>>
>>>
>>>

[2,

a=1[2,7, 3, 8]
a = [2, 3]

b =[5, 6]

print a + b

3, 5, 6]

A list is iterable; you can loop over it:

>>>
>>>
1
2
3

a=1[1, 2, 3]
for i in a:
print i

A list can also be sorted in place with the sort method:

>>>

a.sort()

There is a very common situation for which a list comprehension can be
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used. Consider the following code:

>>>a = [1,2,3,4,5]
>>> b = []
>>> for x in a:

if x % 2 == 0:
.. b.append(x * 3)
>>> print b
[6, 12]
This code clearly processes a list of items, selects and modifies a subset
of the input list, and creates a new result list. This code can be entirely

replaced with the following list comprehension:

>>> a = [1,2,3,4,5]

>>> b = [x * 3 for x in a if x % 2 == 0]

>>> print b

(6, 12]

Python has a module called array. It provides an efficient array imple-
mentation. Unlike lists, array elements must all be of the same type, and
the type must be either a char, short, int, long, float, or double. A type
of char, short, int, or long may be either signed or unsigned. Notice these
are C-types, not Python types.

>>> from array import array

>>> a = array('d',[1,2,3,4,5])

array('d',[1.0, 2.0, 3.0, 4.0, 5.0])

An array object can be used in the same way as a list, but its elements
must all be of the same type, specified by the first argument of the con-
structor (“d” for double, “1” for signed long, “f” for float, and “c” for
character). For a complete list of available options, refer to the official
Python documentation.

Using “array” over “list” can be faster, but more important, the “array”
storage is more compact for large arrays.

2.2.6 tuple
A tuple is similar to a list, but its size and elements are immutable. If a

tuple element is an object, the object itself is mutable, but the reference to
the object is fixed. A tuple is defined by elements separated by a comma



ENE

o u kW

W

e

28 ANNOTATED ALGORITHMS IN PYTHON

and optionally delimited by round parentheses:

>>a=1, 2, 3
>>>a = (1, 2, 3)

The round brackets are required for a tuple of zero elements such as
>>> a = () # this is an empty tuple

A trailing comma is required for a one-element tuple but not for two or
more elements:

>>> a = (1) # not a tuple
>>> a = (1,) # this is a tuple of one element
>>> b = (1,2) # this is a tuple of two elements

Since lists are mutable; this works:

>>> a = [1, 2, 3]
>>> a[l] =5

>>> print a

[1, 5, 3]

the element assignment does not work for a tuple:

>>>a = (1, 2, 3)
>>> print a[l]
2
>>> a[l] =5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

A tuple, like a list, is an iterable object. Notice that a tuple consisting of a
single element must include a trailing comma:

>>> g = (1)

>>> print type(a)

<type 'int'>

>>>a = (1,)

>>> print type(a)

<type 'tuple'>

Tuples are very useful for efficient packing of objects because of their
immutability. The brackets are often optional. You may easily get each
element of a tuple by assigning multiple variables to a tuple at one time:

>>> a = (2, 3, 'hello")
>>> (X, Yy, z) = a

>>> print x

2

>>> print z
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hello

>>> a = 'alpha', 35, 'sigma' # notice the rounded brackets are optional
>>> p, [y q = a

print r

35

2.2.7 dict

A Python dict-ionary is a hash table that maps a key object to a value
object:

>>>a = {'k':'v', 'k2':3}

>>> print a['k']

A

>>> print a['k2']

3

>>> 'k' in a

True

>>> 'v' in a

False

You will notice that the format to define a dictionary is the same as the
JavaScript Object Notation [JSON]. Dictionaries may be nested:

>>>a = {'x":3, 'y':54, 'z':{'a':1,'b':2}}

>>> print a['z']

{'a': 1, 'b': 2}

>>> print a['z']['a']

1

Keys can be of any hashable type (int, string, or any object whose class
implements the __hash__ method). Values can be of any type. Different
keys and values in the same dictionary do not have to be of the same type.
If the keys are alphanumeric characters, a dictionary can also be declared
with the alternative syntax:

>>> a = dict(k='v', h2=3)

>>> print a['k']

Vv

>>> print a
{'h2': 3, 'k': 'v'}

Useful methods are has_key, keys, values, items, and update:

>>> a = dict(k='v', k2=3)
>>> print a.keys()
['k2', 'k']
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>>> print a.values()

[3, 'v'l

>>> a.update({'nl':'new item'}) # adding a new item

>>> a.update(dict(n2='newer item')) # alternate method to add a new item

>>> a['n3'] = 'newest item' # another method to add a new item

>>> print a.items()

[(‘k2', 3), ('‘k', 'v'), ('n3', 'newest item'), ('n2', 'newer item'), ('nl', 'new
item')]

The items method produces a list of tuples, each containing a key and its
associated value.

Dictionary elements and list elements can be deleted with the command
del:
>>>a = [1, 2, 3]
>>> del a[1l]
>>> print a
[1, 3]
>>> a = dict(k='v', h2=3)
>>> del a['h2']
>>> print a
{'k's v}
Internally, Python uses the hash operator to convert objects into integers
and uses that integer to determine where to store the value. Using a key
that is not hashable will cause an un-hashable type error:
>>> hash("hello world")
-1500746465
>>> k = [1,2,3]
>>> a = {k:'4'}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

2.2.8 set

A set is something between a list and a dictionary. It represents a non-
ordered list of unique elements. Elements in a set cannot be repeated.
Internally, it is implemented as a hash table, similar to a set of keys in a
dictionary. A set is created using the set constructor. Its argument can be
a list, a tuple, or an iterator:

>>> s = set([1,2,3,4,5,5,5,5]) # notice duplicate elements are removed
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>>> print s

set([1,2,3,4,5])

>>> s = set((1,2,3,4,5))

>>> print s

set([1,2,3,4,5])

>>> 5 = set(i for i in range(1,6))
>>> print s

set([1, 2, 3, 4, 5])

Sets are not ordered lists therefore appending to the end is not applicable.
Instead of append, add elements to a set using the add method:

>>> s = set()
>>> s.add(2)
>>> s,add(3)
>>> s.add(2)
>>> print s
set([2, 3])

Notice that the same element cannot be added twice (2 in the example).
There is no exception or error thrown when trying to add the same ele-
ment more than once.

Because sets are not ordered, the order in which you add items is not
necessarily the order in which they will be returned:

>>> s = set([6,'b', 'beta',-3.4,'a"',3,5.3])
>>> print (s)
set(['a', 3, 6, 5.3, 'beta', 'b', -3.4])

The set object supports normal set operations like union, intersection, and
difference:

>>> a = set([1,2,3])

>>> b set([2,3,4])

set([2,3])

>>> print a.union(b)

set([1, 2, 3, 4])

>>> print a.intersection(b)

set([2, 3])

>>> print a.difference(b)

set([1])

>>> if len(c) == len(a.intersection(c)):
print "c is a subset of a"

. else:

print "c is not a subset of a"

>>> ¢

c is a subset of a



N s wN

N

32 ANNOTATED ALGORITHMS IN PYTHON

To check for membership,

>>> 2 in a
True

2.3 Python control flow statements

Python uses indentation to delimit blocks of code. A block starts with a
line ending with colon and continues for all lines that have a similar or
higher indentation as the next line:

>>> i =0

>>> while i < 3:
print i

. i=1i+1

0

1

2

It is common to use four spaces for each level of indentation. It is a
good policy not to mix tabs with spaces, which can result in (invisible)
confusion.

2.3.1 for...in

In Python, you can loop over iterable objects:

>>> a = [0, 1, 'hello', 'python']
>>> for i in a:
print i
0
1
hello
python

i
1

In the preceding example, you will notice that the loop index “i” takes on
the values of each element in the list [0, 1, "hello’, "python’] sequentially.
The Python range keyword creates a list of integers automatically that may

be used in a “for” loop without manually creating a long list of numbers.
>>> a = range(0,5)

>>> print a
[, 1, 2, 3, 4]
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>>> for i in a:
print i

A WN P O -

The parameters for range(a,b,c) are as follows: the first parameter is the
starting value of the list. The second parameter is the next value if the list
contains one more element. The third parameter is the increment value.

The keyword range can also be called with one parameter. It is matched
to “b” with the first parameter defaulting to o and the third to 1:

>>> print range(5)

[e, 1, 2, 3, 4]

>>> print range(53,57)

[53,54,55,56]

>>> print range(102,200,10)

[102, 112, 122, 132, 142, 152, 162, 172, 182, 192]

>>> print range(0,-10,-1)

1, =1, =2, =3, =4, =5, =6, =7, =6, =0]

The keyword range is very convenient for creating a list of numbers; how-
ever, as the list grows in length, the memory required to store the list
also grows. A more efficient option is to use the keyword xrange, which

generates an iterable range instead of the entire list of elements.

This is equivalent to the C/C++/C#/Java syntax:

for(int i=0; i<4; i=i+l) { ... }

Another useful command is enumerate, which counts while looping and
returns a tuple consisting of (index, value):

>>> a = [0, 1, 'hello', 'python']
>>> for (i, j) in enumerate(a): # the ( ) around i, j are optional
print i, j

There is also a keyword range(a, b, c) that returns a list of integers start-
ing with the value a, incrementing by ¢, and ending with the last value
smaller than b, where a defaults to o and c defaults to 1.
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You can jump out of a loop using break:

>>> for i in [1, 2, 3]:
print i
break
1
You can jump to the next loop iteration without executing the entire code
block with continue:
>>> for i in [1, 2, 3]:
print i
continue
. print 'test'
1
2
3
Python also supports list comprehensions, and you can build lists using
the following syntax:
>>> a3 = [ixi for i in [0, 1, 2, 3]:
>>> print a
o, 1, 4, 9]
Sometimes you may need a counter to “count” the elements of a list while
looping;:
>>> a = [ex(i+1) for (i,e) in enumerate(['a','b','c','d'])]

>>> print a
['a', 'bb', 'ccc', 'dddd']

2.3.2 while

Comparison operators in Python follow the C/C++/Java operators of ==,
=, ..., and so on. However, Python also accepts the <> operator as not
equal to and is equivalent to !=. Logical operators are and, or, and not.

The while loop in Python works much as it does in many other program-
ming languages, by looping an indefinite number of times and testing a
condition before each iteration. If the condition is False, the loop ends:

>>> i =0
>>> while
. i
>>> print
10

< 10:
i+1

T
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The for loop was introduced earlier in this chapter.

There is no loop...until or do...while construct in Python.

2.3.3 if...elif...else

The use of conditionals in Python is intuitive:

>>> for i in range(3):

if i == 0:
print 'zero'
elif i == 1:
print 'one'
else:
. print 'other'
zero
one
other

The elif means “else if.” Both elif and else clauses are optional. There
can be more than one elif but only one else statement. Complex condi-
tions can be created using the not, and, and or logical operators:

>>> for i in range(3):
if i==0or (i==1and i+ 1==2):
print 'O or 1'

2.3.4 try...except...else...finally

Python can throw - pardon, raise - exceptions:

>>> try:
a=1/0
. except Exception, e:
print 'oops: %s' % e
. else:
oG print 'no problem here'
. finally:
print 'done’
oops: integer division or modulo by zero
done

If an exception is raised, it is caught by the except clause, and the else
clause is not executed. The finally clause is always executed.
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There can be multiple except clauses for different possible exceptions:

>>> try:
raise SyntaxError
. except ValueError:
print 'value error'
. except SyntaxError:
print 'syntax error'
syntax error

The finally clause is guaranteed to be executed while the except and else
are not. In the following example, the function returns within a try block.
This is bad practice, but it shows that the finally will execute regardless
of the reason the try block is exited:

>>> def f(x):

try:

r = X*X

return r # bad practice
except:

print "exception occurred %s" % e
else:

print "nothing else to do"
finally:

print "Finally we get here"

>>> y = f(3)

Finally we get here

>>> print "result is ", y
result is 9

For every try, you must have either an except or a finally, while the else
is optional.

Here is a list of built-in Python exceptions:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- Exception
+-- GeneratorExit
+-- StopIteration
+-- StandardError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
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+-- EnvironmentError

| +-- IOError

| +-- OSError

| +-- WindowsError (Windows)

| +-- VMSError (VMS)

+-- EOFError

+-- ImportError

+-- LookupError

| +-- IndexError

| +-- KeyError

+-- MemoryError

+-- NameError

| +-- UnboundLocalError

+-- ReferenceError

+-- RuntimeError

| +-- NotImplementedError

+-- SyntaxError

| +-- IndentationError

| +-- TabError

+-- SystemError

+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-- UnicodeDecodeError

| +-- UnicodeEncodeError

| +-- UnicodeTranslateError
-- Warning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- RuntimeWarning

+-- SyntaxWarning

+-- UserWarning

+-- FutureWarning

+-- ImportWarning

+-- UnicodeWarning

documentation.

Any object can be raised as an exception, but it is good practice to raise
objects that extend one of the built-in exception classes.

2.3.5

Functions are declared using def. Here is a typical Python function:

def...

return
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>>> def f(a, b):

. return a + b
>>> print (4, 2)

6

There is no need (or way) to specify the type of an argument(s) or the
return value(s). In this example, a function f is defined that can take two
arguments.

Functions are the first code syntax feature described in this chapter to
introduce the concept of scope, or namespace. In the preceding example,
the identifiers a and b are undefined outside of the scope of function f:

>>> def f(a):
. return a + 1
>>> print (1)
2
>>> print a
Traceback (most recent call last):
File "<pyshell#22>", line 1, in <module>
print a
NameError: name 'a' is not defined

Identifiers defined outside of the function scope are accessible within the
function; observe how the identifier a is handled in the following code:

>>> g =1

>>> def f(b):

. return a + b
>>> print f(1)

2

>>> g = 2

>>> print f(1) # new value of a is used
3

>>> a = 1 # reset a

>>> def g(b):

a = 2 # creates a new local a
. return a + b
>>> print g(2)
4
>>> print a # global a is unchanged
1

If a is modified, subsequent function calls will use the new value of the
global a because the function definition binds the storage location of the
identifier a, not the value of a itself at the time of function declaration;
however, if a is assigned-to inside function g, the global a is unaffected be-
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cause the new local a hides the global value. The external-scope reference
can be used in the creation of closures:

>>> def f(x):

def g(y):

return x *x y

return g
>>> doubler f(2) # doubler is a new function
>>> tripler f(3) # tripler is a new function
>>> quadrupler = f(4) # quadrupler is a new function
>>> print doubler(5)
10
>>> print tripler(5)
15
>>> print quadrupler(5)
20

Function f creates new functions; note that the scope of the name g is
entirely internal to f. Closures are extremely powerful.

Function arguments can have default values and can return multiple re-
sults as a tuple (notice the parentheses are optional and are omitted in the
example):
>>> def f(a, b=2):
return a + b, a - b
>>> x, y = f(5)
>>> print x
7
>>> print y
3
Function arguments can be passed explicitly by name; therefore the order
of arguments specified in the caller can be different than the order of
arguments with which the function was defined:
>>> def f(a, b=2):
return a + b, a - b
>>> X, y = f(b=5, a=2)
>>> print x
7
>>> print y
-3
Functions can also take a runtime-variable number of arguments. Param-
eters that start with « and *+ must be the last two parameters. If the xx

parameter is used, it must be last in the list. Extra values passed in will be
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placed in the xidentifier parameter, whereas named values will be placed
into the xidentifier. Notice that when passing values into the function,
the unnamed values must be before any and all named values:

>>> def f(a, b, xextra, **xextraNamed):

print "a = ", a
print "b =", b
print "extra = ", extra
C print "extranamed = ", extraNamed
>>> f(1, 2, 5, 6, x=3, y=2, z=6)
a= 1
b= 2
extra = (5, 6)

extranamed = {'y': 2, 'x': 3, 'z': 6}
Here the first two parameters (1 and 2) are matched with the parameters

a and b, while the tuple 5, 6 is placed into extra and the remaining items
(which are in a dictionary format) are placed into extraNamed.

In the opposite case, a list or tuple can be passed to a function that re-
quires individual positional arguments by unpacking them:
>>> def f(a, b):

. return a + b
>>>c = (1, 2)

>>> print f(x*c)
3

and a dictionary can be unpacked to deliver keyword arguments:

>>> def f(a, b):

. return a + b
>>>c = {'a':1, 'b':2}
>>> print f(*xc)

3

2.3.6 lambda

The keyword lambda provides a way to define a short unnamed function:

>>> a = lambda b: b + 2

>>> print a(3)

5

The expression “1lambda [a]:[b]” literally reads as “a function with argu-

ments [a] that returns [b].” The lambda expression is itself unnamed, but
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the function acquires a name by being assigned to identifier a. The scop-
ing rules for def apply to lambda equally, and in fact, the preceding code,
with respect to a, is identical to the function declaration using def:

>>> def a(b):
return b + 2
>>> print a(3)
5
The only benefit of lambda is brevity; however, brevity can be very conve-
nient in certain situations. Consider a function called map that applies a

function to all items in a list, creating a new list:

>>>a=[1,7, 2,5 4, 8]

>>> map(lambda x: x + 2, a)

[3, 9, 4, 7, 6, 10]

This code would have doubled in size had def been used instead of 1ambda.
The main drawback of lambda is that (in the Python implementation) the
syntax allows only for a single expression; however, for longer functions,
def can be used, and the extra cost of providing a function name decreases
as the length of the function grows.

Just like def, lambda can be used to curry functions: new functions can be
created by wrapping existing functions such that the new function carries
a different set of arguments:

>>> def f(a, b): return a + b

>>> g = lambda a: f(a, 3)

>>> g(2)

5

Python functions created with either def or lambda allow refactoring of

existing functions in terms of a different set of arguments.

2.4 Classes

Because Python is dynamically typed, Python classes and objects may
seem odd. In fact, member variables (attributes) do not need to be specif-
ically defined when declaring a class, and different instances of the same
class can have different attributes. Attributes are generally associated with
the instance, not the class (except when declared as “class attributes,”
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which is the same as “static member variables” in C++/Java).

Here is an example:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.myvariable = 3
>>> print myinstance.myvariable

Notice that pass is a do-nothing command. In this case, it is used to define
a class MyClass that contains nothing. MyClass() calls the constructor of
the class (in this case, the default constructor) and returns an object, an
instance of the class. The (object) in the class definition indicates that our
class extends the built-in object class. This is not required, but it is good
practice.

Here is a more involved class with multiple methods:
>>> class Complex(object):
z =2
def __init _(self, real=0.0, imag=0.0):
self.real, self.imag = real, imag
def magnitude(self):
return (self.realxx2 + self.imag**2)**0.5
def __add__(self,other):
Ce return Complex(self.real+other.real,self.imag+other.imag)
>>> a = Complex(1,3)
>>> b = Complex(2,1)
>>Cc=a+b
>>> print c.magnitude()
5

Functions declared inside the class are methods. Some methods have
special reserved names. For example, __init__ is the constructor. In the
example, we created a class to store the real and the imag part of a complex
number. The constructor takes these two variables and stores them into
self (not a keyword but a variable that plays the same role as this in Java
and (xthis) in C++; this syntax is necessary to avoid ambiguity when
declaring nested classes, such as a class that is local to a method inside
another class, something Python allows but Java and C++ do not).

The self variable is defined by the first argument of each method. They
all must have it, but they can use another variable name. Even if we use
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another name, the first argument of a method always refers to the object
calling the method. It plays the same role as the this keyword in Java and
C++.

Method __add__ is also a special method (all special methods start and
end in double underscore) and it overloads the + operator between self
and other. In the example, a+b is equivalent to a call to a.__add__(b), and
the __add__ method receives self=a and other=b.

All variables are local variables of the method, except variables declared
outside methods, which are called class variables, equivalent to C++ static
member variables, which hold the same value for all instances of the class.

2.4.1 Special methods and operator overloading

Class attributes, methods, and operators starting with a double under-
score are usually intended to be private (e.g., to be used internally but
not exposed outside the class), although this is a convention that is not
enforced by the interpreter.

Some of them are reserved keywords and have a special meaning:
e __len__

® __getitem__

® __setitem _

They can be used, for example, to create a container object that acts like a
list:

>>> class MyList(object):

>>> def __init__(self, *a): self.a = list(a)

>>> def __len__(self): return len(self.a)

>>> def __getitem__(self, key): return self.alkey]

>>> def __setitem__(self, key, value): self.alkey]l = value

>>> b = MyList(3, 4, 5)
>>> print b[1]

4

>>> b.a[l] = 7

>>> print b.a

[3, 7, 5]
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Other special operators include __getattr__ and __setattr__, which define
the get and set methods (getters and setters) for the class, and __add__,
__sub__, __mul__, and __div__, which overload arithmetic operators. For
the use of these operators, we refer the reader to the chapter on linear
algebra, where they will be used to implement algebra for matrices.

2.4.2 class Financial Transaction

As one more example of a class, we implement a class that represents
a financial transaction. We can think of a simple transaction as a single
money transfer of quantity a that occurs at a given time t. We adopt
the convention that a positive amount represents money flowing in and a
negative value represents money flowing out.

The present value (computed at time ty) for a transaction occurring at
time t days from now of amount A is defined as

PV(t,A) = Ae™ " (2.2)
where r is the daily risk-free interest rate. If t is measured in days, r

has to be the daily risk-free return. Here we will assume it defaults to
r = 005/365 (5% annually).

Here is a possible implementation of the transaction:

from datetime import date

> from math import exp

3
4
5
6

7

today = date.today()
r_free = 0.05/365.0

class FinancialTransaction(object):

def __init _(self,t,a,description=""):
self.t=t
self.a = a
self.description = description

def pv(self, tO=today, r=r_free):
return self.axexp(r*(t0-self.t).days)

def __str__(self):
return '%.2f dollars in %i days (%s)' % \

(self.a, self.t, self.description)

Here we assume t and t; are datetime.date objects that store a date. The
date constructor takes the year, the month, and the day separated by a
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comma. The expression (t08-t).days computes the distance in days be-
tween tg and t.

Similarly, we can implement a Cash Flow class to store a list of transactions,
with the add method to add a new transaction to the list. The present value
of a cash flow is the sum of the present values of each transaction:

class CashFlow(object):
def __init__(self):
self.transactions = []
def add(self,transaction):
self.transactions.append(transaction)
def pv(self, t0, r=r_free):
return sum(x.pv(t0,r) for x in self.transactions)
def __str__(self):
return '\n'.join(str(x) for x in self.transactions)

What is the net present value at the beginning of 2012 for a bond that

pays $1000 the 20th of each month for the following 24 months (assuming
a fixed interest rate of 5% per year)?

>>> bond = CashFlow()
>>> today = date(2012,1,1)
>>> for year in range(2012,2014):

for month in range(1,13):

coupon = FinancialTransaction(date(year,month,20), 1000)

c bond.add(coupon)
>>> print round(bond.pv(today, r=0.05/365),0)
22826

This means the cost for this bond should be $22,826.

2.5 File input/output

In Python, you can open and write in a file with

>>> file = open('myfile.txt', 'w")
>>> file.write('hello world"')
>>> file.close()

Similarly, you can read back from the file with

>>> file = open('myfile.txt', 'r")
>>> print file.read()
hello world

Alternatively, you can read in binary mode with “rb,” write in binary
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"

mode with “wb,” and open the file in append mode “a” using standard
C notation.

The read command takes an optional argument, which is the number of
bytes. You can also jump to any location in a file using seek :

You can read back from the file with read:

>>> print file.seek(6)
>>> print file.read()
world

and you can close the file with:

>>> file.close()

2.6 How to import modules

The real power of Python is in its library modules. They provide a large
and consistent set of application programming interfaces (APIs) to many
system libraries (often in a way independent of the operating system).

For example, if you need to use a random number generator, you can do
the following:

>>> import random
>>> print random.randint (0, 9)
5

This prints a random integer in the range of (0,9], 5 in the example. The
function randint is defined in the module random. It is also possible to
import an object from a module into the current namespace:

>>> from random import randint
>>> print randint(0, 9)

or import all objects from a module into the current namespace:

>>> from random import x
>>> print randint(0, 9)

or import everything in a newly defined namespace:

>>> import random as myrand
>>> print myrand.randint(0, 9)

In the rest of this book, we will mainly use objects defined in modules
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math, cmath, os, sys, datetime, time, and cPickle. We will also use the random
module, but we will describe it in a later chapter.

In the following subsections, we consider those modules that are most
useful.

2.6.1 math and cmath

Here is a sampling of some of the methods available in the math and cmath
packages:

® math.isinf(x) returns true if the floating point number x is positive or
negative infinity

® math.isnan(x) returns true if the floating point number x is NalN; see
Python documentation or IEEE 754 standards for more information

® math.exp(x) returns exxx

® math.log(x[, base] returns the logarithm of x to the optional base; if
base is not supplied, e is assumed

® math.cos(x),math.sin(x),math.tan(x) returns the cos, sin, tan of the value
of x; x is in radians

® math.pi, math.e are the constants for pi and e to available precision

® math.isinf(x) can be used to check if a number is infinity.

2.6.2 os

This module provides an interface for the operating system API:

>>> import os
>>> os.chdir('..")
>>> os.unlink('filename_to_be deleted')

Some of the os functions, such as chdir, are not thread safe, for example,

they should not be used in a multithreaded environment.

os.path.join is very useful; it allows the concatenation of paths in an OS-
independent way:
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>>> import os

>>> a = o0s.path.join('path', 'sub_path')
>>> print a

path/sub_path

System environment variables can be accessed via
>>> print os.environ

which is a read-only dictionary.

2.6.3 sys

The sys module contains many variables and functions, but used the most
is sys.path. It contains a list of paths where Python searches for modules.
When we try to import a module, Python searches the folders listed in
sys.path. If you install additional modules in some location and want
Python to find them, you need to append the path to that location to
sys.path:

>>> import sys
>>> sys.path.append('path/to/my/modules")

2.6.4 datetime

The use of the datetime module is best illustrated by some examples:

>>> import datetime

>>> print datetime.datetime.today()

2008-07-04 14:03:90

>>> print datetime.date.today()

2008-07-04

Occasionally you may need to time stamp data based on the UTC time as

opposed to local time. In this case, you can use the following function:

>>> import datetime

>>> print datetime.datetime.utcnow()

2008-07-04 14:03:90

The datetime module contains various classes: date, datetime, time, and
timedelta. The difference between two dates or two datetimes or two time
objects is a timedelta:
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>>> a

datetime.datetime (2008, 1, 1, 20, 30)
datetime.datetime (2008, 1, 2, 20, 30)
>>c=Db - a

>>> print c.days

>>> b

We can also parse dates and datetimes from strings:

>>> s '2011-12-31"

>>> a = datetime.datetime.strptime(s, 'SY-%m-%d') #modified
>>> print s.year, s.day, s.month

2011 31 12 #modified

Notice that “%Y” matches the four-digit year, “%m” matches the month as
a number (1-12), “%d” matches the day (1-31), “%H"” matches the hour,
“%M” matches the minute, and “%S” matches the seconds. Check the
Python documentation for more options.

2.6.5 time

The time module differs from date and datetime because it represents time
as seconds from the epoch (beginning of 1970):

>>> import time

>>> t = time.time()

1215138737.571

Refer to the Python documentation for conversion functions between time

in seconds and time as a datetime.

2.6.6 urllib and json

The urllib is a module to download data or a web page from a URL:

>>> import urllib

>>> page = urllib.urlopen('http://www.google.com/")

>>> html = page.read()

Usually urllib is used to download data posted online. The challenge
may be parsing the data (converting from the representation used to post
it to a proper Python representation).

In the following, we create a simple helper class that can download data
from Yahoo! Finance and convert each stock’s historical data into a list of
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dictionaries. Each list element corresponds to a trading day of history of
the stock, and each dictionary stores the data relative to that trading day
(date, open, close, volume, adjusted close, arithmetic_return, log_return,
etc.):

Listing 2.1: in file: nlib.py
1 class YStock:

Class that downloads and stores data from Yahoo Finance
Examples:

w

4

5 >>> google = YStock('G00G')

6 >>> current = google.current()

7 >>> price = current['price']

8 >>> market_cap = current['market_cap']

9 >>> h = google.historical()

10 >>> last_adjusted_close = h[-1]['adjusted_close']

11 >>> last_log return = h[-1]['log return']

13 URL_CURRENT = 'http://finance.yahoo.com/d/quotes.csv?s=%(symbol)s&f=%(
columns)s'

14 URL_HISTORICAL = 'http://ichart.yahoo.com/table.csv?s=%(s)s&a=%(a)s&b=%(b)s&
c=%(c)s&d=%(d) s&e=%(e) s&f=%(f)s'

15 def __init _(self,symbol):

16 self.symbol = symbol.upper()

17

18 def current(self):

19 import urllib

20 FIELDS = (('price', 'l1'),

21 ('change', 'cl'),

22 ('volume', 'v'),

23 ('average_daily_volume', 'a2'),

24 ('stock_exchange', 'x'),

25 ('market_cap', 'j1'),

26 ('book_value', 'b4'),

27 ('ebitda', 'j4'),

28 ('dividend_per_share', 'd'),

29 ('dividend_yield', 'y'),

30 ('earnings_per_share', 'e'),

31 ('52_week_high', 'k'),

32 ('52_week_low', 'j'),

33 ('50_days_moving_average', 'm3'),

34 ('200_days_moving_average', 'm4'),

35 ('price_earnings_ratio', 'r'),

36 ('price_earnings_growth_ratio', 'r5'),

37 ('price_sales_ratio', 'p5'),

38 ('price_book_ratio', 'p6'),

39 ('short_ratio', 's7'))
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columns = ''.join([row[1l] for row in FIELDS])
url = self.URL_CURRENT % dict(symbol=self.symbol, columns=columns)
raw_data = urllib.urlopen(url).read().strip().strip('"").split("',")
current = dict()
for i,row in enumerate(FIELDS):
try:
current[row[0]] = float(raw_data[i])
except:
current[row[0]] = raw_data[il]
return current

historical(self,start=None, stop=None):
import datetime, time, urllib, math
start = start or datetime.date(1900,1,1)
stop = stop or datetime.date.today()
url = self.URL_HISTORICAL % dict(
s=self.symbol,
a=start.month-1,b=start.day,c=start.year,
d=stop.month-1,e=stop.day, f=stop.year)
# Date,Open,High, Low,Close,Volume,Adj Close
lines = urllib.urlopen(url).readlines()
raw_data = [row.split(',') for row in lines[1:] if row.count(', ')==6]
previous_adjusted_close = 0
series = []
raw_data.reverse()
for row in raw_data:
open, high, low = float(row[1l]), float(row[2]), float(row[3])
close, vol = float(row[4]), float(row[5])
adjusted_close = float(row[6])
adjustment = adjusted_close/close
if previous_adjusted_close:
arithmetic_return = adjusted_close/previous_adjusted_close-1.0

log_return = math.log(adjusted_close/previous_adjusted_close)
else:
arithmetic_return = log_return = None
previous_adjusted_close = adjusted_close
series.append(dict(
date = datetime.datetime.strptime(row[0], '%sY-%m-%d'),
open = open,
high = high,
low = low,
close = close,
volume = vol,
adjusted_close = adjusted_close,
adjusted_open = openxadjustment,
adjusted_high = high*adjustment,
adjusted_low = lowxadjustment,
adjusted_vol = vol/adjustment,
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arithmetic_return = arithmetic_return,
log_return = log_return))
return series

@staticmethod
def download(symbol='goog',what="'adjusted close',start=None,stop=None):
return [d[what] for d in YStock(symbol).historical(start,stop)]

Many web services return data in JSON format. JSON is slowly replacing
XML as a favorite protocol for data transfer on the web. It is lighter,
simpler to use, and more human readable. JSON can be thought of as
serialized JavaScript. the JSON data can be converted to a Python object
using a library called json:

>>> import json
>>>a = [1,2,3]

>>> b = json.dumps(a)
>>> print type(b)
<type 'str's

>>> ¢ = json.loads(b)
>>> g == C

True

The module json has loads and dumps methods which work very much as
cPickle’s methods, but they serialize the objects into a string using JSON
instead of the pickle protocol.

2.6.7 pickle

This is a very powerful module. It provides functions that can serialize
almost any Python object, including self-referential objects. For example,

let’s build a weird object:
>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.x = 'something'
>>>a = [1 ,2, {'hello':'world'}, [3, 4, [myinstance]l]l

and now:

>>> import cPickle as pickle
>>> b = pickle.dumps(a)
>>> ¢ = pickle.loads(b)

In this example, b is a string representation of a, and c is a copy of a
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generated by deserializing b. The module pickle can also serialize to and
deserialize from a file:

>>> pickle.dump(a, open('myfile.pickle', 'wb'))
>>> ¢ = pickle.load(open('myfile.pickle', 'rb'))

2.6.8 sqglite

The Python dictionary type is very useful, but it lacks persistence because
it is stored in RAM (it is lost if a program ends) and cannot be shared by
more than one process running concurrently. Moreover, it is not transac-
tion safe. This means that it is not possible to group operations together
so that they succeed or fail as one.

Think for example of using the dictionary to store a bank account. The
key is the account number and the value is a list of transactions. We
want the dictionary to be safely stored on file. We want it to be accessible
by multiple processes and applications. We want transaction safety: it
should not be possible for an application to fail during a money transfer,
resulting in the disappearance of money.

Python provides a module called shelve with the same interface as dict,
which is stored on disk instead of in RAM. One problem with this module
is that the file is not locked when accessed. If two processes try to access
it concurrently, the data become corrupted. This module also does not
provide transactional safety.

The proper alternative consists of using a database. There are two types
of databases: relational databases (which normally use SQL syntax) and
non-relational databases (often referred to as NoSQL). Key-value persis-
tent storage databases usually follow under the latter category. Relational
databases excel at storing structured data (in the form of tables), estab-
lishing relations between rows of those tables, and searches involving
multiple tables linked by references. NoSQL databases excel at storing
and retrieving schemaless data and replication of data (redundancy for
fail safety).

Python comes with an embedded SQL database called SQLite [? ]. All
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data in the database are stored in one single file. It supports the SQL
query language and transactional safety. It is very fast and allows concur-
rent read (from multiple processes), although not concurrent write (the
file is locked when a process is writing to the file until the transaction is
committed). Concurrent write requests are queued and executed in order
when the database is unlocked.

Installing and using any of these database systems is beyond the scope of
this book and not necessary for our purposes. In particular, we are not
concerned with relations, data replications, and speed.

As an exercise, we are going to implement a new Python class called
PersistentDictionary that exposes an interface similar to a dict but uses
the SQLite database for storage. The database file is created if it does not
exist. PersistentDictionary will use a single table (also called persistence)
to store rows containing a key (pkey) and a value (pvalue).

For later convenience, we will also add a method that can generate a
UUID key. A UUID is a random string that is long enough to be, most
likely, unique. This means that two calls to the same function will return
different values, and the probability that the two values will be the same
is negligible. Python includes a library to generate UUID strings based
on a common industry standard. We use the function uuidg, which also
uses the time and the IP of the machine to generate the UUID. This means
the UUID is unlikely to have conflicts with (be equal to) another UUID
generated on other machines. The uuid method will be useful to generate
random unique keys.

We will also add a method that allows us to search for keys in the database
using GLOB patterns (in a GLOB pattern, “*” represents a generic wild-

“uny

card and is a single-character wildcard).

Here is the code:

Listing 2.2: in file: nlib.py

+ import os

> import uuid

5 import sqlite3

4 import cPickle as pickle
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import unittest

class PersistentDictionary(object):
A sqlite based key,value storage.
The value can be any pickleable object.
Similar interface to Python dict
Supports the GLOB syntax in methods keys(),items(), __delitem__()

Usage Example:

>>> p = PersistentDictionary(path="'test.sqlite')
>>> key = 'test/' + p.uuid()

>>> p[key] = {'a': 1, 'b': 2}

>>> print p[key]

{'a': 1, 'b': 2}

>>> print len(p.keys('test/x'))

1

>>> del p[key]

CREATE_TABLE = "CREATE TABLE persistence (pkey, pvalue)"

SELECT_KEYS = "SELECT pkey FROM persistence WHERE pkey GLOB ?"
SELECT_VALUE = "SELECT pvalue FROM persistence WHERE pkey GLOB ?"
INSERT_KEY_VALUE = "INSERT INTO persistence(pkey, pvalue) VALUES (?,?)"
UPDATE_KEY_VALUE = "UPDATE persistence SET pvalue = ? WHERE pkey = 7"
DELETE_KEY_VALUE = "DELETE FROM persistence WHERE pkey LIKE ?"
SELECT_KEY_VALUE = "SELECT pkey,pvalue FROM persistence WHERE pkey GLOB ?"

def __init__(self,
path="'persistence.sqlite’,
autocommit=True,
serializer=pickle):
self.path = path
self.autocommit = autocommit
self.serializer = serializer
create_table = not os.path.exists(path)
self.connection = sqlite3.connect(path)
self.connection.text_factory = str # do not use unicode
self.cursor = self.connection.cursor()
if create_table:
self.cursor.execute(self.CREATE_TABLE)
self.connection.commit ()

def uuid(self):
return str(uuid.uuid4())

def keys(self,pattern='x"'):
"returns a list of keys filtered by a pattern, x is the wildcard"
self.cursor.execute(self.SELECT_KEYS, (pattern,))
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54 return [row[0] for row in self.cursor.fetchall()]

55

56 def __contains__(self, key):

57 return True if self.get(key)'!=None else False

58

59 def __iter__(self):

60 for key in self:

61 yield key

62

63 def __setitem__(self,key, value):

64 if key in self:

65 if value is None:

66 del self[key]

67 else:

68 svalue = self.serializer.dumps(value)

69 self.cursor.execute(self.UPDATE_KEY_VALUE, (svalue, key))

70 else:

71 svalue = self.serializer.dumps(value)

72 self.cursor.execute(self.INSERT_KEY_VALUE, (key, svalue))

73 if self.autocommit: self.connection.commit()

74

75 def get(self,key):

76 self.cursor.execute(self.SELECT_VALUE, (key,))

77 row = self.cursor.fetchone()

78 return self.serializer.loads(row[0]) if row else None

79

80 def __getitem__(self, key):

81 self.cursor.execute(self.SELECT_VALUE, (key,))

82 row = self.cursor.fetchone()

83 if not row: raise KeyError

84 return self.serializer.loads(row[0])

85

86 def __delitem__(self, pattern):

87 self.cursor.execute(self.DELETE_KEY_VALUE, (pattern,))

88 if self.autocommit: self.connection.commit()

89

90 def items(self,pattern='x"'):

91 self.cursor.execute(self.SELECT_KEY_VALUE, (pattern,))

92 return [(row[0], self.serializer.loads(row[1])) \

93 for row in self.cursor.fetchall()]

94

95 def dumps(self,pattern="x"):

96 self.cursor.execute(self.SELECT_KEY_VALUE, (pattern,))

97 rows = self.cursor.fetchall()

98 return self.serializer.dumps(dict((row[0], self.serializer.loads(row[1])
)

99 for row in rows))

100

101 def loads(self, raw):
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data = self.serializer.loads(raw)
for key, value in data.iteritems():
self[key] = value

This code now allows us to do the following;:

Create a persistent dictionary:
1 >>> p = PersistentDictionary(path='storage.sqlite',autocommit=False)
Store data in it:
>>> p['some/key'] = 'some value'
where “some/key” must be a string and “some value” can be any
Python pickleable object.
Generate a UUID to be used as the key:

>>> key = p.uuid()

> >>> p[key] = 'some other value'

Retrieve the data:

>>> data = p['some/key']

Loop over keys:

>>> for key in p: print key, plkey]
List all keys:

>>> keys = p.keys()
List all keys matching a pattern:

>>> keys = p.keys('some/x*")

List all key-value pairs matching a pattern:

>>> for key,value in p.items('some/*'): print key, value

Delete keys matching a pattern:

1 >>> del p['some/*"]

We will now use our persistence storage to download 2011 financial data

from the SP100 stocks. This will allow us to later perform various analysis

tasks on these stocks:

Listing 2.3: in file: nlib.py

. >>> SP100 = ['AA', 'AAPL', 'ABT', 'AEP', 'ALL', 'AMGN', 'AMZN', 'AVP',

2

3

'AXP', 'BA', 'BAC', 'BAX', 'BHI', 'BK', 'BMY', 'BRK.B', 'CAT', 'C', 'CL',
'CMCSA', 'COF', ‘'cop', 'cosT', 'CPB', ‘'CScCO', 'Cvs', 'CvX', 'DD', 'DELL",
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'DIS', 'DOW', 'DVN', 'EMC', 'ETR', 'EXC', 'F', 'FCX', 'FDX', 'GD', 'GE',
'‘GILD', 'GOOG', 'GS', 'HAL', 'HD', 'HNZ', 'HON', 'HPQ', 'IBM', 'INTC',
'JNJY, 'JPM', 'KFT', 'KO', ‘'LMT', 'LOW', 'MA', 'MCD', 'MDT', 'MET',
‘MMM, 'MO', 'MON', 'MRK', 'MS', 'MSFT', 'NKE', 'NOV', 'NSC', 'NWSA',
'"NYX', 'ORCL', 'OXY', 'PEP', 'PFE', 'PG', 'PM', 'QCOM', 'RF', 'RTN', 'S',
‘sLB', 'SLE', 'so', 'T', 'TGT', 'TwX', 'TXN', 'UNH', 'UPS', 'USB',
... 'UTX', 'VZ', 'WAG', 'WFC', 'WMB', 'WMT', ‘'WY', 'XOM', 'XRX']
>>> from datetime import date
>>> storage = PersistentDictionary('spl00.sqlite')
>>> for symbol in SP100:
key = symbol+'/2011"
if not key in storage:
storage[key] = YStock(symbol).historical(start=date(2011,1,1),
stop=date(2011,12,31))

Notice that while storing one item may be slower than storing an individ-
ual item in its own files, accessing the file system becomes progressively
slower as the number of files increases. Storing data in a database, long
term, is a winning strategy as it scales better and it is easier to search for
and extract data than it is with multiple flat files. Which type of database
is most appropriate depends on the type of data and the type of queries
we need to perform on the data.

2.6.9 numpy

The library numpy [? ] is the Python library for efficient arrays, multi-
dimensional arrays, and their manipulation. numpy does not ship with
Python and must be installed separately.

On most platforms, this is as easy as typing in the Bash Shell:

pip install numpy

Yet on other platforms, it can be a more lengthy process, and we leave it
to the reader to find the best installation procedure.

The basic object in numpy is the ndarray (n-dimensional array). Here we
make a 10 x 4 x 3 array of 64 bits float:

>>> import numpy
>>> a = numpy.ndarray((10,4,3),dtype=numpy.float64)

The class ndarray is more efficient than Python’s list. It takes much less
space because their elements have a fixed given type (e.g., float64). Other
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popular available types are: int8, int16, int32, int64, uint8, uinti6, uint32,
uint6y, float16, float32, float64, complex64, and complex128.

We

can access elements:

>>> a[0,0,0] =1

>>>
1.0

print a[0,0,0]

We can query for its size:

>>>

(10,

print a.shape
4, 3)

We can reshape its elements:

>>>

>>>

(10,

b = a.reshape((10,12))
print a.shape
12)

We can map one type into another

>>>

c = b.astype(float32)

We can load and save them:

>>>
>>>

numpy.save('array.np',a)
b = numpy.load('array.np')

And we can perform operations on them (most operations are element-

wise operations):

>>>
>>>
[[1
[3
>>>
[[2
[4
>>>
[[2
[6
>>>
[[2
[6

>>>

a = numpy.array([[1,2],[3,4]]1) # converts a list into a ndarray
print a
2]

411

print a+l
3]

511

print a+a
4]

811

print ax2
4]

8]]

print axa

(1 4]
[ 9 16]]

>>>

[l

print numpy.exp(a)
2.71828183 7.3890561 ]

[ 20.08553692 54.59815003]]
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The numpy module also implements common linear algebra operations:

>>> from numpy import dot
>>> from numpy.linalg import inv
>>> print dot(a,a)
[[ 7 10]
[15 22]1
>>> print inv(a)
[[-2. 1.1
[ 1.5 -0.5]1]

These operations are particularly efficient because they are implemented
on top of the BLAS and LaPack libraries.

There are many other functions in the numpy module, and you can read
more about it in the official documentation.

2.6.10 matplotlib

Library matplotlib [? ] is the de facto standard plotting library for Python.
It is one of the best and most versatile plotting libraries available. It has
two modes of operation. One mode of operation, called pylab, follows a
Matlab-like syntax. The other mode follows a more Python-style syntax.
Here we use the latter.

You can install matplotlib with

pip install matplotlib

and it requires numpy. In matplotlib, we need to distinguish the following
objects:

® Figure: a blank grid that can contain pairs of XY axes

® Axes: a pair of XY axes that may contain multiple superimposed plots

® FigureCanvas: a binary representation of a figure with everything that
it contains

® plot: a representation of a data set such as a line plot or a scatter plot

In matplotlib, a canvas can be visualized in a window or serialized into
an image file. Here we take the latter approach and create two helper
functions that take data and configuration parameters and output PNG
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images.

We sta

rt by importing matplotlib and other required libraries:

Listing 2.4: in file: nlib.py

import math

import
import

cmath
random

import os
import tempfile

0s.envi

ron[ 'MPLCONfigureDIR'] = tempfile.mkdtemp()

Now we define a helper that can plot lines, points with error bars, his-
tograms, and scatter plots on a single canvas:

from cS

try:
fro
frol
fro
HAV

except
HAV

class C

def

def

Listing 2.5: in file: nlib.py
tringI0 import StringIO

m matplotlib.figure import Figure

m matplotlib.backends.backend_agg import FigureCanvasAgg
m matplotlib.patches import Ellipse

E_MATPLOTLIB = True

ImportError:

E_MATPLOTLIB = False
anvas (object) :
__init__(self, title='', xlab='x', ylab='y', xrange=None, yrange=None):

self.fig = Figure()

self.fig.set_facecolor('white')

self.ax = self.fig.add_subplot(111)

self.ax.set_title(title)

self.ax.set_xlabel(xlab)

self.ax.set_ylabel(ylab)

if xrange:
self.ax.set_xlim(xrange)

if yrange:
self.ax.set_ylim(yrange)

self.legend = []

save(self, filename='plot.png'):

if self.legend:
legend = self.ax.legend([e[0] for e in self.legend],

[e[1] for e in self.legend])

legend.get_frame().set_alpha(0.7)

if filename:
FigureCanvasAgg(self.fig).print_png(open(filename, 'wb'))

else:
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def

def

def

def

def

s = StringIO()
FigureCanvasAgg(self.fig).print_png(s)
return s.getvalue()

binary(self):
return self.save(None)

hist(self, data, bins=20, color='blue', legend=None):
q = self.ax.hist(data, bins)

#if legend:

# self.legend.append((q[0], legend))

return self

plot(self, data, color='blue', style='-', width=2,
legend=None, xrange=None):
if callable(data) and xrange:
X = [xrange[0]+0.01xix(xrange[1l]-xrange[0]) for i in xrange(0,101)]
y = [data(p) for p in x]
elif data and isinstance(data[0], (int,float)):
X, Yy xrange(len(data)), data
else:
x, y = [p[0] for p in data], [p[l] for p in data]
q = self.ax.plot(x, y, linestyle=style, linewidth=width, color=color)
if legend:
self.legend.append((q[0],legend))
return self

errorbar(self, data, color='black', marker='o', width=2, legend=None):

x,y,dy = [p[0] for p in data], [p[l] for p in data], [p[2] for p in data
1

q = self.ax.errorbar(x, y, yerr=dy, fmt=marker, linewidth=width, color=
color)

if legend:
self.legend.append((q[0],legend))

return self

ellipses(self, data, color='blue', width=0.01, height=0.01, legend=None)

for point in data:
X, y = point[:2]
dx = point[2] if len(point)>2 else width
dy = point[3] if len(point)>3 else height
ellipse = Ellipse(xy=(x, y), width=dx, height=dy)
self.ax.add_artist(ellipse)
ellipse.set_clip_box(self.ax.bbox)
ellipse.set_alpha(0.5)
ellipse.set_facecolor(color)

if legend:
self.legend.append((q[0],legend))
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return self

def imshow(self, data, interpolation='bilinear'):
self.ax.imshow(data).set_interpolation(interpolation)
return self

Notice we only make one set of axes.

The argument 111 of figure.add_subplot(111) indicates that we want a
grid of 1 x 1 axes, and we ask for the first one of them (the only one).

The linesets parameter is a list of dictionaries. Each dictionary must have
a “data” key corresponding to a list of (x,y) values. Each dictionary is
rendered by a line connecting the points. It can have a “label,” a “color,”
a “style,” and a “width.”

The pointsets parameter is a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of (x,y, dy) values. Each dictio-
nary is rendered by a set of circles with error bars. It can optionally have
a “label,” a “color,” and a “marker” (symbol to replace the circle).

The histsets parameter is a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of x values. Each dictionary is
rendered by histogram. Each dictionary can optionally have a “label” and
a “color.”

The ellisets parameter is also a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of (x,y,dx,dy) values. Each
dictionary is rendered by a set of ellipses, one per point. It can optionally
have a “color.”

We chose to draw all these types of plots with a single function because it
is common to superimpose fitting lines to histograms, points, and scatter
plots.

As an example, we can plot the adjusted closing price for AAPL:

Listing 2.6: in file: nlib.py
>>> storage = PersistentDictionary('spl00.sqlite')
>>> appl = storage['AAPL/2011']
>>> points = [(x,y['adjusted close']) for (x,y) in enumerate(appl)]
>>> Canvas(title='Apple Stock (2011)',xlab="'trading day',ylab='adjusted close').
plot(points, legend="AAPL"') .save('images/aapl2011.png")
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Figure 2.1: Example of a line plot. Adjusted closing price for the APPL stock in 2011
(source: Yahoo! Finance).

Here is an example of a histogram of daily arithmetic returns for the
AAPL stock in 2011:

Listing 2.7: in file: nlib.py
>>> storage = PersistentDictionary('spl00.sqlite')
>>> appl = storage[ 'AAPL/2011'][1:]1 # skip 1st day
>>> points = [day['arithmetic return'] for day in appl]
4 >>> Canvas(title='Apple Stock (2011)',xlab="arithmetic return', ylab='frequency'
) .hist(points).save('images/aapl2011hist.png"')

Here is a scatter plot for random data points:

Listing 2.8: in file: nlib.py
>>> from random import gauss
>>> points = [(gauss(0,1),gauss(0,1),gauss(0,0.2),gauss(0,0.2)) for i in xrange
(30) ]
>>> Canvas(title='example scatter plot', xrange=(-2,2), yrange=(-2,2)).ellipses(
points).save('images/scatter.png")

Here is a scatter plot showing the return and variance of the S&P100
stocks:
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Figure 2.2: Example of a histogram plot. Distribution of daily arithmetic returns for the
APPL stock in 2011 (source: Yahoo! Finance).

2 >>>
>>>

8 >>>

Listing 2.9: in file: nlib.py
storage = PersistentDictionary('spl00.sqlite")
points = []
for key in storage.keys('*/2011'):
v = [day['log return'] for day in storage[key][1:]]
ret = sum(v)/len(v)
var = sum(x**2 for x in v)/len(v) - retxx2
points.append((varxmath.sqrt(len(v)),retxlen(v),0.0002,0.02))
Canvas(title='S&P100 (2011)',xlab='risk',ylab="'return',
xrange = (min(p[0] for p in points),max(p[0] for p in points)),
yrange = (min(p[1] for p in points),max(p[1l] for p in points))
) .ellipses(points).save('images/splO0rr.png")

Notice the daily log returns have been multiplied by the number of days

in one year to obtain the annual return. Similarly, the daily volatility has

been multiplied by the square root of the number of days in one year to

obtain the annual volatility (risk). The reason for this procedure will be

explained in a later chapter.

1 >>>

Listing 2.10: in file: nlib.py
def f(x,y): return (x-1)#*x2+(y-2)x**2
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example scatter plot
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Figure 2.3: Example of a scatter plot using some random points.

>>> points = [[f(0.1%i-3,0.1%j-3) for i in range(61)] for j in range(61)]
>>> Canvas(title='example 2d function').imshow(points).save('images/color2d.png'

)

The class Canvas is both in nlib.py and in the Python module canvas [? ].

2.6.11 ocl

One of the best features of Python is that it can introspect itself, and this
can be used to just-in-time compile Python code into other languages. For
example, the Cython [? | and the ocl libraries allow decorating Python
code and converting it to C code. This makes the decorated functions
much faster. Cython is more powerful, and it supports a richer subset
of the Python syntax; ocl instead supports only a subset of the Python
syntax, which can be directly mapped into the C equivalent, but it is
easier to use. Moreover, ocl can convert Python code to JavaScript and to
OpenCL (this is discussed in our last chapter).

Here is a simple example that implements the factorial function:
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Figure 2.4: Example of a scatter plot. Risk-return plot for the S&P100 stocks in 2011
(source: Yahoo! Finance).

from ocl import Compiler
c99 = Compiler()

@c99.define(n="int")
def factorial(n):

output = 1

for k in xrange(1l, n + 1):

output = output * k

return output
compiled = c99.compile()
print compiled.factorial(10)
assert compiled.factorial(10) == factorial(10)

The line @c99.define(n="int’) instructs ocl that factorial must be con-
verted to cgg9 and that n is an integer. The assert command checks that
compiled. factorial(10) produces the same output as factorial(10), where
the former runs compiled cg99 code, whereas the latter runs Python code.
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Figure 2.5: Example of a two-dimensional color plot using for f(x,y) = (x —1)% + (y —
2)2.



3
Theory of Algorithms

An algorithm is a step-by-step procedure for solving a problem and is
typically developed before doing any programming. The word comes
from algorism, from the mathematician al-Khwarizmi, and was used to
refer to the rules of performing arithmetic using Hindu-Arabic numerals
and the systematic solution of equations.

In fact, algorithms are independent of any programming language. Effi-
cient algorithms can have a dramatic effect on our problem-solving capa-
bilities.

The basic steps of algorithms are loops (for, conditionals (if), and func-
tion calls. Algorithms also make use of arithmetic expressions, logical ex-
pressions (not, and, or), and expressions that can be reduced to the other
basic components.

The issues that concern us when developing and analyzing algorithms are
the following:

1. Correctness: of the problem specification, of the proposed algorithm,
and of its implementation in some programming language (we will
not worry about the third one; program verification is another subject
altogether)

2. Amount of work done: for example, running time of the algorithm in
terms of the input size (independent of hardware and programming
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language)

3. Amount of space used: here we mean the amount of extra space (sys-
tem resources) beyond the size of the input (independent of hardware
and programming language); we will say that an algorithm is in place
if the amount of extra space is constant with respect to input size

4. Simplicity, clarity: unfortunately, the simplest is not always the best in
other ways

5. Optimality: can we prove that it does as well as or better than any
other algorithm?

3.1 Order of growth of algorithms

The insertion sort is a simple algorithm in which an array of elements is
sorted in place, one entry at a time. It is not the fastest sorting algorithm,
but it is simple and does not require extra memory other than the memory
needed to store the input array.

The insertion sort works by iterating. Every iteration i of the insertion sort
removes one element from the input data and inserts it into the correct
position in the already-sorted subarray A[j] for 0 < j < i. The algorithm
iterates n times (where 7 is the total size of the input array) until no input
elements remain to be sorted:
def insertion_sort(A):
for i in xrange(1,len(A)):
for j in xrange(i,0,-1):
if A[jI<A[j-1]
Aljl, Alj-1]1 = Alj-11, A[jl

else: break

Here is an example:

>>> import random

>>> a=[random.randint(0,100) for k in xrange(20)]

>>> insertion_sort(a)

>>> print a

[6, 8, 9, 17, 30, 31, 45, 48, 49, 56, 56, 57, 65, 66, 75, 75, 82, 89, 90, 99]

One important question is, how long does this algorithm take to run?
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How does its running time scale with the input size?

Given any algorithm, we can define three characteristic functions:
® Tyorst(n): the running time in the worst case

® Tpest(n): the running time in the best case

* Taverage(n): the running time in the average case

The best case for an insertion sort is realized when the input is already
sorted. In this case, the inner for loop exits (breaks) always at the first
iteration, thus only the most outer loop is important, and this is propor-
tional to n; therefore Tpeg (1) o n. The worst case for the insertion sort is
realized when the input is sorted in reversed order. In this case, we can
prove, and we do so subsequently, that Tyors¢ (1) o n2. For this algorithm,
a statistical analysis shows that the worst case is also the average case.

Often we cannot determine exactly the running time function, but we may
be able to set bounds to the running time.

We define the following sets:
e O(g(n)): the set of functions that grow no faster than ¢(n) whenn — oo

* O(g(n)): the set of functions that grow no slower than g(n) when
n — oo

* O(g(n)): the set of functions that grow at the same rate as g(n) when
n — oo

® 0(g(n)): the set of functions that grow slower than g(n) when n — oo
* w(g(n)): the set of functions that grow faster than g(n) when n — oo

We can rewrite the preceding definitions in a more formal way:
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O(g(n)) ={f(n) : Ing,co, V. > ng, 0 < f(n) <cog(n)} (3.1)
Q(g(n)) = {f(n) : 3ng,co, ¥ > ny, 0 < cog(n) < f(n)} (3-2)
O(g(n)) = 0(g(n)) NQ(g(n)) (3-3)
o(g(n)) = 0(g(n)) —Q(g(n)) (G-4)
w(g(n)) = Q(g(n)) — O(g(n)) (3-5)

We can also provide a practical rule to determine if a function f belongs
to one of the previous sets defined by g.

Compute the limit

im f(m) =a
A, g(n) 5.6)

and look up the result in the following table:

a is positive or zero

a is positive or infinity
a is positive

a is zero

FEELL

)
) =
gm)sf~g (37
(n))
a is infinity )
Notice the preceding practical rule assumes the limits exist.
Here is an example:
Given f(n) = nlogn +3n and g(n) = n?

. nlogn+3n I'Hopital .. 1/n
lim —2— — lim ——
n—o00 n n—oo 2

=0 (3.8)

we conclude that nlogn + 3n is in O(n?).

Given an algorithm A that acts on input of size 1, we say that the algo-
rithm is O(g(n)) if its worst running time as a function of 7 is in O(g(n)).
Similarly, we say that the algorithm is in Q)(g(n)) if its best running time
is in Q(g(n)). We also say that the algorithm is in ©(g(n)) if both its best
running time and its worst running time are in ®(g(n)).
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More formally, we can write the following:

Tworst(n) € O(g(n)) = A€ 0(g(n)) (3.9)

Thest(n) € Q(g(n)) = A€ Q(gn)) (3.10)

A €O0(g(n))andA € O(g(n)) = Aec©O(g(n)) (3.11)
(3.12)

We still have not solved the problem of computing the best, average, and
worst running times.

3.1.1 Best and worst running times

The procedure for computing the worst and best running times is simi-
lar. It is simple in theory but difficult in practice because it requires an
understanding of the algorithm’s inner workings.

Consider the following algorithm, which finds the minimum of an array
or list A:

def find_minimum(A):
minimum = a[0]
for element in A:
if element < minimum:
minimum = element
return minimum
To compute the running time in the worst case, we assume that the max-
imum number of computations is performed. That happens when the if
statements are always True. To compute the best running time, we assume
that the minimum number of computations is performed. That happens
when the if statement is always False. Under each of the two scenarios, we
compute the running time by counting how many times the most nested
operation is performed.

In the preceding algorithm, the most nested operation is the evaluation of
the if statement, and that is executed for each element in A; for example,
assuming A has n elements, the if statement will be executed 7 times.
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Therefore both the best and worst running times are proportional to n,
thus making this algorithm O(n), Q(n), and O(n).

More formally, we can observe that this algorithm performs the following
operations:

* One assignment (line 2)

* Loops n =len(A) times (line 3)

* For each loop iteration, performs one comparison (line 4)
¢ Line 5 is executed only if the condition is true

Because there are no nested loops, the time to execute each loop iteration
is about the same, and the running time is proportional to the number of
loop iterations.

For a loop iteration that does not contain further loops, the time it takes to
compute each iteration, its running time, is constant (therefore equal to 1).
For algorithms that contain nested loops, we will have to evaluate nested
sums.

Here is the simplest example:

1 def loop@(n):
2 for i in xrange(0,n):
3 print i

which we can map into

T(n) = lfl =n € O(n) = loopd € O(n) (3-13)
i=0

Here is a similar example where we have a single loop (corresponding to
a single sum) that loops n? times:
+ def loopl(n):

2 for i in xrange(0,nx*n):
3 print i
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and here is the corresponding running time formula:

i<n?
T(n) = Y 1=n*€ ®(n*) = loopl € O(n?) (3.14)
i=0

The following provides an example of nested loops:

def loop2(n):
for i in xrange(0,n):
for j in xrange(0,n):
print i,j
Here the time for the inner loop is directly determined by n and does not
depend on the outer loop’s counter; therefore

i<nj<n i<n
=Y Y1=)Yn= n? + ... € O(n?) = loop2 € O(n?)  (3.15)

i=0 j=0 i=0

This is not always the case. In the following code, the inner loop does
depend on the value of the outer loop:

def loop3(n):
for i in xrange(0,n):
for j in xrange(0,i):
print i,j
Therefore, when we write its running time in terms of a sum, care must
be taken that the upper limit of the inner sum is the upper limit of the

outer sum:

i<n j<i i<n

=) Zl = Zz = -n(n—1) € O(n?) = loop3 € O(n?) (3.16)

i=0j=0
The appendix of this book provides examples of typical sums that come
up in these types of formulas and their solutions.

Here is one more example falling in the same category, although the inner
loop depends quadratically on the index of the outer loop:

Example: loopg
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: def loop4(n):

2 for i in xrange(0,n):

3 for j in xrange(0,ixi):
4 print i,j

Therefore the formula for the running time is more complicated:

i<n j<i® i<n 1
T(n) = Z Z 1= ZiZ = gn(n -1)(2n-1) € @(ng) (3.17)
i=0 j=0 i=0
= loop4 € O(n®) (3.18)

If the algorithm does not contain nested loops, then we need to compute
the running time of each loop and take the maximum:

Example: concatenateo

; def concatenateO(n):

> for i in xrange(nxn):
3 print i
4 for j in xrange(n*nxn):
print j
T(n) = ®(max(n? n%)) = concatenated € O(n°) (3.19)

If there is an if statement, we need to compute the running time for each
condition and pick the maximum when computing the worst running
time, or the minimum for the best running time:

1 def concatenatel(n):

2 if a<0:

3 for i in xrange(nx*n):

4 print i

5 else:

6 for j in xrange(nknxn):
7 print j

Tworst (1) = ®(max(n?,1n%)) = concatenatel € (n%) (3.20)

Thest (1) = O(min(n?,n%)) = concatenatel € Q(n?) (3.21)
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This can be expressed more formally as follows:

O(f(m) +0(g(n)) = O(g(n))iff f(n) € O(g(n))  (3.22)
O(f(n) +0(e(n)) = ©(g(n))iff f(n) € O(g(n))  (3:23)
Q(f(n)) +0(gn) = Q(f(n)) iff f(n) € Og(n))  (3.24)

which we can apply as in the following example:

T(n) = [+ n+3 + ¢~ logn] € O(¢") because 1> € O(¢")  (3.25)

0(n?) O(e)

3.2 Recurrence relations

The merge sort [? ] is another sorting algorithm. It is faster than the inser-
tion sort. It was invented by John von Neumann, the physicist credited
for inventing also modern computer architecture and game theory.

The merge sort works as follows.

If the input array has length o or 1, then it is already sorted, and the
algorithm does not perform any other operation.

If the input array has a length greater than 1, it divides the array into two
subsets of about half the size. Each subarray is sorted by applying the
merge sort recursively (it calls itself!). It then merges the two subarrays
back into one sorted array (this step is called merge).

Consider the following Python implementation of the merge sort:

def mergesort(A, p=0, r=None):
if r is None: r = len(A)
if p<r-1:
q = int((p+r)/2)
mergesort(A,p,q)
mergesort(A,q,r)
merge(A,p,q,r)

def merge(A,p,q,r):
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B'irj = []rplq
while True:
if A[il<=A[j]:
B.append(A[i])
i=i+l
else:
B.append(A[j])
j=j+1
if i==q:
while j<r:
B.append(A[j])
j=j+1
break
if j==r:
while i<q:
B.append (A[i])
i=i+l
break
Alp:r]=B

Because this algorithm calls itself recursively, it is more difficult to compute

its running time.

Consider the merge function first. At each step, it increases either i or j,
where i is always in between p and q and j is always in between g and r.
This means that the running time of the merge is proportional to the total
number of values they can span from p to r. This implies that

merge € O(r — p) (3.26)

We cannot compute the running time of the mergesort function using the
same direct analysis, but we can assume its running time is T (1), where
n =r — p and n is the size of the input data to be sorted and also the dif-
ference between its two arguments p and r. We can express this running
time in terms of its components:

e It calls itself twice on half of the input data, 2T (n/2)
e It calls the merge once on the entire data, ®(n)

We can summarize this into

T(n) =2T(n/2) +n (3-27)
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This is called a recurrence relation. We turned the problem of computing
the running time of the algorithm into the problem of solving the recur-
rence relation. This is now a math problem.

Some recurrence relations can be difficult to solve, but most of them fol-
low in one of these categories:

T(n) = aT(n—b)+0O(f(n)) = T(n) € O(max(a",nf(n))) (3-28)
T(n) = T(b) + T(n—b—a) + O(f(w)) = T(n) € Ouf(n)  (3:20)
T(n) = aT(n/b) +O(n™)and a < b™ = T(n) € O(n™) (3-30)
T(n) = aT(n/b)+0O(n")and a =b" = T(n) € O(n" logn) (3.31)
T(n) = aT(n/b) +O(n™) and a > b"™ = T(n) € O(n'°%*) (3-32)
T(n) = aT(n/b)+O(n"log n) and a < b™ = T(n) € O(n" log’ £3.33)
T(n) = aT(n/b) +O(n"log” n) and a = b" = T(n) € O(n" log" Bmk)
T(n) = aT(n/b) + O(n"log? n) and a > b™ = T(n) € O(n'°8%) (3.35)
T(n) = aT(n/b)+©(g") = T(n) € Og") (336)
T(n) = aT(n/a—b)+0(f(n)) = T(n) € O(f(n)log(n)) (3:37)

(they work for m > 0, p > 0, and g > 1).

These results are a practical simplification of a theorem known as the
master theorem [? ].

3.2.1 Reducible recurrence relations

Other recurrence relations do not immediately fit one of the preceding
patterns, but often they can be reduced (transformed) to fit.

Consider the following recurrence relation:
T(n) =2T(v/n) +logn (3.38)

We can replace n with ek = 7 in eq. (2?) and obtain

T(e") =2T(e"?) +k (3:39)
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If we also replace T(e¥) with S(k) = T(e¥), we obtain

S(k)=2S(k/2) +k (3-40)
~~ ~——
T(e) T(ek/2)

so that we can now apply the master theorem to S. We obtain that S(k) €
O(klogk). Once we have the order of growth of S, we can determine the
order of growth of T (1) by substitution:

T(n) = S(logn) € ©(logn log logn) (3-41)
0

Note that there are recurrence relations that cannot be solved with any of
the methods described.

Here are some examples of recursive algorithms and their corresponding
recurrence relations with solution:

def factoriall(n):
if n==0:
return 1
else:
return nxfactoriall(n-1)

T(n)=Tn—-1)+1= T(n) € ©(n) = factoriall € O(n)  (3.42)

def recursive0(n):
if n==0:
return 1
else:
loop3(n)
return nxnxrecursive0(n-1)

T(n) = T(n—1) + Py(n) = T(n) € O(n?) = recursived € O(n®) (3.43)

def recursivel(n):
if n==0:
return 1
else:
loop3(n)
return nxrecursivel(n-1)*recursivel(n-1)
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T(n) =2T(n—1)+ P,(n) = T(n) € ©(2") = recursivel € ©(2")

(3-44)
+ def recursive2(n):
2 if n==0:
3 return 1
' else:
5 a=factorial@(n)
6 return axrecursive2(n/2)x*recursivel(n/2)

T(n) =2T(n/2)+P(n) = T(n) € ®(nlogn) = recursive2 € O(nlogn)
(3-45)

One example of practical interest for us is the binary search below. It finds
the location of the element in a sorted input array A:

: def binary_search(A,element):
2 a,b =0, len(A)-1

3 while b>=a:

) x = int((a+b)/2)

5 if A[x]<element:

6 a = x+1

7 elif A[x]>element:
8 b =x-1

9 else:

10 return x

11 return None

Notice that this algorithm does not appear to be recursive, but in practice,
it is because of the apparently infinite while loop. The content of the while
loop runs in constant time and then loops again on a problem of half of
the original size:

T(n) =T(n/2) +1= binary_search € ®(logn) (3.46)
The idea of the binary_search is used in the bisection method for solving
nonlinear equations.
Do not confuse T notation with © notation:

The theta notation can also be used to describe the memory used by an
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Algorithm Recurrence Relationship Running time
Binary Search T(n)=T(5)+0O(1) O(log(n))
Binary Tree Traversal T(n) =2T(%)+©(1) O(n)
Optimal Sorted Matrix Search | T(n) = 2T(5) + ©(log(n)) | O(n)

Merge Sort T(n) =T(5)+O(n) ©(nlog(n))

algorithm as a function of the input, Tiemory, as well as its running time.

3.3 Types of algorithms

Divide-and-conquer is a method of designing algorithms that (infor-
mally) proceeds as follows: given an instance of the problem to be solved,
split this into several, smaller sub-instances (of the same problem), in-
dependently solve each of the sub-instances and then combine the sub-
instance solutions to yield a solution for the original instance. This de-
scription raises the question, by what methods are the sub-instances to be
independently solved? The answer to this question is central to the con-
cept of the divide-and-conquer algorithm and is a key factor in gauging
their efficiency. The solution is unique for each problem.

The merge sort algorithm of the previous section is an example of a
divide-and-conquer algorithm. In the merge sort, we sort an array by
dividing it into two arrays and recursively sorting (conquering) each of
the smaller arrays.

Most divide-and-conquer algorithms are recursive, although this is not a
requirement.

Dynamic programming is a paradigm that is most often applied in the
construction of algorithms to solve a certain class of optimization prob-
lems, that is, problems that require the minimization or maximization of
some measure. One disadvantage of using divide-and-conquer is that
the process of recursively solving separate sub-instances can result in the
same computations being performed repeatedly because identical sub-
instances may arise. For example, if you are computing the path between
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two nodes in a graph, some portions of multiple paths will follow the
same last few hops. Why compute the last few hops for every path when
you would get the same result every time?

The idea behind dynamic programming is to avoid this pathology by ob-
viating the requirement to calculate the same quantity twice. The method
usually accomplishes this by maintaining a table of sub-instance results.
We say that dynamic programming is a bottom-up technique in which the
smallest sub-instances are explicitly solved first and the results of these
are used to construct solutions to progressively larger sub-instances. In
contrast, we say that the divide-and-conquer is a top-down technique.

We can refactor the mergesort algorithm to eliminate recursion in the al-
gorithm implementation, while keeping the logic of the algorithm un-
changed. Here is a possible implementation:

def mergesort_nonrecursive(A):
blocksize, n = 1, len(A)
while blocksize<n:
for p in xrange(0, n, 2xblocksize):
q = p+blocksize
r = min(qg+blocksize, n)
if r>q:
Merge(A,p,q,r)
blocksize = 2xblocksize

Notice that this has the same running time as the original mergesort be-
cause, although it is not recursive, it performs the same operations:

Thest € O(nlogn) (3-47)
Toverage € ©@(nlogn) (3-48)
Tworst € O(nlogn) (3.49)
Toemory € O(1) (3-50)

Greedy algorithms work in phases. In each phase, a decision is made
that appears to be good, without regard for future consequences. Gen-
erally, this means that some local optimum is chosen. This “take what
you can get now” strategy is the source of the name for this class of algo-
rithms. When the algorithm terminates, we hope that the local optimum
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is equal to the global optimum. If this is the case, then the algorithm is
correct; otherwise, the algorithm has produced a suboptimal solution. If
the best answer is not required, then simple greedy algorithms are some-
times used to generate approximate answers, rather than using the more
complicated algorithms generally required to generate an exact answer.
Even for problems that can be solved exactly by a greedy algorithm, es-
tablishing the correctness of the method may be a nontrivial process.

For example, computing change for a purchase in a store is a good case of
a greedy algorithm. Assume you need to give change back for a purchase.
You would have three choices:

* Give the smallest denomination repeatedly until the correct amount is
returned

* Give a random denomination repeatedly until you reach the correct
amount. If a random choice exceeds the total, then pick another de-
nomination until the correct amount is returned

¢ Give the largest denomination less than the amount to return repeat-
edly until the correct amount is returned

In this case, the third choice is the correct one.

Other types of algorithms do not fit into any of the preceding categories.
One is, for example, backtracking. Backtracking is not covered in this
course.

3.3.1 Memoization

One case of a top-down approach that is very general and falls under the
umbrella of dynamic programming is called memoization. Memoization
consists of allowing users to write algorithms using a naive divide-and-
conquer approach, but functions that may be called more than once are
modified so that their output is cached, and if they are called again with
the same initial state, instead of the algorithm running again, the output
is retrieved from the cache and returned without any computations.

Consider, for example, Fibonacci numbers:
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Fib(0) = 0 (3.51)
Fib(1) = 1 (3.52)
Fib(n) = Fib(n—1)+Fib(n—2) forn > 1 (3-53)

which we can implement using divide-and-conquer as follows:

def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)

The recurrence relation for this algorithm is T(n) = T(n —1) + T(n —2) +
1, and its solution can be proven to be exponential. This is because this
algorithm calls itself more than necessary with the same input values and
keeps solving the same subproblem over and over.

Python can implement memoization using the following decorator:

Listing 3.1: in file: nlib.py
class memoize(object):
def __init _ (self, f):
self.f = f
self.storage = {}
def __call__ (self, *args, *xkwargs):
key = str((self.f.__name__, args, kwargs))
try:
value = self.storage[key]
except KeyError:
value = self.f(xargs, *xkwargs)
self.storage[key] = value
return value

and simply decorating the recursive function as follows:

Listing 3.2: in file: nlib.py

@memoize
def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)

which we can call as

Listing 3.3: in file: nlib.py

>>> print fib(11)
89



1

2

6

1

2

86 ANNOTATED ALGORITHMS IN PYTHON

A decorator is a Python function that takes a function and returns a
callable object (or a function) to replace the one passed as input. In the
previous example, we are using the gmemoize decorator to replace the fib
function with the __call__ argument of the memoize class.

This makes the algorithm run much faster. Its running time goes from
exponential to linear. Notice that the preceding memoize decorator is very
general and can be used to decorate any other function.

One more direct dynamic programming approach consists in removing
the recursion:

def fib(n):
if n < 2: return n
a, b=20,1
for i in xrange(1l,n):
a, b =Db, atb
return b

This also makes the algorithm linear and T(n) € ®(n).

Notice that we easily modify the memoization algorithm to store the
partial results in a shared space, for example, on disk using the
PersistentDictionary:

Listing 3.4: in file: nlib.py

class memoize_persistent(object):
STORAGE = 'memoize.sqlite'
def __init__ (self, f):
self.f = f
self.storage = PersistentDictionary(memoize_persistent.STORAGE)
def __call__ (self, *xargs, *xkwargs):
key = str((self.f.__name__, args, kwargs))
if key in self.storage:
value = self.storage[key]
else:
value = self.f(xargs, *xkwargs)
self.storage[key] = value
return value

We can use it as we did before, but we can now start and stop the program
or run concurrent parallel programs, and as long as they have access to
the “memoize.sqlite” file, they will share the cache.
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3.4 Timing algorithms

The order of growth is a theoretical concept. In practice, we need to
time algorithms to check if findings are correct and, more important, to
determine the magnitude of the constants in the T functions.

For example, consider this:

def fl(n):
return sum(gl(x) for x in range(n))

def f2(n):
return sum(g2(x) for x in range(nx*2))

Since f1is @(n) and f2 is @(n?), we may be led to conclude that the latter
is slower. It may very well be that g1 is 10° smaller than g2 and therefore
Tri(n) = cin, Tpa(n) = con?, but if ¢; = 10°¢,, then Tf1(n) > Tpp(n) when
n < 10°.

To time functions in Python, we can use this simple algorithm:

def timef(f, ns=1000, dt = 60):
import time
t = t0 = time.time()
for k in xrange(1,ns):
f()
t = time.time()
if t-t0>dt: break
return (t-t0)/k

This function calls and averages the running time of f() for the minimum
between ns=1000 iterations and dt=60 seconds.

It is now easy, for example, to time the fib function without memoize,

>>> def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)
>>> for k in range(15,20):
.. print k,timef(lambda:fib(k))
15 0.000315684575338
16 0.000576375363706
17 0.000936052104732
18 0.00135168084153
19 0.00217730337912

and with memoize,

>>> @memoize
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. def fib(n):
. return n if n<2 else fib(n-1)+fib(n-2)
>>> for k in range(15,20):
.. print k,timef(lambda:fib(k))
15 4.24022311802e-06
16 4.02901146386e-06
17 4.21922128122e-06
18 4.02495429084e-06
19 3.73784963552e-06

The former shows an exponential behavior; the latter does not.

3.5 Data structures

3.5.1 Arrays

An array is a data structure in which a series of numbers are stored con-
tiguously in memory. The time to access each number (to read or write
it) is constant. The time to remove, append, or insert an element may
require moving the entire array to a more spacious memory location, and
therefore, in the worst case, the time is proportional to the size of the
array.

Arrays are the appropriate containers when the number of elements does
not change often and when elements have to be accessed in random order.

3.5.2 List

A list is a data structure in which data are not stored contiguously, and
each element has knowledge of the location of the next element (and per-
haps of the previous element, in a doubly linked list). This means that
accessing any element for (read and write) requires finding the element
and therefore looping. In the worst case, the time to find an element is
proportional to the size of the list. Once an element has been found, any
operation on the element, including read, write, delete, and insert, before
or after can be done in constant time.

Lists are the appropriate choice when the number of elements can vary
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often and when their elements are usually accessed sequentially via iter-
ations.

In Python, what is called a list is actually an array of pointers to the
elements.

3.5.3 Stack

A stack data structure is a container, and it is usually implemented as a
list. It has the property that the first thing you can take out is the last thing
put in. This is commonly known as last-in, first-out, or LIFO. The method
to insert or add data to the container is called push, and the method to
extract data is called pop.

In Python, we can implement push by appending an item at the end of
a list (Python already has a method for this called .append), and we can
implement pop by removing the last element of a list and returning it
(Python has a method for this called .pop).

A simple stack example is as follows:

>>> stk = []

>>> stk.append("One")
>>> stk.append("Two")
>>> print stk.pop()

Two

>>> stk.append("Three")
>>> print stk.pop()
Three

>>> print stk.pop()

One

3.5.4 Queue

A queue data structure is similar to a stack but, whereas the stack returns
the most recent item added, a queue returns the oldest item in the list.
This is commonly called first-in, first-out, or FIFO. To use Python lists to
implement a queue, insert the element to add in the first position of the
list as follows:
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>>> que = []

>>> que.insert (0, "One")
>>> que.insert(0,"Two")
>>> print que.pop()

One

>>> que.insert(0,"Three")
>>> print que.pop()

Two

>>> print que.pop()

Three

Lists in Python are not an efficient mechanism for implementing queues.
Each insertion or removal of an element at the front of a list requires
all the elements in the list to be shifted by one. The Python package
collections.deque is designed to implement queues and stacks. For a
stack or queue, you use the same method .append to add items. For a
stack, .pop is used to return the most recent item added, while to build a
queue, use .popleft to remove the oldest item in the list:

>>> from collections import deque
>>> que = deque([])

>>> que.append("0One")
>>> que.append("Two")
>>> print que.popleft()
One

>>> que.append("Three")
>>> print que.popleft()
Two

>>> print que.popleft()
Three

3.5.5 Sorting

In the previous sections, we have seen the insertion sort and the merge sort.
Here we consider, as examples, other sorting algorithms: the quicksort [?
], the randomized quicksort, and the counting sort:

def quicksort(A,p=0,r=-1):
if r is -1:
r=len(A)
if p<r-1:
g=partition(A,p,r)
quicksort(A,p,q)
quicksort(A,qg+l,r)
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def partition(A,i,j):
x=A[1]
h=1i
for k in xrange(i+l,j):
if A[k]l<x:
h=h+1
A[h],A[k] = A[k],A[h]
A[h],A[i] = A[i],A[h]
return h

The running time of the quicksort is given by

Tpest € ©O(nlogn)
Toverage € ©O(nlogn)
Tworst € @(1’[2)

(3-54)
(3:55)
(3-56)
(3-57)

The quicksort can also be randomized by picking the pivot, Alr], at ran-

dom:

def quicksort(A,p=0,r=-1):

if r is -1:
r=len(A)

if p<r-1:
g = random.randint(p,r-1)
Alpl, Alq]l = Alal, Alp]
g=partition(A,p,r)
quicksort(A,p,q)
quicksort(A,qg+l,r)

In this case, the best and the worst running times do not change, but the

average improves when the input is already almost sorted.

The counting sort algorithm is special because it only works for arrays of

positive integers. This extra requirement allows it to run faster than other

sorting algorithms, under some conditions. In fact, this algorithm is linear

in the range span by the elements of the input array.

Here is a possible implementation:

def countingsort(A):
if min(A)<0:
raise ' _counting sort List Unbound'
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i, n, k =0, len(A), max(A)+1
C = [0]*k
for j in xrange(n):
C[A[j1]1 = C[A[j]11+1
for j in xrange(k):
while C[j]1>0:
(A[il, C[j1, i) = (j, C[j1-1, i+1)

If we define k = max(A) — min(A) + 1 and n = len(A), we see

Thest € O(k+n) (3.58)
Toverage € O(k+n) (3-59)
Tworst € O(k+n) (3.60)
Tnemory € O(k) (3.61)

Notice that here we have also computed Tyemory, for example, the order of
growth of memory (not of time) as a function of the input size. In fact, this
algorithm differs from the previous ones because it requires a temporary
array C.

3.6 Tree algorithms

3.6.1 Heapsort and priority queues

Consider a complete binary tree as the one in the following figure:

It starts from the top node, called the root. Each node has zero, one, or
two children. It is called complete because nodes have been added from
top to bottom and left to right, filling available slots. We can think of each
level of the tree as a generation, where the older generation consists of one
node, the next generation of two, the next of four, and so on. We can also
number nodes from top to bottom and left to right, as in the image. This
allows us to map the elements of a complete binary tree into the elements
of an array.

We can implement a complete binary tree using a list, and the child-
parent relations are given by the following formulas:

def heap_parent(i):
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Figure 3.1: Example of a heap data structure. The number represents not the data in the
heap but the numbering of the nodes.

return int((i-1)/2)

def heap_left_child(i):
return 2xi+1l

def heap_right_child(i):
return 2xi+2

We can store data (e.g., numbers) in the nodes (or in the corresponding
array). If the data are stored in such a way that the value at one node is
always greater or equal than the value at its children, the array is called a
heap and also a priority queue.

First of all, we need an algorithm to convert a list into a heap:

def heapify(A):
for i in xrange(int(len(A)/2)-1,-1,-1):
heapify_one(A,1i)

def heapify_one(A,i,heapsize=None):

if heapsize is None:
heapsize = len(A)

left = 2xi+l

right = 2xi+2

if left<heapsize and A[left]>A[i]:
largest = left

else:
largest = i

if right<heapsize and A[right]>A[largest]:
largest = right
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if largest!=i:
(A[i], A[largest]) = (A[largest], A[i])
heapify_one(A, largest,heapsize)
Now we can call build_heap on any array or list and turn it into a heap.
Because the first element is by definition the smallest, we can use the heap

to sort numbers in three steps:

* We turn the array into a heap

¢ We extract the largest element

* We apply recursion by sorting the remaining elements

Instead of using the preceding divide-and-conquer approach, it is better
to use a dynamic programming approach. When we extract the largest
element, we swap it with the last element of the array and make the heap
one element shorter. The new, shorter heap does not need a full build_heap
step because the only element out of order is the root node. We can fix
this by a single call to heapify.

This is a possible implementation for the heapsort [? |:

def heapsort(A):

heapify(A)

n = len(A)

for i in xrange(n-1,0,-1):
(A[O],A[i]) = (A[i],A[0])

heapify_one(A,0,1)

In the average and worst cases, it runs as fast as the quicksort, but in the
best case, it is linear:

Test € O(n) (3.62)
Taverage € ©O(nlogn) (3.63)
Tworst € O(nlogn) (3.64)
Tmemory € O(1) (3.65)

A heap can be used to implement a priority queue, for example, storage
from which we can efficiently extract the largest element.

All we need is a function that allows extracting the root element from a
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heap (as we did in the heapsort and heapify of the remaining data) and a
function to push a new value into the heap:

1 def heap_pop(A):

2 if len(A)<1:

3 raise RuntimeError('Heap Underflow')
4 largest = A[0]

5 A[0] = A[len(A)-1]

6 del A[len(A)-1]

7 heapify_one(A,0Q)

8 return largest

1o def heap_push(A,value):
11 A.append(value)

12 = 'Len(A)—l

13 while i>0:

14 j = heap_parent(1i)

15 if A[j1<A[i]:

16 (A[i],A[§1,1) = (A[j1,A[i],5)
17 else:

18 break

The running times for heap_pop and heap_push are the same:

Trest € ©O(1) (3.66)
Taverage € ©(logn) (3.67)
Tworst € O(logn) (3.68)
Tnemory € O(1) (3-69)

Here is an example:

1 >>> a = [6,2,7,9,3]

> >>> heap = []

5 >>> for element in a: heap_push(heap,element)
4 >>> while heap: print heap_pop(heap)

5
6

8

N WO N

9
Heaps find application in many numerical algorithms. In fact, there is
a built-in Python module for them called heapg, which provides similar
functionality to the functions defined here, except that we defined a max
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heap (pops the max element) while heapq is a min heap (pops the mini-
mum):

>>> from heapq import heappop, heappush
>>>a = [6,2,7,9,3]

>>> heap = []

>>> for element in a: heappush(heap,element)
>>> while heap: print heappop(heap)

N WO N O

Notice heappop instead of heap_pop and heappush instead of heap_push.

3.6.2 Binary search trees

A binary tree is a tree in which each node has at most two children (left
and right). A binary tree is called a binary search tree if the value of a node
is always greater than or equal to the value of its left child and less than
or equal to the value of its right child.

A binary search tree is a kind of storage that can efficiently be used for
searching if a particular value is in the storage. In fact, if the value for
which we are looking is less than the value of the root node, we only have
to search the left branch of the tree, and if the value is greater, we only
have to search the right branch. Using divide-and-conquer, searching each
branch of the tree is even simpler than searching the entire tree because it
is also a tree, but smaller.

This means that we can search simply by traversing the tree from top to
bottom along some path down the tree. We choose the path by moving
down and turning left or right at each node, until we find the element for
which we are looking or we find the end of the tree. We can search T(d),
where d is the depth of the tree. We will see later that it is possible to
build binary trees where d = logn.

To implement it, we need to have a class to represent a binary tree:

class BinarySearchTree(object):
def __init__(self):
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self.left = self.right = None
self.key = self.value = None
def __setitem__(self,key,value):
if self.key == None:
self.key, self.value = key, value
elif key == self.key:
self.value = value
elif key < self.key:
if self.left:
self.left[key] = value
else:
self.left = BinarySearchTree(key,value)
else:
if self.right:
self.right[key] = value
else:
self.right = BinarySearchTree(key,value)
def __getitem__(self,key):
if self.key == None:
retur None
elif key == self.key:
return self.value
elif key<self.key and self.left:
return self.left[key]
elif key>self.key and self.right:
return self.right[key]
else:
return None
min(self):
node = self
while node.left:
node = self.left
return node.key, node.value
max(self)
node = self
while node.right:
node = self.right
return node.key, node.value

g

de

-h

de

The binary tree can be used as follows:

>>>
>>>
>>>
>>>
>>>
3

>>>

bbb

root = BinarySearchTree()
root[5] = 'aaa’
root[3] = 'bbb'
root[8] = 'ccc'

print root.left.key

print root.left.value

97
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>>> print root[3]
bbb
>>> print root.max()

> 8 ccc

Notice that an empty tree is treated as an exception, where key = None.

3.6.3 Other types of trees

There are many other types of trees.

For example, AVL trees are binary search trees that are rebalanced after
each insertion or deletion. They are rebalanced in such a way that for each
node, the height of the left subtree minus the height of the right subtree is
more or less the same. The rebalance operation can be done in O(logn).

For an AVL tree, the time for inserting or removing an element is given

by

Thest € O(1) (3.70)
Toverage € ©O(logn) (3.71)
Tworst € ©O(logn) (3.72)
(3.73)

Until now, we have considered binary trees (each node has two children
and stores one value). We can generalize this to k trees, for which each
node has k children and stores more than one value.

B-trees are a type of k-tree optimized to read and write large blocks of
data. They are normally used to implement database indices and are
designed to minimize the amount of data to move when the tree is rebal-
anced.
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3.7 Graph algorithms

A graph G is a set of vertices V and a set of links (also called edges) con-
necting those vertices E. Each link connects one vertex to another.

As an example, you can think of a set of cities connected by roads. The
cities are the vertices and the roads are the links.

A link may have attributes. In the case of a road, it could be the name of
the road or its length.

In general, a link, indicated with the notation €ij, connecting vertex i with
vertex j is called a directed link. If the link has no direction ¢;; = ¢j;, it is
called an undirected link. A graph that contains only undirected links is
an undirected graph; otherwise, it is a directed graph.

In the road analogy, some roads can be “one way” (directed links) and
some can be “two way” (undirected links).

A walk is an alternating sequence of vertices and links, with each link
being incident to the vertices immediately preceding and succeeding it in
the sequence. A trail is a walk with no repeated links.

A path is a walk with no repeated vertices. A walk is closed if the initial
vertex is also the terminal vertex.

A cycle is a closed trail with at least one edge and with no repeated ver-
tices, except that the initial vertex is also the terminal vertex.

A graph that contains no cycles is an acyclic graph. Any connected acyclic
undirected graph is also a tree.

A loop is a one-link path connecting a vertex with itself.

A non null graph is connected if, for every pair of vertices, there is a walk
whose ends are the given vertices. Let us write i7j if there is a path from
i to j. Then ~ is an equivalence relation. The equivalence classes under ~
are the vertex sets of the connected components of G. A connected graph
is therefore a graph with exactly one connected component.

A graph is called complete when every pair of vertices is connected by a
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link (or edge).
A cligue of a graph is a subset of vertices in which every pair is an edge.
The degree of a vertex of a graph is the number of edges incident to it.

If i and j are vertices, the distance from i to j, written dl-]-, is the minimum
length of any path from i to j. In a connected undirected graph, the
length of links induces a metric because for every two vertices, we can
define their distance as the length of the shortest path connecting them.

The eccentricity, e(i), of the vertex i is the maximum value of d;;, where
j is allowed to range over all of the vertices of the graph. This gives the
largest shortest distance to any connected node in the graph.

The subgraph of G induced by a subset W of its vertices V (W C V) is the
graph formed by the vertices in W and all edges whose two endpoints are
in W.

The graph is the more complex of the data structures considered so far
because it includes the tree as a particular case (yes, a tree is also a graph,
but in general, a graph is not a tree), and the tree includes a list as a
particular case (yes, a list is a tree in which every node has no more than
one child); therefore a list is also a particular case of a graph.

The graph is such a general data structure that it can be used to model the
brain. Think of neurons as vertices and synapses as links connecting them.
We push this analogy later by implementing a simple neural network
simulator.

In what follows, we represent a graph in the following way, where links

are edges:

>>> vertices = ['A','B','C','D",'E"]

>>> links = [(0,1),(1,2),(1,3),(2,5),(3,4),(3,2)]
>>> graph = (vertices, links)

Vertices are stored in a list or array and so are links. Each link is a tuple
containing the ID of the source vertex, the ID of the target vertex, and
perhaps optional parameters. Optional parameters are discussed later, but
for now, they may include link details such as length, speed, reliability, or
billing rate.



1

THEORY OF ALGORITHMS 101

3.7.1 Breadth-first search

The breadth-first search [? ] (BFS) is an algorithm designed to visit all
vertices in a connected graph. In the cities analogy, we are looking for a
travel strategy to make sure we visit every city reachable by roads, once
and only once.

The algorithm begins at one vertex, the origin, and expands out, eventu-
ally visiting each node in the graph that is somehow connected to the ori-
gin vertex. Its main feature is that it explores the neighbors of the current
vertex before moving on to explore remote vertices and their neighbors.
It visits other vertices in the same order in which they are discovered.

The algorithm starts by building a table of neighbors so that for each
vertex, it knows which other vertices it is connected to. It then maintains
two lists, a list of blacknodes (defined as vertices that have been visited)
and graynodes (defined as vertices that have been discovered because the
algorithm has visited its neighbor). It returns a list of blacknodes in the
order in which they have been visited.

Here is the algorithm:

Listing 3.5: in file: nlib.py

def breadth_first_search(graph,start):
vertices, link = graph

blacknodes = []
graynodes = [start]
neighbors = [[] for vertex in vertices]

for link in links:
neighbors[link[0]].append(link[1])
while graynodes:
current = graynodes.pop()
for neighbor in neighbors[current]:
if not neighbor in blacknodes+graynodes:
graynodes.insert(0,neighbor)
blacknodes.append(current)
return blacknodes
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The BFS algorithm scales as follows:

Tpest € O(np+ny) (3-74)
Toverage € O(ng+ny) (3.75)
Tworst € O(ng+ny) (3.76)
Tnemory € O(n) (3-77)

3.7.2 Depth-first search

The depth-first search [? ] (DFS) algorithm is very similar to the BFS, but
it takes the opposite approach and explores as far as possible along each
branch before backtracking.

In the cities analogy, if the BFS was exploring cities in the neighborhood
before moving farther away, the DFS does the opposite and brings us first
to distant places before visiting other nearby cities.

Here is a possible implementation:

Listing 3.6: in file: nlib.py

def depth_first_search(graph,start):
vertices, link = graph
blacknodes = []
graynodes [start]
neighbors [[1 for vertex in vertices]
for link in links:
neighbors[link[0]].append(link[1])
while graynodes:
current = graynodes.pop()
for neighbor in neighbors[current]:
if not neighbor in blacknodes+graynodes:
graynodes.append(neighbor)
blacknodes.append(current)
return blacknodes

Notice that the BFS and the DFS differ for a single line, which determines
whether graynodes is a queue (BSF) or a stack (DFS). When graynodes is
a queue, the first vertex discovered is the first visited. When it is a stack,

the last vertex discovered is the first visited.
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The DFS algorithm goes as follows:

Tpest € O(ng+ny) (3.78)
Taverage € O(ng +ny) (3.79)
Tworst € O(ng+ny) (3-80)
Tmemory € 0(1) (3.81)

3.7.3 Disjoint sets

This is a data structure that can be used to store a set of sets and imple-
ments efficiently the join operation between sets. Each element of a set
is identified by a representative element. The algorithm starts by placing
each element in a set of its own, so there are n initial disjoint sets. Each
is represented by itself. When two sets are joined, the representative el-
ement of the latter is made to point to the representative element of the
former. The set of sets is stored as an array of integers. If at position i the
array stores a negative number, this number is interpreted as being the
representative element of its own set. If the number stored at position i is
instead a nonnegative number j, it means that it belongs to a set that was
joined with the set containing j.

Here is the implementation:

Listing 3.7: in file: nlib.py
class DisjointSets(object):
def __init__(self,n):
self.sets = [-1]*n
self.counter = n
def parent(self,i):
while True:
j = self.sets[i]
if j<0:
return i
i=73
def join(self,i,j):
i,j = self.parent(i),self.parent(j)
if il=j:
self.sets[i] += self.sets[j]
self.sets[j] =1
self.counter-=1
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return True # they have been joined
return False # they were already joined
def joined(self,i,j):
return self.parent(i) == self.parent(j)
def __len__(self):
return self.counter
Notice that we added a member variable counter that is initialized to the
number of disjoint sets and is decreased by one every time two sets are
merged. This allows us to keep track of how many disjoint sets exist at
each time. We also override the __1len__ operator so that we can check the

value of the counter using the len function on a DisjointSet.

As an example of application, here is a code that builds a n¥ maze. It may
be easier to picture it with d = 2, a two-dimensional maze. The algorithm
works by assuming there is a wall connecting any couple of two adjacent
cells. It labels the cells using an integer index. It puts all the cells into a
DisjointSets data structure and then keeps tearing down walls at random.
Two cells on the maze belong to the same set if they are connected, for
example, if there is a path that connects them. At the beginning, each
cell is its own set because it is isolated by walls. Walls are torn down by
being removed from the list wall if the wall was separating two disjoint
sets of cells. Walls are torn down until all cells belong to the same set, for
example, there is a path connecting any cell to any cell:

def make_maze(n,d):
walls = [(i,i+nx*j) for i in xrange(nxx2) for j in xrange(d) if (i/n*xj)%n
+1<n]
torn_down_walls = []
ds = DisjointSets(nxxd)
random.shuffle(walls)
for i,wall in enumerate(walls):
if ds.join(wall[0],wall[1]):
torn_down_walls.append(wall)
if len(ds)==1:
break
walls = [wall for wall in walls if not wall in torn_down_walls]
return walls, torn_down_walls

Here is an example of how to use it. This example also draws the walls
and the border of the maze:

>>> walls, torn_down_walls = make_maze(n=20,d=2)
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The following figure shows a representation of a generated maze:

Figure 3.2: Example of a maze as generated using the DisjointSets algorithm.

3.7.4 Minimum spanning tree: Kruskal

Given a connected graph with weighted links (links with a weight or
length), a minimum spanning tree is a subset of that graph that connects
all vertices of the original graph, and the sum of the link weights is mini-
mal. This subgraph is also a tree because the condition of minimal weight
implies that there is only one path connecting each couple of vertices.

Figure 3.3: Example of a minimum spanning tree subgraph of a larger graph. The
numbers on the links indicate their weight or length.

One algorithm to build the minimal spanning tree of a graph is the
Kruskal [? ] algorithm. It works by placing all vertices in a DisjointSets
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structure and looping over links in order of their weight. If the link con-
nects two vertices belonging to different sets, the link is selected to be
part of the minimum spanning tree, and the two sets are joined, else the
link is ignored. The Kruskal algorithm assumes an undirected graph, for
example, all links are bidirectional, and the weight of a link is the same in
both directions:

Listing 3.8: in file: nlib.py
def Kruskal(graph):
vertices, links = graph
A=1]
S = DisjointSets(len(vertices))
links.sort(cmp=lambda a,b: cmp(al[2],b[2]))
for source,dest,length in links:
if S.join(source,dest):
A.append((source,dest,length))
return A

The Kruskal algorithm goes as follows:

Tworst € O(nglogny) (3.82)
Timemory € O(ng) (3-83)

We provide an example of application in the next subsection.

3.7.5 Minimum spanning tree: Prim

The Prim [? ] algorithm solves the same problem as the Kruskal algo-
rithm, but the Prim algorithm works on a directed graph. It works by
placing all vertices in a minimum priority queue where the queue met-
ric for each vertex is the length, or weighted value, of a link connecting
the vertex to the closest known neighbor vertex. At each iteration, the
algorithm pops a vertex from the priority queue, loops over its neighbors
(adjacent links), and, if it finds that one of its neighbors is already in the
queue and it is possible to connect it to the current vertex using a shorter
link than the one connecting the neighbor to its current closest vertex, the
neighbor information is then updated. The algorithm loops until there
are no vertices in the priority queue.
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The Prim algorithm also differs from the Kruskal algorithm because the
former needs a starting vertex, whereas the latter does not. The result
when interpreted as a subgraph does not depend on the starting vertex:

Listing 3.9: in file: nlib.py

class PrimVertex(object):
INFINITY = 1el00
def __init__(self,id,links):
self.id = id
self.closest = None
self.closest_dist = PrimVertex.INFINITY
self.neighbors = [link[1:] for link in links if link[0]==id]
def __cmp__(self,other):
return cmp(self.closest_dist, other.closest_dist)

def Prim(graph, start):
from heapq import heappush, heappop, heapify
vertices, links = graph
P = [PrimVertex(i,links) for i in vertices]
Q = [P[i] for i in vertices if not i==start]
vertex = P[start]
while Q:
for neighbor_id,length in vertex.neighbors:
neighbor = P[neighbor_id]
if neighbor in Q and length<neighbor.closest dist:
neighbor.closest = vertex
neighbor.closest_dist = length
heapify(Q)
vertex = heappop(Q)
return [(v.id,v.closest.id,v.closest_dist) for v in P if not v.id==start]

>>> vertices = xrange(10)

>>> links = [(i,j,abs(math.sin(i+j+1))) for i in vertices for j in vertices]
>>> graph = [vertices,links]

>>> link = Prim(graph,0)

>>> for link in links: print link

(1, 4, 0.279...)
(2, 6, 0.141...)
(3, 2, 0.279...)
(4, 1, 0.279...)
(5, 6, 0.279...)
(6, 2, 0.412...)
(7, 8, 0.287...)
(8, 7, 0.287...)
(9, 6, 0.287...)
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The Prim algorithm, when using a priority queue for Q, goes as follows:

Tworst € O(ng+nylogny) (3-84)
Tinemory € O(ng) (3.85)

One important application of the minimum spanning tree is in evolution-
ary biology. Consider, for example, the DNA for the genes that produce
hemoglobin, a molecule responsible for the transport of oxygen in blood.
This protein is present in every animal, and the gene is also present in the
DNA of every known animal. Yet its DNA structure is a little different.
One can select a pool of animals and, for each two of them, compute the
similarity of the DNA of their hemoglobin genes using the lcs algorithm
discussed later. One can then link each two animals by a metric that rep-
resents how similar the two animals are. We can then run the Prim or
the Kruskal algorithm to find the minimum spanning tree. The tree rep-
resents the most likely evolutionary tree connecting those animal species.
Actually, three genes are responsible for hemoglobin (HBA1, HBA2, and
HBB). By performing the analysis on different genes and comparing the
results, it is possible to establish a consistency check of the results. [? ]

Similar studies are performed routinely in evolutionary biology. They can
also be applied to viruses to understand how viruses evolved over time. [?

]

3.7.6 Single-source shortest paths: Dijkstra

The Dijkstra [? ] algorithm solves a similar problem to the Kruskal and
Prim algorithms. Given a graph, it computes, for each vertex, the shortest
path connecting the vertex to a starting (or source, or root) vertex. The
collection of links on all the paths defines the single-source shortest paths.

It works, like Prim, by placing all vertices in a min priority queue where
the queue metric for each vertex is the length of the path connecting the
vertex to the source. At each iteration, the algorithm pops a vertex from
the priority queue, loops over its neighbors (adjacent links), and, if it
finds that one of its neighbors is already in the queue and it is possible
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to connect it to the current vertex using a link that makes the path to the

source shorter, the neighbor information is updated. The algorithm loops

until there are no more vertices in the priority queue.

The implementation of this algorithm is almost identical to the Prim algo-

rithm, except for two lines:

def

>>>
>>>
>>>
>>>
>>>
(1,
(2,
(3,
(4,
(5,
(6,
(7,
(8,
(9,

Listing 3.10: in file: nlib.py

Dijkstra(graph, start):
from heapq import heappush, heappop, heapify
vertices, links = graph
P = [PrimVertex(i,links) for i in vertices]
Q = [P[i] for i in vertices if not i==start]
vertex = P[start]
vertex.closest_dist = 0
while Q:
for neighbor_id,length in vertex.neighbors:
neighbor = P[neighbor_id]
dist = length+vertex.closest dist
if neighbor in Q and dist<neighbor.closest dist:
neighbor.closest = vertex
neighbor.closest_dist = dist
heapify(Q)
vertex = heappop(Q)
return [(v.id,v.closest.id,v.closest_dist) for v in P if not v.id==start]

Listing 3.11: in file: nlib.py
vertices = xrange(10)
links = [(i,j,abs(math.sin(i+j+1))) for i in vertices for j in vertices]
graph = [vertices, links]
links = Dijkstra(graph,0)
for link in links: print link
.897...
.141. ..
.420. ..
.798...
.279. ..
.553...
.685. ..
L412. ..
.544. ..

O O NNONNON
[clclcN oo oo oN o]

The Dijkstra algorithm goes as follows:

Tworst € ®(nE+nV10gnV) (386)
Tinemory € O(ng) (3-87)
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An application of the Dijkstra is in solving a maze such as the one built
when discussing disjoint sets. To use the Dijkstra algorithm, we need to
generate a maze, take the links representing torn-down walls, and use
them to build an undirected graph. This is done by symmetrizing the
links (if i and j are connected, j and i are also connected) and adding to
each link a length (1, because all links connect next-neighbor cells):

>>>n,d = 4, 2
>>> walls, links = make_maze(n,d)

>>> symmetrized_links = [(i,j,1) for (i,j) in links]+[(j,i,1) for (i,j) in links
1

>>> graph = [xrange(nxn),symmetrized_links]

>>> links = Dijkstra(graph,0)

>>> paths = dict((i,(j,d)) for (i,j,d) in links)

Given a maze cell i, path[i] gives us a tuple (j,d) where d is the number
of steps for the shortest path to reach the origin (o) and j is the ID of the
next cell along this path. The following figure shows a generated maze
and a reconstructed path connecting an arbitrary cell to the origin:

Figure 3.4: The result shows an application of the Dijkstra algorithm for the single
source shortest path applied to solve a maze.
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3.8 Greedy algorithms

3.8.1 Huffman encoding

The Shannon—Fano encoding [? ][? ] (also known as minimal prefix code)
is a lossless data compression algorithm. In this encoding, each character
in a string is mapped into a sequence of bits so characters that appear
with less frequency are encoded with a longer sequence of bits, whereas
characters that appear with more frequency are encoded with a shorter
sequence.

The Huffman encoding [? ] is an implementation of the Shannon-Fano
encoding, but the sequence of bits into which each character is mapped
is chosen such that the length of the compressed string is minimal. This
choice is constructed in the following way. We associate a tree with each
character in the string to compress. Each tree is a trivial tree containing
only one node: the root node. We then associate with the root node the
frequency of the character representing the tree. We then extract from
the list of trees the two trees with rarest or lowest frequency: t1 and t2.
We form a new tree, t3, we attach t1 and t2 to t3, and we associate a
frequency with t3 equal to the sum of the frequencies of t1 and t2. We
repeat this operation until the list of trees contains only one tree. At this
point, we associate a sequence of bits with each node of the tree. Each bit
corresponds to one level on the tree. The more frequent characters end
up being closer to the root and are encoded with a few bits, while rare
characters are far from the root and encoded with more bits.

PKZIP, ARJ, ARC, JPEG, MPEG3 (mp3), MPEG4, and other compressed
file formats all use the Huffman coding algorithm for compressing strings.
Note that Huffman is a compression algorithm with no information loss.
In the JPEG and MPEG compression algorithms, Huffman algorithms are
combined with some form or cut of the Fourier spectrum (e.g., MP3 is an
audio compression format in which frequencies below 2 KHz are dumped
and not compressed because they are not audible). Therefore the JPEG
and MPEG formats are referred to as compression with information loss.
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Here is a possible implementation of Huffman encoding:

Listing 3.12: in file: nlib.py

def encode_huffman(input):
from heapg import heappush, heappop

def inorder_tree_walk(t, key, keys):
(f,ab) =t
if isinstance(ab,tuple):
inorder_tree_walk(ab[0],key+'0"', keys)
inorder_tree_walk(ab[1],key+'1", keys)
else:
keys[ab] = key

symbols = {}
for symbol in input:

symbols[symbol] = symbols.get(symbol,0)+1
heap = []
for (k,f) in symbols.items():

heappush (heap, (f,k))
while len(heap)>1:

(fl,k1) = heappop(heap)

(f2,k2) = heappop(heap)

heappush (heap, (f1+f2, ((f1,k1), (f2,k2))))
symbol_map = {}
inorder_tree_walk(heap[0],'"',symbol_map)
encoded = ''.join(symbol_map[symbol] for symbol in input)
return symbol_map, encoded

def decode_huffman(keys, encoded):
reversed_map = dict((v,k) for (k,v) in keys.items())
i, output = 0, []
for j in xrange(1l,len(encoded)+1):
if encoded[i:j] in reversed_map:
output.append(reversed_map[encoded[i:j]])
i=j
return ''.join(output)

We can use it as follows:

Listing 3.13: in file: nlib.py
>>> input = 'this is a nice day'
>>> keys, encoded = encode_huffman(input)
>>> print encoded
10111001110010001100100011110010101100110100000011111111110
>>> decoded = decode_huffman(keys,encoded)
>>> print decoded == input
True
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>>> print 1.0xlen(input)/(len(encoded)/8)
2.57...

We managed to compress the original data by a factor 2.57.

We can ask how good is this compression factor. The maximum theo-
retical best compression factor is given by the Shannon entropy, defined
as

E=-— Zwi log, w; (3.88)
u

where w; is the relative frequency of each symbol. In our case, this is easy
to compute as

Listing 3.14: in file: nlib.py
>>> from math import log
>>> input = 'this is a nice day'
>>> w = [1.0xinput.count(c)/len(input) for c in set(input)]
>>> E = -sum(wixlog(wi,2) for wi in w)
>>> print E
5,250 00

How could we have done better? Notice for example that the Huffman
encoding does not take into account the order in which symbols appear.
The original string contains the triple “is” twice, and we could have taken
advantage of that pattern, but we did not.

Our choice of using characters as symbols is arbitrary. We could have
used a couple of characters as symbols or triplets or any other subse-
quences of bytes of the original input. We could also have used symbols
of different lengths for different parts of the input (we could have used a
single symbol for “is”). A different choice would have given a different
compression ratio, perhaps better, perhaps worse.

3.8.2 Longest common subsequence

Given two sequences of characters S; and Sy, this is the problem of de-
termining the length of the longest common subsequence (LCS) that is a
subsequence of both S; and S».
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There are several applications for the LCS [? ] algorithm:

* Molecular biology: DNA sequences (genes) can be represented as se-
quences of four letters ACGT, corresponding to the four sub-molecules
forming DNA. When biologists find a new sequence, they want to find
similar sequences or ones that are close. One way of computing how
similar two sequences are is to find the length of their LCS.

¢ File comparison: The Unix program diff is used to compare two dif-
ferent versions of the same file, to determine what changes have been
made to the file. It works by finding a LCS of the lines of the two
files and displays the set of lines that have changed. In this instance
of the problem, we should think of each line of a file as being a single
complicated character.

¢ Spelling correction: If some text contains a word, w, that is not in the
dictionary, a “close” word (e.g., one with a small edit distance to w)
may be suggested as a correction. Transposition errors are common in
written text. A transposition can be treated as a deletion plus an inser-
tion, but a simple variation on the algorithm can treat a transposition
as a single point mutation.

® Speech recognition: Algorithms similar to the LCS are used in some
speech recognition systems—find a close match between a new utter-
ance and one in a library of classified utterances.

Let’s start with some simple observations about the LCS problem. If we
have two strings, say, “ATGGCACTACGAT” and “ATCGAGC,” we can
represent a subsequence as a way of writing the two so that certain letters
line up:

ATGGCACTACGAT

(I
ATCG AG C

From this we can observe the following simple fact: if the two strings start
with the same letter, it's always safe to choose that starting letter as the
first character of the subsequence. This is because, if you have some other
subsequence, represented as a collection of lines as drawn here, you can
“push” the leftmost line to the start of the two strings without causing any
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other crossings and get a representation of an equally long subsequence
that does start this way.

Conversely, suppose that, like in the preceding example, the two first
characters differ. Then it is not possible for both of them to be part of a
common subsequence. There are three possible choices: remove the first
letter from either one of the strings or remove the letter from both strings.

Finally, observe that once we’ve decided what to do with the first char-
acters of the strings, the remaining subproblem is again a LCS problem
on two shorter strings. Therefore we can solve it recursively. However,
because we don’t know which choice of the three to take, we will take
them all and see which choice returns the best result.

Rather than finding the subsequence itself, it turns out to be more efficient
to find the length of the longest subsequence. Then, in the case where
the first characters differ, we can determine which subproblem gives the
correct solution by solving both and taking the max of the resulting sub-
sequence lengths. Once we turn this into a dynamic programming algo-
rithm, we get the following:

Listing 3.15: in file: nlib.py
def lcs(a, b):
previous = [0]+len(a)
for i,r in enumerate(a):
current = []
for j,c in enumerate(b):
if r==c:
e = previous[j-1]+1 if ixj>0 else 1
else:
e = max(previous[j] if i>0 else 0,
current[-1] if j>0 else 0)
current.append(e)
previous=current
return current[-1]

Here is an example:

Listing 3.16: in file: nlib.py
>>> dnal = 'ATGCTTTAGAGGATGCGTAGATAGCTAAATAGCTCGCTAGA'
>>> dna2 = 'GATAGGTACCACAATAATAAGGATAGCTCGCAAATCCTCGA'

>>> print lcs(dnal,dna2)
26
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The algorithms can be shown to be O(nm) (where m = len(a) and n =
len(b)).

Another application of this algorithm is in the Unix diff utility. Here is a
simple example to find the number of common lines between two files:

>>> a = open('filel.txt").readlines()
>>> b = open('file2.txt').readlines()
>>> print lcs(a,b)

3.8.3 Needleman-Wunsch

With some minor changes to the LCS algorithm, we obtain the
Needleman-Wunsch algorithm [? ], which solves the problem of global
sequence alignment. The changes are that, instead of using only two al-
ternating rows (c and d for storing the temporary results, we store all
temporary results in an array z; when two matching symbols are found
and they are not consecutive, we apply a penalty equal to p™, where m
is the distance between the two matches and is also the size of the gap in
the matching subsequence:

Listing 3.17: in file: nlib.py
def needleman_wunsch(a,b,p=0.97):
z=[]
for i,r in enumerate(a):

z.append([])
for j,c in enumerate(b):
if r==c:
e = z[i-1][j-1]1+1 if i*j>0 else 1
else:

pxmax(z[i-1]1[j] if i>0 else 0,
z[1]1[j-1] if j>0 else 0)
z[-1].append(e)
return z

e

This algorithm can be used to identify common subsequences of DNA
between chromosomes (or in general common similar subsequences be-
tween any two strings of binary data). Here is an example in which we
look for common genes in two randomly generated chromosomes:

Listing 3.18: in file: nlib.py

>>> bases = 'ATGC'
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>>> from random import choice

>>> genes = [''.join(choice(bases) for k in xrange(10)) for i in xrange(20)]
>>> chromosomel = ''.join(choice(genes) for i in xrange(10))

>>> chromosome2 = ''.join(choice(genes) for i in xrange(10))

>>> z = needleman_wunsch(chromosomel, chromosome2)

>>> Canvas(title='Needleman-Wunsch').imshow(z).save('images/needleman.png')

The output of the algorithm is the following image:

Needleman-Wunsch

Figure 3.5: A Needleman and Wunsch plot sequence alignment. The arrow-like patterns
indicate the point in the two sequences (represented by the X- and Y-coordinates) where
the two sequences are more likely to align.

The arrow-like patterns in the figure correspond to locations where
chromosomel (Y coordinate) and where chromosome2 (X coordinate) have
DNA in common. Those are the places where the sequences are more
likely to be aligned for a more detailed comparison.

3.8.4 Continuous Knapsack

Assume you want to fill your knapsack such that you will maximize the
value of its contents [? ]. However, you are limited by the volume your
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knapsack can hold. In the continuous knapsack, the amount of each prod-
uct can vary continuously. In the discrete one, each product has a finite
size, and you either carry it or no.

The continuous knapsack problem can be formulated as the problem of
maximizing

f(x) =apxg + ay1x1 + ... + anxy (3.89)

given the constraint
boxo +b1x1 + ... + bpx, < c (3.90)

where coefficients a;, b;, and c are provided and x; € [0, 1] are to be deter-
mined.
Using financial terms, we can say that
e The set {xg, x1, ..., X, } forms a portfolio
e b; is the cost of investment i

¢ c is the total investment capital available

a; is the expected return of investment for investment i

f(x) is the expected value of our portfolio {xg, x1, ..., X }

Here is the solving algorithm:

Listing 3.19: in file: nlib.py
def continuum_knapsack(a,b,c):
table = [(a[il/b[i],i) for i in xrange(len(a))]
table.sort()
table.reverse()
=0.0
for (y,i) in table:
quantity = min(c/b[i],1)
x.append((i,quantity))
c = c-b[i]*quantity
f = f+a[i]l*xquantity
return (f,x)

This algorithm is dominated by the sort; therefore

Tworst(x) € O(nlogn) (3.91)
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3.8.5 Discrete Knapsack

The discrete Knapsack problem is very similar to the continuous knapsack
problem but x; € {0,1} (can only be o or 1).

Consider the jars of liquids replaced with baskets of objects, say, a basket
each of gold bars, silver coins, copper beads, and Rolex watches. How
many of each item do you take? The discrete knapsack problem does
not consider “baskets of items” but rather all the items together. In this
example, dump out all the baskets and you have individual objects to
take. Which objects do you take, and which do you leave behind?

In this case, a greedy approach does not apply and the problem is, in
general, NP complete. This concept is defined formally later but it means
that there is no known algorithm that can solve this problem and that
its order of growth is a polynomial. The best known algorithm has an
exponential running time.

This kind of problem is unsolvable for large input.

If we assume that ¢ and b; are all multiples of a finite factor ¢, then it is
possible to solve the problem in O(c/¢). Even when there is not a finite
factor e, we can always round c and b; to some finite precision ¢, and we
can conclude that, for any finite precision ¢, we can solve the problem in
linear time. The algorithm that solves this problem follows a dynamic
programming approach.

We can reformulate the problem in terms of a simple capital budgeting
problem. We have to invest $5M. We assume ¢ =$1M. We are in contact
with three investment firms. Each offers a number of investment oppor-
tunities characterized by an investment cost c[7, j] and an expected return
of investment r[i, j|. The index i labels the investment firm and the index j
labels the different investment opportunities offered by the firm. We have
to build a portfolio that maximizes the return of investment. We can-
not select more than one investment for each firm, and we cannot select
fractions of investments.
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Without loss of generality, we will assume that
cli,jl <cli,j+1] and r[i,j] <r[i,j+1] (3.92)

which means that investment opportunities for each firm are sorted ac-
cording to their cost.

Consider the following explicit case:

Fim | i=0 | Firm |i=1 | Firm |i=2
proposal | ¢[0,j] | r[0,j] | ¢[L,j] | r[L,j] | c[2,j] | r[2,]]

—
;,:1 CI’ : Z © cl’ (Table 1)
j=2 2 6 3 - -
j=3 - - 4 12 - -

(table values are always multiples of ¢ =$1M).
Notice that we can label each possible portfolio by a triplet {jo, j1, j2 }-

A straightforward way to solve this is to try all possibilities and choose
the best. In this case, there are only 3 x 4 x 2 = 24 possible portfolios.
Many of these are infeasible (e.g., portfolio {2,3,0} costs $6M and we
cannot afford it). Other portfolios are feasible but very poor (like portfolio
{0,0,1}, which is feasible but returns only $4M).

Here are some disadvantages of total enumeration:

e For larger problems, the enumeration of all possible solutions may not
be computationally feasible.

¢ Infeasible combinations may not be detectable a priori, leading to inef-
ficiency.

* Information about previously investigated combinations is not used
to eliminate inferior or infeasible combinations (unless we use mem-
oization, but in this case the algorithm would grow polynomially in
memory space).

We can, instead, use a dynamic programming approach.
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We break the problem into three stages, and at each stage, we fill a ta-
ble of optimal investments for each discrete amount of money. At each
stage i, we only consider investments from firm i and the table during the
previous stage.

So stage 0 represents the money allocated to firm 0, stage 1 the money to
firm 1, and stage 2 the money to firm 2.

STAGE ZERO: we maximize the return of investment considering only
offers from firm o. We fill a table f[0,k] with the maximum return of
investment if we invest k million dollars in firm 0:

fl0,k] = max r0,]] (3.93)
jlelof]1<k

f10,k]

(3-94)

U‘l-lkwl\)*HOW‘
[o)
*

STAGE TWO: we maximize the return of investment considering offers
from firm 1 and the prior table. We fill a table f[1,k] with the maximum
return of investment if we invest k million dollars in firm 0 and firm 1:

fILk] = max r[1,j]+ [0,k —c[0,]]] (3.95)
jlefLjl<k
k| cl2j] | fI0.k—c[0,j]] | f[1K]
o |o 0 0
1 |0 1 5
2 |2 0 8 (3.96)
3 12 1 9
4 |3 1 13
5* 4* 1* 18*
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STAGE THREE: we maximize the return of investment considering offers
from firm 2 and the preceding table. We fill a table f|2, k] with the maxi-
mum return of investment if we invest k million dollars in firm 0, firm 1,

and firm 2:
fl2 k] = max r[2,j]+ f[1,k—c[1,]]] (3-97)
jle[2,j]<k

k| cl2j] | fILk—c[1,j]] | f]2K]
o |o 0 o}
1 |o 1 5
2 |2 0 8 (3.98)
3 12 1 9
4 |1 3 13

The maximum return of investment with $5M is therefore $18M. It can
be achieved by investing $2M in firm 2 and $3M in firms o and 1. The
optimal choice is marked with a star in each table. Note that to determine
how much money has to be allocated to maximize the return of invest-
ment requires storing past tables to be able to look up the solution to
subproblems.

We can generalize eq.(??) and eq.(??) for any number of investment firms
(decision stages):

flik] = max rfij]+ f[i =1,k —cli—1,]] (3.99)
jlelijl<k

3.9 Artificial intelligence and machine learning

3.9.1 Clustering algorithms

There are many algorithms available to cluster data [? ]. They are all
based on empirical principles because the cluster themselves are defined
by the algorithm used to identify them. Normally we distinguish three
categories:
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® Hierarchical clustering: These algorithms start by considering each point
a cluster of its own. At each iteration, the two clusters closest to each
other are joined together, forming a larger cluster. Hierarchical cluster-
ing algorithms differ from each other about the rule used to determine
the distance between clusters. The algorithm returns a tree represent-
ing the clusters that are joined, called a dendrogram.

* Centroid-based clustering: These algorithms require that each point be
represented by a vector and each cluster also be represented by a vector
(centroid of the cluster). With each iteration, a better estimation for
the centroids is given. An example of centroid-based clustering is k-
means clustering. These algorithms require an a priori knowledge of
the number of clusters and return the position of the centroids as well
the set of points belonging to each cluster.

e Distribution-based clustering: These algorithms are based on statistics
(more than the other two categories). They assume the points are gen-
erated from a distribution (which mush be known a priori) and deter-
mine the parameters of the distribution. It provides clustering because
the distribution may be a sum of more than one localized distribution
(each being a cluster).

Both k-means and distribution-based clustering assume an a priori knowl-
edge about the data that often defies the purpose of using clustering: learn
something we do now know about the data using an empirical algorithm.
They also require that the points be represented by vectors in a Euclidean
space, which is not always the case. Consider the case of clustering DNA
sequences or financial time series. Technically the latter can be presented
as vectors, but their dimensionality can be very large, thus making the
algorithms impractical.

Hierarchical clustering only requires the notion of a distance between
points, for some of the points.

The following algorithm is a hierarchical clustering algorithm with the
following characteristics:

* Individual points do not need to be vectors (although they can be).



124 ANNOTATED ALGORITHMS IN PYTHON

Phylogenetic Tree of Life

Bacteria Archaea Eucaryota
Green
i FIELHCE;IH‘M;IE. E Slme .
Sprochetes ramoekas mokls Animals

Gram Furgi

Methamos arina

Methanoba

Protecbacteria Halphiks

Cyarobacteria

1

Methanococoys | L

R Cilates

T.celery |

Themmoor oy
Thermoproteus ¥, Y

Fyroaticticum

Hanctomyces T Flage lates

Eacteroide s ™ Trichomorads
Cyrophaga _ B
Microsporidia
Thermotoga
Dip lomonads

Aquitex

Figure 3.6: Example of a dendrogram.

¢ Points may have a weight used to determine their relative importance
in identifying the characteristics of the cluster (think of clustering finan-
cial assets based on the time series of their returns; the weight could
the average traded volume).

* The distance between points is computed by a metric function provided
by the user. The metric can return None if there is no known connection
between two points.

* The algorithm can be used to build the entire dendrogram , or it can stop
for a given value of k, a target number of clusters.

e For points that are vectors and a given k, the result is similar to the
result of the k-means clustering.

The algorithm works like any other hierarchical clustering algorithm. At
the beginning, all-to-all distances are computed and stored in a list d. Each
point is its own cluster. At each iteration, the two clusters closer together
are merged to form one bigger cluster. The distance between each other
cluster and the merged cluster is computed by performing a weighted
average of the distances between the other cluster and the two merged
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clusters. The weight factors are provided as input. This is equivalent to
what the k-means algorithm does by computing the position of a centroid
based on the vectors of the member points.

The algorithm self.q implements disjointed sets representing the set of
clusters. The algorithm self.q is a dictionary. If self.q[i] is a list, then i
is its own cluster, and the list contains the IDs of the member points. If
self.q[i] is an integer, then cluster i is no longer its own cluster as it was
merged to the cluster represented by the integer.

At each point in time, each cluster is represented by one element, which
can be found recursively by self.parent(i). This function returns the ID
of the cluster containing element i and returns a list of IDs of all points
in the same cluster:

Listing 3.20: in file: nlib.py
class Cluster(object):
def __init__(self,points,metric,weights=None):
self.points, self.metric = points, metric
self.k = len(points)
self.w = weights or [1.0]x*self.k
self.q = dict((i,[i]) for i,e in enumerate(points))
self.d [1]
for i in xrange(self.k):
for j in xrange(i+l,self.k):
m = metric(points[i],points[j])
if not m is None:
self.d.append((m,i,j))
self.d.sort()
self.dd = []
def parent(self,i):
while isinstance(i,int): (parent, i) = (i, self.q[i])
return parent, i
def step(self):
if self.k>1:
# find new clusters to join
(self.r,i,j),self.d = self.d[0],self.d[1:]
# join them
i,x = self.parent(i) # find members of cluster 1
j,y = self.parent(j) # find members if cluster j

X +=y # join members
self.q[j] =1 # make j cluster point to i
self.k -=1 # decrease cluster count

# update all distances to new joined cluster
new_d = []1 # links not related to joined clusters
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old_d = {} # old links related to joined clusters
for (r,h,k) in self.d:
if h in (i,j):
a,b = old_d.get(k,(0.0,0.0))
old_d[k] = a+self.w[k]x*r,b+self.w[k]
elif k in (i,j):
a,b = old_d.get(h,(0.0,0.0))
old_d[h] = a+self.w[h]*r,b+self.w[h]
else:
new_d.append((r,h,k))
new_d += [(a/b,1i,k) for k,(a,b) in old_d.items()]
new_d.sort()
self.d = new_d
# update weight of new cluster
self.w[i] = self.w[i]+self.w[j]
# get new list of cluster members
self.v = [s for s in self.q.values() if isinstance(s,list)]
self.dd.append((self.r,len(self.v)))
return self.r, self.v

def find(self,k):
# if necessary start again
if self.k<k: self.__init__(self.points,self.metric)
# step until we get k clusters
while self.k>k: self.step()
# return list of cluster members
return self.r, self.v

Given a set of points, we can determine the most likely number of clusters
representing the data, and we can make a plot of the number of clusters
versus distance and look for a plateau in the plot. In correspondence with
the plateau, we can read from the y-coordinate the number of clusters.
This is done by the function cluster in the preceding algorithm, which
returns the average distance between clusters and a list of clusters.

For example:

Listing 3.21: in file: nlib.py

>>> def metric(a,b):

.. return math.sqrt(sum((x-b[i])**2 for i,x in enumerate(a)))

>>> points = [[random.gauss(i % 5,0.3) for j in xrange(10)] for i in xrange(200)
1

>>> ¢ = Cluster(points,metric)

>>> r, clusters = c.find(1) # cluster all points until one cluster only

>>> Canvas(title='clustering example',xlab="distance',ylab="'number of clusters'

).plot(c.dd[150:]).save('clusteringl.png')
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8 >>> Canvas(title='clustering example (2d projection)',xlab='p[0]"',ylab="p[1]"
9 v ).ellipses([p[:2] for p in points]).save('clustering2.png')

With our sample data, we obtain the following plot (“clustering1.png”):

clustering example
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Figure 3.7: Number of clusters found as a function of the distance cutoff.

and the location where the curve bends corresponds to five clusters. Al-
though our points live in 10 dimensions, we can try to project them into
two dimensions and see the five clusters (“clustering2.png”):

3.9.2 Neural network

An artificial neural network is an electrical circuit (usually simulated in
software) that mimics the functionality of the neurons in the animal (and
human) brain [? ]. It is usually employed in pattern recognition. The net-
work consists of a set of simulated neurons, connected by links (synapses).
Some links connect the neurons with each other, some connect the neu-
rons with the input and some with the output. Neurons are usually or-
ganized in the layers with one input layer of neurons connected only with
the input and the next layer. Another one, the output layer, comprises neu-
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clustering example (2d projection)

pl1]
8]
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Figure 3.8: Visual representation of the clusters where the points coordinates are pro-
jected in 2D.

rons connected only with the output and previous layers, or many hidden
layers of neurons connected only with other neurons. Each neuron is char-
acterized by input links and output links. Each output of a neuron is a
function of its inputs. The exact shape of that function depends on the
network and on parameters that can be adjusted. Usually this function is
chosen to be a monotonic increasing function on the sum of the inputs,
where both the inputs and the outputs take values in the [0,1] range. The
inputs can be thought as electrical signals reaching the neuron. The out-
put is the electrical signal emitted by the neuron. Each neuron is defined
by a set of parameters a which determined the relative weight of the input
signals. A common choice for this characteristic function is:

output;; = tanh(z ajrinput; ) (3.100)
k

where i labels the neuron, j labels the output, k labels the input, and a;j
are characteristic parameters describing the neurons.
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The network is trained by providing an input and adjusting the character-
istics a;j of each neuron k to produce the expected output. The network
is trained iteratively until its parameters converge (if they converge), and
then it is ready to make predictions. We say the network has learned from
the training data set.

Input Hidden Output
layer laye layer

Input #1 . _
Input #2 . - s, :
Input #3 . >
Input #4 . -

Figure 3.9: Example of a minimalist neural network.

—

Listing 3.22: in file: nlib.py

1 class NeuralNetwork:

N

Back-Propagation Neural Networks

Placed in the public domain.

Original author: Neil Schemenauer <nas@arctrix.com>
Modified by: Massimo Di Pierro

o u kW

7 Read more: http://www.ibm.com/developerworks/library/l-neural/

s wnn

9

10 @staticmethod

11 def rand(a, b):

12 """ calculate a random number where: a <= rand < b """

13 return (b-a)xrandom.random() + a

15 @staticmethod

16 def sigmoid(x):

17 """ our sigmoid function, tanh is a little nicer than the standard 1/(1+
er-x) """

18 return math.tanh(x)
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@staticmethod

def

def

def

def

dsigmoid(y):
""" # derivative of our sigmoid function, in terms of the output """
return 1.0 - yx*x2

__init__(self, ni, nh, no):

# number of input, hidden, and output nodes
self.ni = ni + 1 # +1 for bias node

self.nh = nh

self.no = no

# activations for nodes
self.al [1.0]+self.ni
self.ah [1.0]xself.nh
self.ao = [1.0]*self.no

# create weights

self.wi = Matrix(self.ni, self.nh, fill=lambda r,c: self.rand(-0.2, 0.2)
)

self.wo = Matrix(self.nh, self.no, fill=lambda r,c: self.rand(-2.0, 2.0)
)

# last change in weights for momentum
self.ci = Matrix(self.ni, self.nh)
self.co = Matrix(self.nh, self.no)

update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('wrong number of inputs')

# input activations
for i in xrange(self.ni-1):
self.ai[i] = inputs[i]

# hidden activations

for j in xrange(self.nh):
s = sum(self.ai[i] * self.wi[i,j] for i in xrange(self.ni))
self.ah[j] = self.sigmoid(s)

# output activations

for k in xrange(self.no):
s = sum(self.ah[j] * self.wo[j,k] for j in xrange(self.nh))
self.ao[k] = self.sigmoid(s)

return self.ao[:]

back_propagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError('wrong number of target values')
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# calculate error terms for output
output_deltas = [0.0] * self.no
for k in xrange(self.no):
error = targets[k]-self.ao[k]
output_deltas[k] = self.dsigmoid(self.ao[k]) * error

# calculate error terms for hidden

hidden_deltas = [0.0] * self.nh

for j in xrange(self.nh):
error = sum(output_deltas[k]*self.wo[j,k] for k in xrange(self.no))
hidden_deltas[j] = self.dsigmoid(self.ah[j]) * error

# update output weights
for j in xrange(self.nh):
for k in xrange(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j,k] = self.wo[j,k] + Nxchange + Mxself.co[j, k]
self.co[j,k] = change
#print Nxchange, Mxself.col[j,k]

# update input weights
for i in xrange(self.ni):
for j in xrange(self.nh):
change = hidden_deltas[jl*self.ai[il
self.wi[i,j] = self.wi[i,j] + Nxchange + Mxself.ci[i,]j]
self.ci[i,j] = change

# calculate error
error = sum(0.5x(targets[k]-self.ao[k])**2 for k in xrange(len(targets))
)

return error

test(self, patterns):
for p in patterns:
print p[0], '->', self.update(p[0])

weights(self):

print 'Input weights:'

for i in xrange(self.ni):
print self.wi[i]

print

print 'Output weights:'

for j in xrange(self.nh):
print self.wo[j]

train(self, patterns, iterations=1000, N=0.5, M=0.1, check=False):
# N: learning rate
# M: momentum factor
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for i in xrange(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.back propagate(targets, N, M)
if check and i % 100 == 0:
print 'error %-14f' % error

In the following example, we teach the network the XOR function, and

we create a network with two inputs, two intermediate neurons, and one
output. We train it and check what it learned:

Listing 3.23: in file: nlib.py
>>> pat = [[[0,0], [0]], [[®,1], [1]], [[1,0], [111, [[1,1], [0]]]
>>> n = NeuralNetwork(2, 2, 1)
>>> n.train(pat)
>>> n.test(pat)

[6, 0] -> [0.00...]
[0, 1] -> [0.98...]
[1, 0] -> [0.98...]
[1, 1] -> [-0.00...]

Now, we use our neural network to learn patterns in stock prices and
predict the next day return. We then check what it has learned, comparing
the sign of the prediction with the sign of the actual return for the same
days used to train the network:

Listing 3.24: in file: test.py
>>> storage = PersistentDictionary('spl00.sqlite')
>>> v = [day['arithmetic return']=300 for day in storage['AAPL/2011'][1:1]
>>> pat = [[v[i:i+5],[v[i+5]]] for i in xrange(len(v)-5)]
>>> n = NeuralNetwork(5, 5, 1)
>>> n.train(pat)
>>> predictions = [n.update(item[0]) for item in pat]
>>> success_rate = sum(1.0 for i,e in enumerate(predictions)

if e[0]xv[i+5]>0)/len(pat)
The learning process depends on the random number generator; there-
fore, sometimes, for this small training data set, the network succeeds in
predicting the sign of the next day arithmetic return of the stock with
more than 50% probability, and sometimes it does not. We leave it to the
reader to study the significance of this result but using a different subset

of the data for the training of the network and for testing its success rate.
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3.9.3 Genetic algorithms

Here we consider a simple example of genetic algorithms [? ].

We have a population of chromosomes in which each chromosome is just
a data structure, in our example, a string of random “ATGC” characters.

We also have a metric to measure the fitness of each chromosome.

At each iteration, only the top-ranking chromosomes in the population
survive. The top 10 mate with each other, and their offspring constitute
the population for the next iteration. When two members of the pop-
ulation mate, the newborn member of the population has a new DNA
sequence, half of which comes from the father and half from the mother,
with two randomly mutated DNA basis.

The algorithm stops when we reach a maximum number of generations
or we find a chromosome of the population with maximum fitness.

In the following example, the fitness is measured by the similarity be-
tween a chromosome and a random target chromosome. The population
evolves to approximate better and better that one random target chromo-
some:

from random import randint, choice

class Chromosome:
alphabet = 'ATGC'
size = 32
mutations = 2
def __init__(self, father=None,mother=None):
if not father or not mother:
self.dna = [choice(self.alphabet) for i in xrange(self.size)]
else:
self.dna = father.dna[:self.size/2]+mother.dna[self.size/2:]
for mutation in xrange(self.mutations):
self.dna[randint(0,self.size-1)] = choice(self.alphabet)
def fitness(self,target):
return sum(1l for i,c in enumerate(self.dna) if c==target.dna[il])

def top(population,target,n=10):
table = [(chromo.fitness(target), chromo) for chromo in population]
table.sort(reverse = True)
return [row[1] for row in tablel[:n]
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def oneof(population):
return population[randint(0, len(population)-1)]

def main():
GENERATIONS = 10000
OFFSPRING = 20
SEEDS = 20
TARGET = Chromosome()

population = [Chromosome() for i in xrange(SEEDS) ]
for i in xrange(GENERATIONS) :
print '\n\nGENERATION:',i
print 0, TARGET.dna
fittest = top(population, TARGET)
for chromosome in fittest: print i,chromosome.dna
if max(chromo.fitness(TARGET) for chromo in fittest)==Chromosome.size:
print 'SOLUTION FOUND'
break
population = [Chromosome(father=oneof(fittest),mother=oneof(fittest)) \
for i in xrange(OFFSPRING) ]

if __name__=='__main__"': main()

Notice that this algorithm can easily be modified to accommodate other
fitness metrics and DNA that consists of a data structure other than a se-
quence of “ATGC” symbols. The only trickery is finding a proper mating
algorithm that preserves some of the fitness features of the parents in the
DNA of their offspring. If this does not happen, each next generation
loses the fitness properties gained by its parents, thus causing the algo-
rithm not to converge. In our case, it works because if the parents are
“close” to the target, then half of the DNA of each parent is also close
to the corresponding half of the target DNA. Therefore the DNA of the
offspring is as fit as the average of their parents. On top of this, the two
random mutations allow the algorithm to further explore the space of all
possible DNA sequences.

3.10 Long and infinite loops
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3.10.1 P, NP, and NPC

We say a problem is in P if it can be solved in polynomial time: Tyorst €
O(n") for some «.

We say a problem is in NP if an input string can be verified to be a solution
in polynomial time: Tyorst € O(n%) for some a.

We say a problem is in co-NP if an input string can be verified not to be a
solution in polynomial time: Tyorst € O(n*) for some a.

We say a problem is in NPH (NP Hard) if it is harder than any other
problem in NP.

We say a problem is in NPC (NP Complete) if it is in NP and in NPH.
Consequences:

if3x | xe NPCandx € P=Vye NP,ye P (3.101)

There are a number of open problems about the relations among these
sets. Is the set co-NP equivalent to NP? Or perhaps is the intersection
between co-NP and NP equal to P? Are NP and NPC the same set? These
questions are very important in computer science because if, for example,
NP turns out to be the same set as NPC, it means that it must be possible
to find algorithms that solve in polynomial time problems that currently
do not have a polynomial time solution. Conversely, if one could prove
that NP is not equivalent to NPC, we would know that a polynomial time
solution to NPC problems does not exist [? ].

3.10.2 Cantor’s argument

Cantor proved that the real numbers in any interval (e.g., in [0,1)) are
more than the integer numbers, therefore real numbers are uncountable [?
]. The proof proceeds as follows:

1. Consider the real numbers in the interval [0, 1) not including 1.

2. Assume that these real numbers are countable. Therefore it is possible
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to associate each of them to an integer

0.xxXXXXXXXXX...
0.XxXXXXXXXXXX...
0.xxXXXXXXXXX...

(3.102)
0.XxXXXXXXXXXX...

ITT11]

0.XxXXXXXXXXXX...

(here x represent a decimal digit of a real numbers)

3. Now construct a number &« = 0.yyyyyyyy.... where the first decimal
digit differs from the first decimal digit of the first real number of table
??, the second decimal digit differs from the second decimal digit of the
second real number of table ??, and so on and so on for all the infinite
decimal digits:

0.XxXXXXXXXXX...
0.XXXXXXXXXXX...
0. XXX XXXXXXXX...

A (3-103)
XXXXXXXXXXX...

IT11]

0.XxXXXXXXXXXX...

4. The new number « is a real number, and by construction, it is not
in the table. In fact, it differs with each item by at least one decimal
digit. Therefore the existence of a disproves the assumption that all
real numbers in the interval [0, 1) are listed in the table.

There is a very practical consequence of this argument. In fact, in chapter
2, we have seen the distinction between type float and class Decimal. We
have seen about pitfalls of float and how Decimal can represent floating
point numbers with arbitrary precision (assuming we have the memory
to do so). Cantor’s argument tells us there are numbers that cannot even
be represented as Decimal because they would require an infinite amount
of storage; 7t and e are examples of these numbers.



O N

THEORY OF ALGORITHMS 137

3.10.3 Godel’s theorem

Godel used a similar diagonal argument to prove that there are as many
problems (or theorems) as real numbers and as many algorithms (or
proofs) as natural numbers [? ]. Because there is more of the former
than the latter, it follows that there are problems for which there is no
corresponding solving algorithm. Another interpretation of Godel’s the-
orem is that, in any formal language, for example, mathematics, there are
theorems that cannot be proved.

Another consequence of Godel’s theorem is the following: it is impossible
to write a computer program to test if a given algorithm stops or enters
into an infinite loop.

Consider the following code:

def next(i):
while len(set(str(ixi))) > 2:
i=i+2
print i

next(81621)

This code check searches for a number equal or greater than 81621 which
square is comprised of only two digits. Nobody knows whether such
number exists, therefore nobody knows if this code stops.

Although one day this problem may be solved, there are many other prob-
lems that are still unsolved; actually, there are an infinite number of them.






4

Numerical Algorithms

4.1 Well-posed and stable problems

Numerical algorithms deal mostly with well-posed and stable problems.
A problem is well posed if
* The solution exists and is unique

* The solution has a continuous dependence on input data (a small
change in the input causes a small change in the output)

Most physical problems are well posed, except at critical points, where any
infinitesimal variation in one of the input parameters of the system can
cause a large change in the output and therefore in the behavior of the
system. This is called chaos.

Consider the case of dropping a ball on a triangular-shaped mountain.
Let the input of the problem be the horizontal position where the drop
occurs and the output the horizontal position of the ball after a fixed
amount of time. Almost anywhere the ball is dropped, it will roll down
the mountain following deterministic and classical laws of physics, thus
the position is calculable and a continuous function of the input position.
This is true everywhere, except when the ball is dropped on top of the
peak of the mountain. In this case, a minor infinitesimal variation to



140 ANNOTATED ALGORITHMS IN PYTHON

the right or to the left can make the ball roll to the right or to the left,
respectively. Therefore this is not a well posed problem.

A problem is said to be stable if the solution is not just continuous but also
weakly sensitive to input data. This means that the change of the output
(in percent) is smaller than the change in the input (in percent).

Numerical algorithms work best with stable problems.

We can quantify this as follows. Let x be an input and y be the output of
a function:

y=f(x) (4.1)

We define the condition number of f in x as

cond(f,x) = {1274 = xf'(x)/ () 42)

(the latter equality only holds if f is differentiable in x).

A problem with a low condition number is said to be well-conditioned,
while a problem with a high condition number is said to be ill-
conditioned. XXX

We say that a problem characterized by a function f is well conditioned
in a domain D if the condition number is less than 1 for every input in
the domain. We also say that a problem is stable if it is well conditioned.

In this book, we are mostly concerned with stable (well-conditioned)
problems. If a problem is well-conditioned in for all input in a domain, it
is also stable.

4.2 Approximations and error analysis

Consider a physical quantity, for example, the length of a nail. Given
one nail, we can measure its length by choosing a measuring instrument.
Whatever instrument we choose, we will be able to measure the length of
the nail within the resolution of the instrument. For example, with a tape
measure with a resolution of 1 mm, we will only be able to determine the
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length of the nail within 1 mm of resolution. Repeated measurements per-
formed at different times, by different people, using different instruments
may bring different results. We can choose a more precise instrument, but
it would not change the fact that different measures will bring different
values compatible with the resolution of the instrument. Eventually one
will have to face the fact that there may not be such a thing as the length
of a nail. For example, the length varies with the temperature and the
details of how the measurement is performed. In fact, a nail (as every-
thing else) is made out of atoms, which are made of protons, neutrons,
and electrons, which determine an electromagnetic cloud that fluctuates
in space and time and depends on the surrounding objects and interacts
with the instrument of measure. The length of the nail is the result of a
measure.

For each measure there is a result, but the results of multiple measure-
ments are not identical. The results of many measurements performed
with the same resolution can be summarized in a distribution of results.
This distribution will have a mean ¥ and a standard deviation dx, which
we call uncertainty. From now on, unless otherwise specified, we assume
that the distribution of results is Gaussian so that X can be interpreted as
the mean and éx as the standard deviation.

Now let us consider a system that, given an input x, produces the output
y; x and y are physical quantities that we can measure, although only
with a finite resolution. We can model the system with a function f such
that y = f(x) and, in general, f is not known.

We have to make various approximations:

* We can replace the “true” value for the input with our best estimate, ¥,
and its associated uncertainty, Jx.

* We can replace the “true” value for the output with our best estimate,
7, and its associated uncertainty, éy.

e Even if we know there is a “true” function f describing the system,
our implementation for the function is always an approximation, f. In
fact, we may not have a single approximation but a series of approxi-
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mations of increasing precision, f;;, which become more and more ac-
curate (usually) as n increases. If we are lucky, up to precision errors,
as n increases, our approximations will become closer and closer to f,
but this will take an infinite amount of time. We have to stop at some
finite n.

With the preceding definition, we can define the following types of errors:

Data error: the difference between x and x.

Computational error: the difference between f(x) and y. Computa-
tional error includes two parts systematic error and statistical error.

Statistical error: due to the fact that, often, the computation of f(x) =
limy, 00 fu(x) is too computationally expensive and we must approxi-
mate f(x) with f,(x). This error can be estimated and controlled.

Systematic error: due to the fact that f(x) = limy—e fu(x) # f(x).
This is for two reasons: modeling errors (we do not know f(x)) and
rounding errors (we do not implement f(x) with arbitrary precision
arithmetics).

Total error: defined as the computational error + the propagated data
error and in a formula:

oy = [f(%) = fu(®)| + | f (%) ]0x (4-3)

The first term is the computational error (we use f, instead of the true
f), and the second term is the propagated data error (dx, the uncer-
tainty in x, propagates through f,).

4.2.1 Error propagation

When a variable x has a finite Gaussian uncertainty Jx, how does the

uncertainty propagate through a function f? Assuming the uncertainty is

small, we can always expand using a Taylor series:

y+0y = fx+0x) = f(x) + f(x)ox + O(62%) (4-4)
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And because we interpret y as the width of the distribution y, it should
be positive:
dy = |f'(x)]ox (45)

We have used this formula before for the propagated data error. For
functions of two variables z = f(x,y) and assuming the uncertainties in x
and y are independent,

which for simple arithmetic operations reduces to

=x+4y 6z=/6x2+0y?
=x—y J6z=+/6x2+ 32
=xxy 0z =l|xxyl/(0x/x)* + (0y/y)?
=x/y 0z =|x/y|\/(6x/x)2 + (6y/y)?

Notice that when z = x — y approaches zero, the uncertainty in z is larger

2 2
52 + ‘Bf(a’;” 2 46)

N N N N

than the uncertainty in x and y and can overwhelm the result. Also notice
that if z = x/y and vy is small compared to x, then the uncertainty in z can
be large. Bottom line: try to avoid differences between numbers that are
in proximity of each other and try to avoid dividing by small numbers.

4.2.2  buckingham

Buckingham is a Python library that implements error propagation and
unit conversion. It defines a single class called Number, and a number ob-
ject has value, an uncertainty, and a dimensionality (e.g., length, volume,
mass).

Here is an example:

>>> from buckingham import *

> >>> globals().update(allunits())

= NRC T NV

>>> L = (4 + pm(0.5)) * meter
>>> v = 5 x meter/second

>> t = L/v

>>> print t)
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(8.00 +/- 1.00)/10

>>> print t.units()

second

>>> print t.convert('hour")

(2.222 +/- 0.278)/10™4

Notice how adding an uncertainty to a numeric value with +

pm(...) or adding units to a numeric value (integer or floating point)
transforms the float number into a Number object. A Number object be-
haves like a floating point but propagates its uncertainty and its units.
Internally, all units are converted to the International System, unless an

explicit conversion is specified.

4.3 Standard strategies

Here are some strategies that are normally employed in numerical algo-
rithms:

¢ Approximate a continuous system with a discrete system

* Replace integrals with sums

Replace derivatives with finite differences

Replace nonlinear with linear + corrections
¢ Transform a problem into a different one
e Approach the true result by iterations

Here are some examples of each of the strategies.

4.3.1 Approximate continuous with discrete

Consider a ball in a one-dimensional box of size L, and let x be the posi-
tion of the ball in the box. Instead of treating x as a continuous variable,
we can assume a finite resolution of # = L/n (where & is the minimum
distance we can distinguish without instruments and 7 is the maximum
number of distinct discrete points we can discriminate), and set x = hi,
where i is an integer in between 0 and n; x = 0 wheni = 0 and x = L
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when i = n.

4.3.2 Replace derivatives with finite differences

Computing df(x)/dx analytically is only possible when the function f
is expressed in simple analytical terms. Computing it analytically is not
possible when f(x) is itself implemented as a numerical algorithm. Here
is an example:

def f(x):
(s,t) = (1.0,1.0)
for i in xrange(1,10): (s, t) = (s+t, t*x/i)
return s

What is the derivative of f(x)?

The most common ways to define a derivative are the right derivative

dff(x) _ . fla+h) - f(x)
5 pm 4
the left derivative
df () _ . f&)—flx=h)
B TR o — 48)
and the average of the two
df(x) _1/dff(x)  df () _, flx+h) —flx—h)
dx 2( dx | dx ) 7}1151(1) 2h (4-9)

If the function is differentiable in x, then, by definition of “differentiable,”
the left and right definitions are equal, and the three prior definitions are
equivalent. We can pick one or the other, and the difference will be a
systematic error.

If the limit exists, then it means that

df(x) _ f(x+h)— f(x—h)
dx 2h +0(h)

(4.10)

where O(h) indicates a correction that, at most, is proportional to h.
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The three definitions are equivalent for functions that are differentiable in
x, and the latter is preferable because it is more symmetric.

Notice that even more definitions are possible as long as they agree in the
limit i — 0. Definitions that converge faster as /1 goes to zero are referred
to as “improvement.”

We can easily implement the concept of a numerical derivative in code
by creating a functional D that takes a function f and returns the function

%(xx) (a functional is a function that returns another function):

Listing 4.1: in file: nlib.py

def D(f,h=1e-6): # first derivative of f
return lambda x,f=f,h=h: (f(x+h)-f(x-h))/2/h

We can do the same with the second derivative:

(4.11)

2 _ _ _
dé"x(zx) f(x+h) 2];1(29() f(x h)+O(h)

Listing 4.2: in file: nlib.py

def DD(f,h=1e-6): # second derivative of f
return lambda x,f=f,h=h: (f(x+h)-2.0%f(x)+f(x-h))/(hxh)

Here is an example:

Listing 4.3: in file: nlib.py
>>> def f(x): return xxx-5.0%x
>>> print f(0)
0.0
>>> fl = D(f) # first derivative
>>> print f1(0)
-5.0
>>> f2 = DD(f) # second derivative
>>> print f2(0)
2.00000. ..
>>> f2 = D(fl) # second derivative
>>> print f2(0)
1.99999. ..

Notice how composing the first derivative twice or computing the second
derivative directly yields a similar result.

We could easily derive formulas for higher-order derivatives and imple-
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4.3.3 Replace nonlinear with linear

Suppose we are interested in the values of f(x) = sin(x) for values of x

between 0 and 0.1:

>>> from math import sin
>>> points = [0.01xi for i in xrange(0,11)]

>>> for x in points:

. print x, sin(x), "%.2f" % (abs(x-sin(x))/sin(x)*100)
0.01 0.009999833... 0.00
0.02 0.019998666... 0.01
0.03 0.029995500... 0.02
0.04 0.039989334... 0.03
0.05 0.049979169... 0.04
0.06 0.059964006... 0.06
0.07 0.069942847... 0.08
0.08 0.079914693... 0.11
0.09 0.089878549... 0.14
0.1 0.0998334166... 0.17

N

Here the first column is the value of x, the second column is the corre-
sponding sin(x), and the third column is the relative difference (in per-
cent) between x and sin(x). The difference is always less than 20%; there-
fore, if we are happy with this precision, then we can replace sin(x) with
X.

This works because any function f(x) can be expanded using a Taylor
series. The first order of the Taylor expansion is linear. For values of
x sufficiently close to the expansion point, the function can therefore be
approximated with its Taylor expansion.

Expanding on the previous example, consider the following code:

>>> from math import sin
>>> points = [0.01xi for i in xrange(0,11)]
>>> for x in points:
S = X - XkX*X/6
print x, math.sin(x), s, "'%.6f'' % (abs(s-sin(x))/(sin(x))*100)

o u kW

® N

0.01 0.009999833... 0.009999... 0.000000
0.02 0.019998666... 0.019998... 0.000000
0.03 0.029995500... 0.029995... 0.000001
0.04 0.039989334... 0.039989... 0.000002
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0.05 0.049979169... 0.049979... 0.000005
0.06 0.059964006... 0.059964... 0.000011
0.07 0.069942847... 0.069942... 0.000020
0.08 0.079914693... 0.079914... 0.000034
0.09 0.089878549... 0.089878... 0.000055
0.1 0.0998334166... 0.099833... 0.000083

Notice that the third column s = x — x3/6 is very close to sin(x). In
fact, the difference is less than one part in 10,000 (fourth column). There-
fore, for x € [—1,41], it is possible to replace the sin(x) function with
the x — x3/6 polynomial. Here we just went one step further in the Tay-
lor expansion, replacing the first order with the third order. The error
committed in this approximation is very small.

4.3.4 Transform a problem into a different one

Continuing with the previous example, the polynomial approximation for
the sin function works when x is smaller than 1 but fails when x is greater
than or equal to 1. In this case, we can use the following relations to

reduce the computation of sin(x) for large x to sin(x) for 0 < x < 1. In
particular, we can use

sin(x) = — sin(—x)whenx < 0 (4.12)

to reduce the domain to x € [0, c0]. We can then use

sin(x) = sin(x — 2km) ke N (4-13)

to reduce the domain to x € [0,27)

sin(x) = —sin(27 — x) (4-14)

to reduce the domain to x € [0, 77)

sin(x) = sin(7r — x) (4.15)
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to reduce the domain to x € [0, 71/2), and

sin(x) = \/1 —sin(71/2 — x)? (4.16)

to reduce the domain to x € [0, t/4), where the latter is a subset of [0, 1).

4.3.5 Approximate the true result via iteration

The approximations sin(x) ~ x and sin(x) ~ x — x3/6 came from lin-
earizing the function sin(x) and adding a correction to the previous ap-
proximation, respectively. In general, we can iterate the process of finding
corrections and approximating the true result.

Here is an example of a general iterative algorithm:

result=guess
loop:
compute correction
result=result+correction
if result sufficiently close to true result:
return result

For the sin function:

def mysin(x):
(s,t) = (0.0,x)
for i in xrange(3,10,2): (s, t) = (s+t, -txxxx/i/(i-1))
return s

Where do these formulas come from? How do we decide how many
iterations we need? We address these problems in the next section.

4.3.6 Taylor series

A function f(x) : R — R is said to be a real analytical in % if it is continuous
in x = ¥ and all its derivatives exist and are continuous in x = *.

When this is the case, the function can be locally approximated with a
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local power series:

f@) = F@ +fO D -0+ o+ I - R ()

The remainder Ry can be proven to be (Taylor’s theorem):

(k+1)
Ry = f(k T 1()(:') (x — x)k+H1 (4.18)

k+1)

where ¢ is a point in between x and %. Therefore, if f! exists and is

limited within a neighborhood D = {x for |x — %| < €}, then

IRi| < |mazeep fOD| |(x— 2/ (4.19)

If we stop the Taylor expansion at a finite value of k, the preceding formula
gives us the statistical error part of the computational error.

Some Taylor series are very easy to compute:

Exponential for ¥ = 0:

flx) = e (4.20)
f(l) (x) = ¢ (4.21)
. (4.22)
fBOx) = e (4-23)
& = 1+x+ %xz 4+t %xk + .. (4.24)

Sin for ¥ = 0:



flx) = sin(x)
fV(x) cos(x)
f(x) —sin(x)
fOx) = —cos(x)
sin(x) = 3

1
x——x>+ ..+
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(4-25)
(4.26)
(4-27)
(4-28)
(4.29)
(="

mx(2k+l) + ...

(4-30)

We can show the effects of the various terms:

Listing 4.4: in file: nlib.py

>>> = [0.03x1 for i in xrange(200)]

>>>
>>>
>>>

>>>

>>>
<..

A
n-\/n.\/n.\/n.\lnnx

>>> c.save('images/sin.png"')

= Canvas(title='sin(x) approximations')
.plot([(x,math.sin(x)) for x in X],legend='sin(x)")

.plot([(x,x) for x in X[:100]],legend='Taylor 1Ist')
.plot([(x,x-x**x3/6) for x in X[:100]1,legend='Taylor 5th')

.plot ([ (x,x-x**x3/6+x*+5/120) for x in X[:100]],legend='Taylor 5th')

Notice that we can very well expand in Taylor around any other point, for

example, ¥ = 71/2, and we get

and a plot would show:

(4.31)

Listing 4.5: in file: nlib.py

>>> a = math.pi/2

>>> [0.03%i for i in xrange(200)]

>>>
>>>

>>>

>>>

= Canvas(title='sin(x) approximations')
.plot([(x,math.sin(x)) for x in X],legend='sin(x)")

.plot([(x,1-(x-a)*x2/2) for x in X[:150]],legend='Taylor 2nd")

.plot([(x,1-(x-a)*x2/2+(x-a)*x4/24) for x in X[:150]1], legend='Taylor 4th")
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sin(x) approximations

*

Figure 4.1: The figure shows the sin function and its approximation using the Taylor
expansion around x = 0 at different orders.

9 <...>

10 >>> c.plot([(x,1-(x-a)**2/2+(x-a)**4/24-(x-a)**x6/720) for x in X[:150]],legend="

Taylor 6th')
11 <.

> >>> c.save('images/sin2.png")

Similarly we can expand the cos function around ¥ = 0. Not accidentally,

we would get the same coefficients as the Taylor expansion of the sin

function around % = 71/2. In fact, sin(x) = cos(x — 71/2):

(4.32)
(4-33)
(4-34)
(4-35)
(4-36)

(4-37)
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sin(x) approximations

*

Figure 4.2: The figure shows the sin function and its approximation using the Taylor
expansion around x = 71/2 at different orders.

With a simple replacement, it is easy to prove that
e'¥ = cos(x) + isin(x) (4-38)

which will be useful when we talk about Fourier and Laplace transforms.

Now let’s consider the kth term in Taylor expansion of e*. It can be rear-
ranged as a function of the previous (k — 1) — th term:

. x 1 _ X
Ti(x) = " = %mxk t= 7 -1 (x) (4-39)

For x < 0, the terms in the sign have alternating sign and are decreasing
in magnitude; therefore, for x < 0, Ry < Tjy1(1). This allows for an easy
implementation of the Taylor expansion and its stopping condition:

Listing 4.6: in file: nlib.py
def myexp(x,precision=1e-6,max_steps=40):
if x==0:
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return 1.0
elif x>0:
return 1.0/myexp(-x,precision,max_steps)
else:
t=s5s=1.0# first term
for k in xrange(1l,max_steps):
t = txx/k # next term
s =s + t # add next term
if abs(t)<precision: return s
raise ArithmeticError('no convergence')

This code presents all the features of many of the algorithms we see later
in the chapter:

e It deals with the special case ¢’ = 1.

¢ It reduces difficult problems to easier problems (exponential of a posi-
tive number to the exponential of a negative number via e* = 1/e77).

¢ [t approximates the “true” solution by iterations.
¢ The max number of iterations is limited.
® There is a stopping condition.
e It detects failure to converge.
Here is a test of its convergence:

Listing 4.7: in file: nlib.py
>>> for i in xrange(10):

x= 0.1x*i
assert abs(myexp(x) - math.exp(x)) < le-4

We can do the same for the sin function:
2
T = - T .
k(x) (2k)(2k‘$’1) k*l(x) (4—40)
In this case, the residue is always limited by

2k+1|

Ryl < x (4.41)

because the derivatives of sin are always sin and cos and their image is
always between [—1,1].

Also notice that the stopping condition is only true when 0 < x < 1.
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Therefore, for other values of x, we must use trigonometric relations to
reduce the problem to a domain where the Taylor series converges.

Hence we write:

Listing 4.8: in file: nlib.py

def mysin(x,precision=1e-6,max_steps=40):
pi = math.pi
if x==0:
return 0
elif x<0:
return -mysin(-x)
elif x>2.0xpi:
return mysin(x % (2.0xpi))
elif x>pi:
return -mysin(2.0xpi - Xx)
elif x>pi/2:
return mysin(pi-x)
elif x>pi/4:
return sqrt(1.0-mysin(pi/2-x)x*x2)

else:
t=s5=x # first term
for k in xrange(1l,max_steps):
t = tx(-1.0)*x*xx/(2xk)/ (2xk+1) # next term
s=s+t # add next term
r = x*x*(2xk+1) # estimate residue

if r<precision: return s # stopping condition
raise ArithmeticError('no convergence')

Here we test it:

Listing 4.9: in file: nlib.py
>>> for i in xrange(10):

x= 0.1*i
assert abs(mysin(x) - math.sin(x)) < le-4

Finally, we can do the same for the cos function:

Listing 4.10: in file: nlib.py

def mycos(x,precision=1e-6,max_steps=40):
pi = math.pi
if x==0:
return 1.0
elif x<0:
return mycos(-x)
elif x>2.0xpi:
return mycos(x % (2.0xpi))
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elif x>pi:
return mycos(2.0xpi - x)
elif x>pi/2:
return -mycos(pi-x)
elif x>pi/4:
return sqrt(1.0-mycos(pi/2-x)*%2)

else:
t=s=1 # first term
for k in xrange(1l,max_steps):
t = tx(-1.0)*x*xx/(2xk)/(2*xk-1) # next term
s =5+t # add next term
r = xxx*(2xk) # estimate residue

if r<precision: return s # stopping condition
raise ArithmeticError('no convergence')

Here is a test of convergence:

Listing 4.11: in file: nlib.py

>>> for i in xrange(10):
X = 0.1x1
assert abs(mycos(x) - math.cos(x)) < le-4

4.3.7 Stopping Conditions

To implement a stopping condition, we have two options. We can look at
the absolute error, defined as

[absolute error] = [approximate value] — [true value] (4-42)

or we can look at the relative error

[relative error] = [absolute error]/[true value] (4-43)

or better, we can consider both. Here is an example of pseudo-code:

result = guess
loop:
compute correction
result = result+correction
compute remainder
if |remainder| < target_absolute_precision return result
if |remainder| < target_relative_precisionx|result| return result
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In the code, we use the computed result as an estimate of the [true value]
and, occasionally, the computed correction is an estimate of the [absolute
error]. The target absolute precision is an input value that we use as an
upper limit for the absolute error. The target relative precision is an input
value we use as an upper limit for the relative error. When absolute error
falls below the target absolute precision or the relative error falls below
the target relative precision, we stop looping and assume the result is
sufficiently precise:

def generic_looping_function(guess, ap, rp, ns):
result = guess
for k in xrange(ns):
correction = ...
result = result+correction
remainder = ...
if norm(remainder) < max(ap,norm(result)xrp): return result
raise ArithmeticError('no convergence')

In the preceding code,

* ap is the target absolute precision.

® rp is the target relative precision.

* ns is the maximum number of steps.

From now on, we will adopt this naming convention.

Consider, for example, a financial algorithm that outputs a dollar amount.
If it converges to a number very close to 1 or 0, the concept of relative
precision loses significance for a result equal to zero, and the algorithm
never detects convergence. In this case, setting an absolute precision of
$1 or 1c is the right thing to do. Conversely, if the algorithm converges to
a very large dollar amount, setting a precision of $1 or 1c may be a too
strong requirement, and the algorithm will take too long to converge. In
this case, setting a relative precision of 1% or 0.1% is the correct thing to
do.

Because in general we do not know in advance the output of the algo-
rithm, we should use both stopping conditions. We should also detect
which of the two conditions causes the algorithm to stop looping and
return, so that we can estimate the uncertainty in the result.
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4.4 Linear algebra

In this section, we consider the following algorithms:
¢ Arithmetic operation among matrices
¢ Gauss—Jordan elimination for computing the inverse of a matrix A

e Cholesky decomposition for factorizing a symmetric positive definite
matrix A into LLf, where L is a lower triangular matrix

¢ The Jacobi algorithms for finding eigenvalues
¢ Fitting algorithms based on linear least squares

We will provide examples of applications.

4.4.1 Linear systems

In mathematics, a system described by a function f is linear if it is addi-
tive:

flx+y)=f(x)+ f(y) (4-44)

and if it is homogeneous,
flax) = af(x) (4-45)

In simpler words, we can say that the output is proportional to the input.

As discussed in the introduction to this chapter, one of the simplest tech-
niques for approximating any unknown system consists of approximating
it with a linear system (and this approximation will be correct for some
system and not for others).

When we try to model a new system, approximating the system with a
linear system is often the first step in describing it in a quantitative way,
even if it may turn out that this is not a good approximation.

This is the same as approximating the function f describing the system
with the first-order Taylor expansions f(x + h) — f(x) = f'(x)h.



NUMERICAL ALGORITHMS 159

For a multidimensional system with input x (now a vector) and output y
(also a vector, not necessarily of the same size as x), we can still approxi-
mate y = f(x) with f(y +h) —y ~ Ah, yet we need to clarify what this
latter equation means.

Given
X0 Yo
X
X = ! y= n (4.46)
Xn—1 Ym—1
apo ao1 ao,n—1
A= a10 an A,n-1 (4.47)
AGm-1,0 9m-11 - Am-1n-1
the following equation means
y = f(x) = Ax (4.48)
which means
vo = fo((x) =apoxo+ao1x1 + ... +4a0n-1Xn-1 (4-49)
vi = hAx)  ~apxo+anxs+ .. +ay 1%, (4.50)
v2 = fo((x)  ~axxo+axnx;+ ..+ a2, 1X,1 (4.51)
= (4-52)

Ym—1 = fu—1((x) > ap_10%0 + am-1,1%1 + - By—1n—1X4—1 (4.53)

which says that every output variable y; is approximated with a function
proportional to each of the input variables x;.

A system is linear if the ~ relations turn out to be exact and can be re-
placed by = symbols.

As a corollary of the basic properties of a linear system discussed earlier,
linear systems have one nice additional property. If we combine two linear
systems y = Ax and z = By, the combined system is also a linear system
z = (BA)x.
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Elementary algebra is defined as a set of numbers (e.g., real numbers) en-
dowed with the ordinary four elementary operations (+,—,%,/).

Abstract algebra is a generalization of the concept of elementary algebra
to other sets of objects (not necessarily numbers) by definition operations
among them such as addition and multiplication.

Linear algebra is the extension of elementary algebra to matrices (and vec-
tors, which can be seen as special types of matrices) by defining the four
elementary operations among them.

We will implement them in code using Python. In Python, we can imple-
ment a matrix as a list of lists, as follows:

>>> A = [[1,2,3],[4,5,6],[7,8,9]1]

But such an object (a list of lists) does not have the mathematical proper-
ties we want, so we have to define them.

First, we define a class representing a matrix:

Listing 4.12: in file: nlib.py

class Matrix(object):
def __init _(self,rows,cols=1,fill=0.0):
Constructor a zero matrix
Examples:
Matrix([[1,2],[3,4]1])
Matrix([1,2,3,4])
Matrix(10,20)
Matrix(10,20,fill=0.0)
= Matrix (10,20, fill=lambda r,c: 1.0 if r==c else 0.0)

> >> > >
1]

if isinstance(rows,list):
if isinstance(rows[0],list):
self.rows = [[e for e in row] for row in rows]
else:
self.rows = [[e] for e in rows]
elif isinstance(rows,int) and isinstance(cols,int):
xrows, xcols = xrange(rows), xrange(cols)
if callable(fill):
self.rows = [[fill(r,c) for c in xcols] for r in xrows]
else:
self.rows = [[fill for c in xcols] for r in xrows]
else:
raise RuntimeError("Unable to build matrix from %s" % repr(rows))
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self.nrows len(self.rows)
self.ncols = len(self.rows[0])

Notice that the constructor takes the number of rows and columns (cols)
of the matrix but also a fill value, which can be used to initialize the
matrix elements and defaults to zero. It can be callable in case we need to
initialize the matrix with row,col dependent values.

The actual matrix elements are stored as a list or array into the data mem-
ber variable. If optimize=True, the data are stored in an array of double
precision floating point numbers (“d”). This optimization will prevent
you from building matrices of complex numbers or matrices of arbitrary
precision decimal numbers.

Now we define a getter method, a setter method, and a string representa-
tion for the matrix elements:

Listing 4.13: in file: nlib.py

def __getitem__(A,coords):
" x = A[0,1]"
i,j = coords
return A.rows[i][j]

def __setitem__(A,coords,value):
" A[0,1] = 3.0 "
i,j = coords
A.rows[i][j] = value

def tolist(A):
" assert(Matrix([[1,2],[3,4]]).tolist() == [[1,2],[3,4]]) "
return A.rows

def __str__(A):
return str(A.rows)

def flatten(A):
" assert(Matrix([[1,2],[3,4]]).flatten() == [1,2,3,4]) "
return [A[r,c] for r in xrange(A.nrows) for c in xrange(A.ncols)]

def reshape(A,n,m):
" assert(Matrix([[1,2],[3,4]]).reshape(1,4).tolist() == [[1,2,3,4]]) "
if n*m != A.nrows*xA.ncols:
raise RuntimeError("Impossible reshape")
flat = A.flatten()
return Matrix(n,m,fill=lambda r,c,m=m, flat=flat: flat[rxm+c])
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def swap_rows(A,i,j):
" assert(Matrix([[1,2],[3,4]]).swap_rows(1,0).tolist() == [[3,4],[1,2]])

A.rows[i], A.rows[j] = A.rows[j], A.rows[i]

We also define some convenience functions for constructing the identity
matrix (given its size) and a diagonal matrix (given the diagonal ele-
ments). We make these methods static because they do not act on an
existing matrix.

Listing 4.14: in file: nlib.py
@staticmethod
def identity(rows=1,e=1.0):
return Matrix(rows, rows,lambda r,c,e=e: e if r==c else 0.0)

@staticmethod
def diagonal(d):
return Matrix(len(d),len(d),lambda r,c,d=d:d[r] if r==c else 0.0)

Now we are ready to define arithmetic operations among matrices. We
start with addition and subtraction:

Listing 4.15: in file: nlib.py
def __add__(A,B):
Adds A and B element by element, A and B must have the same size
Example
>>> A = Matrix([[4,3.0], [2,1.0]])
>>> B = Matrix([[1,2.0], [3,4.0]])
>>(C=A+B
>>> print C
[[5, 5.0], [5, 5.0]]

n, m = A.nrows, A.ncols
if not isinstance(B,Matrix):
if n==m:
B = Matrix.identity(n,B)
elif n==1 or m==1:
B = Matrix([[B for c in xrange(m)] for r in xrange(n)])
if B.nrows!=n or B.ncols!=m:
raise ArithmeticError('incompatible dimensions')
C = Matrix(n,m)
for r in xrange(n):
for c in xrange(m):
Clr,c] = A[r,cl+B[r,c]
return C
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def __sub__(A,B):

Adds A and B element by element, A and B must have the same size

Examp
>>> A
>>> B
>>> C

le

Matrix([[4.0,3.0], [2.0,1.0]])
Matrix([[1.0,2.0], [3.0,4.0]])
=A-B

>>> print C

[[3.0

, 1.0], [-1.0, -3.0]]

n, m = A.nrows, A.ncols
if not isinstance(B,Matrix):
if n==m:

B = Matrix.identity(n,B)

elif n==1 or m==1:

B = Matrix(n,m, fill=B)

if B.nrows!=n or B.ncols!=m:
raise ArithmeticError('Incompatible dimensions')
C = Matrix(n,m)

for r

in xrange(n):

for c in xrange(m):

Clr,cl = A[r,c]-B[r,cl]

return C
def __radd__(A,B): #B+A
return A+B
def __rsub__(A,B): #B-A
return (-A)+B
def __neg__(A):
return Matrix(A.nrows,A.ncols,fill=lambda r,c:-A[r,c])

With the preceding definitions, we can add matrices to matrices, subtract

matrices from matrices, but also add and subtract scalars to and from

matrices and vectors (scalars are interpreted as diagonal matrices when

added to square matrices and as constant vectors when added to vectors).

Here are some examples:

>>>

[[2.

>>>

[[3.

>>>

[re.

>>>

Listing 4.16: in file: nlib.py

A = Matrix([[1.0,2.0],[3.0,4.0]])

print A +
0, 4.0],
print A +
0, 2.0],
print A -
0, 2.0],
print -A

A # calls A.__add__(A)
[6.0, 8.0]1]
2 # calls A.__add__(2)
[3.0, 6.0]1]
1 # calls A.__add__(1)
[3.0, 3.0]1]

# calls A.__neg__()
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[[-1.0, -2.0], [-3.0, -4.0]]

>>> print 5 - A # calls A.__rsub__(5)
[[4.0, -2.0], [-3.0, 1.0]]

>>> b = Matrix([[1.0],[2.0],[3.0]])

>>> print b + 2 # calls b.__add__(2)
[[3.0], [4.0], [5.0]]

The class Matrix works with complex numbers as well:

Listing 4.17: in file: nlib.py

>>> A = Matrix([[1,21,[3,411)
>>> print A + 1j
[[(1+13), (2+03)1, [(3+0j), (4+1j)]]

Now we implement multiplication. We are interested in three types of
multiplication: multiplication of a scalar by a matrix (__rmul__), multipli-
cation of a matrix by a matrix (__mul__), and scalar product between two
vectors (also handled by __mul__):

Listing 4.18: in file: nlib.py

def __rmul__(A,x):
"multiplies a number of matrix A by a scalar number x"
import copy
M = copy.deepcopy(A)
for r in xrange(M.nrows):
for c in xrange(M.ncols):
M[r,c] *= x
return M

def __mul__(A,B):
"multiplies a number of matrix A by another matrix B"
if isinstance(B, (list,tuple)):
return (AxMatrix(len(B),1,fill=lambda r,c:B[r])).nrows
elif not isinstance(B,Matrix):
return BxA
elif A.ncols == 1 and B.ncols==1 and A.nrows == B.nrows:
# try a scalar product ;-)
return sum(A[r,0]*B[r,0] for r in xrange(A.nrows))
elif A.ncols!=B.nrows:
raise ArithmeticError('Incompatible dimension')
M = Matrix(A.nrows,B.ncols)
for r in xrange(A.nrows):
for c in xrange(B.ncols):
for k in xrange(A.ncols):
M[r,c] += A[r,k]*B[k,c]
return M
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This allows us the following operations:

Listing 4.19: in file: nlib.py
>>> A = Matrix([[1.0,2.0],[3.0,4.0]])

>>> print(2xA) # scalar * matrix
[[2.0, 4.0], [6.0, 8.0]]
>>> print(AxA) # matrix * matrix

[[7.0, 10.0], [15.0, 22.0]]

>>> b = Matrix([[1]1,[2]1,[311])

>>> print(bxb) # scalar product
14

4.4.2 Examples of linear transformations

In this section, we try to provide an intuitive understanding of two-
dimensional linear transformations.

In the following code, we consider an image (a set of points) containing
a circle and two orthogonal axes. We then apply the following linear
transformations to it:

e A1, which scales the X-axis

e A,, which scales the Y-axis

e S, which scales both axes

* By, which scales the X-axis and then rotates (R) the image o.5 rad

® B, which is neither a scaling nor a rotation; as it can be seen from the
image, it does not preserve angles

Listing 4.20: in file: nlib.py
>>> points = [(math.cos(0.0628xt),math.sin(0.0628xt)) for t in xrange(200)]
>>> points += [(0.02%t,0) for t in xrange(50)]
>>> points += [(0,0.02xt) for t in xrange(50)]
>>> Canvas(title='Linear Transformation',xlab='x"',ylab='y",
C xrange=(-1,1), yrange=(-1,1)).ellipses(points).save('lal.png")
>>> def f(A,points,filename):
data = [(A[0,0]*x+A[0,1]*y,A[1,0]*x+A[1,1]xy) for (x,y) in points]
Canvas(title='Linear Transformation',xlab='x"',ylab="y"
ce ) .ellipses(points).ellipses(data).save(filename)
>>> Al = Matrix([[0.2,0],[0,1]1]1)
>>> f(Al, points, 'la2.png')
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>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

A2 = Matrix([[1,0],[0,0.2]1)

f(A2, points, 'la3.png')

S = Matrix([[0.3,0],[0,0.3]1)

f(S, points, 'la4.png')

s, ¢ = math.sin(0.5), math.cos(0.5)
R = Matrix([[c,-s1,[s,cl])

Bl = RxAl

f(Bl, points, 'la5.png')

B2 = Matrix([[0.2,0.4],[0.5,0.3]1])
f(B2, points, 'la6.png"')
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Figure 4.3: Example of the effect of different linear transformations on the same set of
points. From left to right, top to bottom, they show stretching along both the X- and
Y-axes, scaling across both axes, a rotation, and a generic transformation that does not

preserve angles.

4.4.3 Matrix inversion and the Gauss—Jordan algorithm

5
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Implementing the inverse of the multiplication (division) is a more chal-

lenging task.

We define A1, the inverse of the square matrix A, as that matrix such
that for every vector b, A(x) = b implies (x) = A~'b. The Gauss-Jordan

algorithm computes A~! given A.

To implement it, we must first understand how it works. Consider the

following equation:

(4.54)
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We can rewrite it as:
Ax = Bb (4-55)

where B = 1, the identity matrix. This equation remains true if we multi-
ply both terms by a nonsingular matrix Sp:

SgAx = SoBb (4.56)

The trick of the Gauss—Jordan elimination consists in finding a series of
matrices Sg, S1,..., S, _1 so that

Sn,l...SlSoAx = Sn,l...SlsoBb =X (457)

Because the preceding expression must be true for every b and because x
is the solution of Ax = b, by definition, S,,_1...5150B = AL

The Gauss-Jordan algorithm works exactly this way: given A, it computes
AL

Listing 4.21: in file: nlib.py
def __rdiv__(A,x):
"""Computes x/A using Gauss-Jordan elimination where x is a scalar"""
import copy
n = A.ncols
if A.nrows != n:
raise ArithmeticError('matrix not squared"')
indexes = xrange(n)
A = copy.deepcopy(A)
B = Matrix.identity(n,x)
for c in indexes:
for r in xrange(c+1,n):
if abs(A[r,c])>abs(A[c,c]):
A.swap_rows(r,c)
B.swap_rows(r,c)
p=0.0 + A[c,c] # trick to make sure it is not integer
for k in indexes:
Alc,k] = Alc,kl/p
Blc,k] = B[c,kl/p
for r in range(0,c)+range(c+1,n):
p=0.0 + A[r,c] # trick to make sure it is not integer
for k in indexes:
Alr,k] -= Alc,kl*p
B[r,k] -= B[c,kl*p
# 1if DEBUG: print A, B
return B
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def __div__(A,B):
if isinstance(B,Matrix):
return Ax(1.0/B) # matrix/matrix
else:
return (1.0/B)*A # matrix/scalar

Here is an example, and we will see many more applications later:
Listing 4.22: in file: nlib.py

>>> A = Matrix([[1,2]1,[4,911])
>>> print 1/A

5 [[9.0, -2.0]1, [-4.0, 1.0]]

4
5
6

7

N

>>> print A/A
[[1.0, 0.0], [0.6, 1.0]]
>>> print A/2
[[6.5, 1.0], [2.0, 4.5]]

4.4.4 Transposing a matrix

Another operation that we will need is transposition:

Listing 4.23: in file: nlib.py
@property
def T(A):
"""Transposed of A"""
return Matrix(A.ncols,A.nrows, fill=lambda r,c: A[c,r])
Notice the new matrix is defined with the number of rows and columns
switched from matrix A. Notice that in Python, a property is a method
that is called like an attribute, therefore without the () notation. This can
be used as follows:

Listing 4.24: in file: nlib.py
>>> A = Matrix([[1,2],[3,4]])
>>> print A.T
[r1, 31, 12, 411
For later use, we define two functions to check whether a matrix is sym-
metrical or zero within a given precision.

Another typical transformation for matrices of complex numbers is the
Hermitian operation, which is a transposition combined with complex
conjugation of the elements:
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Listing 4.25: in file: nlib.py

@property
def H(A):
"""Hermitian of A"""
return Matrix(A.ncols,A.nrows, fill=lambda r,c: A[c,r].conj())

In later algorithms we will need to check whether a matrix is symmetrical
(or almost symmetrical given precision) or zero (or almost zero):

Listing 4.26: in file: nlib.py

def is_almost_symmetric(A, ap=1le-6, rp=le-4):
if A.nrows != A.ncols: return False
for r in xrange(A.nrows):
for c in xrange(r):
delta = abs(A[r,c]l-Alc,r])
if delta>ap and delta>max(abs(A[r,c]),abs(A[c,r]))xrp:
return False
return True

def is_almost_zero(A, ap=le-6, rp=le-4):
for r in xrange(A.nrows):
for c in xrange(A.ncols):
delta = abs(A[r,c]l-Alc,r])
if delta>ap and delta>max(abs(A[r,c]),abs(A[c,r]))*rp:
return False
return True

4.4.5 Solving systems of linear equations

Linear algebra is fundamental for solving systems of linear equations such
as the following:

xXo+2x1+2x = 3 (4-58)
4xg+4x1+2x = 6 (4-59)
4xg +6x1 +4x, = 10 (4.60)

This can be rewritten using the equivalent linear algebra notation:

Ax=Db (4.61)
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where
1 2 2 3
A= 4 4 2 and b= 6 (4.62)
4 6 4 10
The solution of the equation can now be written as
x=A"Tb (4-63)

We can easily solve the system with our Python library:

Listing 4.27: in file: nlib.py
>>> A = Matrix([[1,2,2],[4,4,21,[4,6,41])
>>> b = Matrix([[3],[6]1,[10]])
>>> x = (1/A)x*b
>>> print x
[[-1.0], [3.0], [-1.0]]

Notice that b is a column vector and therefore
>>> b = Matrix([[3],[6],[1011)

but not

>>> b = Matrix([[3,6,10]1]) # wrong

We can also obtain a column vector by performing a transposition of a
row vector:

>>> b = Matrix([[3,6,10]1]).T

4.4.6 Norm and condition number again

By norm of a vector, we often refer to the 2-norm defined using the

||l = /Ex (4-64)

For a vector, we can define the p-norm as a generalization of the 2-norm:

Pythagoras theorem:

1
4

[l = (Zabso@»)v) (4+65)
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We can extend the notation of a norm to any function that maps a vector
into a vector, as follows:

£l = maxe||f () [p/11x[]p (4.66)

An immediate application is to functions implemented as linear transfor-

mations:

[[A[lp = maxy|[Ax][,/{|x[[, (4.67)

This can be difficult to compute in the general case, but it reduces to a
simple formula for the 1-norm:

||A||1 = maijabs(Aij) (468)
i

The 2-norm is difficult to compute for a matrix, but the 1-norm provides
an approximation. It is computed by adding up the magnitude of the
elements per each column and finding the maximum sum.

This allows us to define a generic function to compute the norm of lists,
matrices/vectors, and scalars:

Listing 4.28: in file: nlib.py

def norm(A,p=1):
if isinstance(A, (list,tuple)):
return sum(abs(x)#*xp for x in A)x*x(1.0/p)
elif isinstance(A,Matrix):
if A.nrows==1 or A.ncols==1:
return sum(norm(A[r,c])**p \
for r in xrange(A.nrows) \
for c in xrange(A.ncols))x*x(1.0/p)
elif p==1:
return max([sum(norm(A[r,cl) \
for r in xrange(A.nrows)) \
for c in xrange(A.ncols)])
else:
raise NotImplementedError
else:
return abs(A)
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Now we can implement a function that computes the condition number
for ordinary functions as well as for linear transformations represented
by a matrix:

Listing 4.29: in file: nlib.py

; def condition_number(f,x=None,h=1e-6):

2 if callable(f) and not x is None:

3 return D(f,h) (x)x*x/f(x)

4 elif isinstance(f,Matrix): # if is the Matrix
5 return norm(f)x*norm(1/f)

6 else:

7 raise NotImplementedError

Here are some examples:

Listing 4.30: in file: nlib.py

>>> def f(x): return x*x-5.0%x
>>> print condition_number(f,1)
0.74999. ..

4 >>> A = Matrix([[1,2],13,41]1)
>>> print condition_number(A)

6 21.0

NooR

w

w

Having the norm for matrices also allows us to extend the definition of
convergence of a Taylor series to a series of matrices:

Listing 4.31: in file: nlib.py

1 def exp(x,ap=1le-6,rp=1le-4,ns=40):
2 if isinstance(x,Matrix):

3 t = s = Matrix.identity(x.ncols)

4 for k in xrange(1,ns):

5 t = txx/k # next term

6 s =5+t # add next term

7 if norm(t)<max(ap,norm(s)*rp): return s
8 raise ArithmeticError('no convergence')

9 elif type(x)==type(1lj):
10 return cmath.exp(x)
11 else:

12 return math.exp(x)

Listing 4.32: in file: nlib.py

« >>> A = Matrix([[1,2],[3,4]1])
> >>> print exp(A)
5 [[51.96..., 74.73...1, [112.10..., 164.07...1]
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4.4.7 Cholesky factorization

A matrix is said to be positive definite if x! Ax > 0 for every x # 0.

If a matrix is symmetric and positive definite, then there exists a lower
triangular matrix L such that A = LL!. A lower triangular matrix is a
matrix that has zeros above the diagonal elements.

The Cholesky algorithm takes a matrix A as input and returns the matrix
L:

Listing 4.33: in file: nlib.py

def Cholesky(A):
import copy, math
if not is_almost_symmetric(A):
raise ArithmeticError('not symmetric')
L = copy.deepcopy(A)
for k in xrange(L.ncols):
if L[k, k]<=0:
raise ArithmeticError('not positive definite')
p = L[k,k] = math.sqrt(L[k,k])
for i in xrange(k+1,L.nrows):
L[i,k]l /=p
for j in xrange(k+1,L.nrows):
p=float(L[j, k])
for i in xrange(k+1,L.nrows):
L[i,j]1 -= pxL[i, k]
for i in xrange(L.nrows):
for j in xrange(i+1,L.ncols):
L[i,j]1=0
return L

Here we provide an example and a check that indeed A = LL':

Listing 4.34: in file: nlib.py

>>> A = Matrix([[4,2,1],[2,9,3],[1,3,16]])
>>> L = Cholesky(A)

>>> print is_almost_zero(A - LxL.T)

True

The Cholesky algorithm fails if and only if the input matrix is not sym-
metric or not positive definite, therefore it can be used to check whether
a symmetric matrix is positive definite.

Consider for example a generic covariance matrix A. It is supposed to be
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positive definite, but sometimes it is not, because it is computed incor-
ijr Ajk/ and Aik'
The Cholesky algorithm provides an algorithm to check whether a matrix

rectly by taking different subsets of the data to compute A

is positive definite:

Listing 4.35: in file: nlib.py
def is_positive definite(A):
if not is_almost_symmetric(A):
return False
try:
Cholesky(A)
return True
except Exception:
return False

Another application of the Cholesky is in generating vectors x with prob-
ability distribution
Lt
p(x) o« exp —5X A 'x (4-69)

where A is a symmetric and positive definite matrix. In fact, if A = LL',
then

1, -
i) exp (=311 (470
and with a change of variable u = L~1x, we obtain
1
o (L) s
and
p(x) o e 1Mo 1M 21 (4-72)

Therefore the u; components are Gaussian random variables.

In summary, given a covariance matrix A, we can generate random vectors
x or random numbers with the same covariance simply by doing

def RandomList(A):
L = Cholesky(A)
while True:
u = Matrix([[random.gauss(0,1)] for c in xrange(L.nrows)])
yield (Lxu).flatten()
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Here is an example of how to use it:

>>> A = Matrix([[1.0,0.1],[0.2,3.01])
>>> for k, v in enumerate(RandomList(A)):
print v
The RandomList is a generator. You can iterate over it. The yield keyword
is used like return, except the function will return a generator.

4.4.8 Modern portfolio theory

Modern portfolio theory [? ] is an investment approach that tries to
maximize return given a fixed risk. Many different metrics have been
proposed. One of them is the Sharpe ratio.

For a stock or a portfolio with an average return r and risk ¢, the Sharpe
ratio is defined as

Sharpe(r,o) = (r—7)/c (4.73)

Here 7 is the current risk-free investment rate. Usually the risk is mea-
sured as the standard deviation of its daily (or monthly or yearly) return.

Consider the stock price p;; of stock i at time f and its arithmetic daily
return 1y = (p;;+1 — pit)/ Pir given a risk-free interest equal to 7.

For each stock, we can compute the average return and average risk (vari-
ance of daily returns) and display it in a risk-return plot as we did in
chapter 2.

We can try to build arbitrary portfolios by investing in multiple stocks at
the same time. Modern portfolio theory states that there is a maximum
Sharpe ratio and there is one portfolio that corresponds to it. It is called
the tangency portfolio.

A portfolio is identified by fractions of $1 invested in each stock in the
portfolio. Our goal is to determine the tangent portfolio.

If we assume that daily returns for the stocks are Gaussian, then the solv-
ing algorithm is simple.
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All we need is to compute the average return for each stock, defined as

ri=1/TY ri (4.74)
t
and the covariance matrix
1
Aij =7 Y (rie —ri)(rje = 77) (4.75)

t
Modern portfolio theory tells us that the tangent portfolio is given by

x=A"1(r—71) (4.76)

The inputs of the formula are the covariance matrix (A), a vector or arith-
metic returns for the assets in the portfolio (r), the risk free rate (7). The
output is a vector (x) whose elements are the percentages to be invested
in each asset to obtain a tangency portfolio. Notice that some elements of
x can be negative and this corresponds to short position (sell, not buy, the
asset).

Here is the algorithm:

Listing 4.36: in file: nlib.py

def Markowitz(mu, A, r_free):

"""Assess Markowitz risk/return.

Example:

>>> cov = Matrix([[0.04, 0.006,0.02],

[0.006,0.09, 0.06],

- [0.02, 0.06, 0.16]])

>>> mu = Matrix([[0.10],[0.12],[0.15]])

>>> r_free = 0.05

>>> x, ret, risk = Markowitz(mu, cov, r_free)

>>> print x

[0.556634..., 0.275080..., 0.1682847...]

>>> print ret, risk

0.113915... 0.186747...
Matrix([[0.0] for r in xrange(A.nrows)])
X (1/A)*(mu - r_free)
X x/sum(x[r,0] for r in xrange(x.nrows))
portfolio = [x[r,0] for r in xrange(x.nrows)]
portfolio_return = muxx
portfolio_risk = sqrt(x*(Axx))
return portfolio, portfolio_return, portfolio_risk

X
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Here is an example. We consider three assets (0,1,2) with the following
covariance matrix:

>>> cov = Matrix([[0.04, 0.006,0.02],
[0.006,0.09, 0.06],
[0.62, 0.06, 0.1611)
and the following expected returns (arithmetic returns, not log returns,

because the former are additive, whereas the latter are not):
>>> mu = Matrix([[.10],[0.12],[0.15]])

Given the risk-free interest rate

>>> r_free = 0.05

we compute the tangent portfolio (highest Sharpe ratio), its return, and
its risk with one function call:

>>> x, ret, risk = Markowitz(mu, cov, r_free)

>>> print x

[0.5566343042071198, 0.27508090614886727, 0.16828478964401297]

>>> print ret, risk

0.113915857605 0.186747095412

>>> print (ret-r_free).risk

0.34225891152

>>> for r in xrange(3): print (mu[r,0]-r_free)/sqrt(cov[r,rl)

0.25

0.233333333333

0.25

Investing 55% in asset 0, 27% in asset 1, and 16% in asset 2, the resulting
portfolio has an expected return of 11.39% and a risk of 18.67%, which
corresponds to a Sharpe ratio of 0.34, much higher than o0.25, 0.23, and

0.23 for the individual assets.

Notice that the tangency portfolio is not the only one with the highest
Sharpe ratio (return for unit of risk). In fact, any linear combination of
the tangency portfolio with a risk-free asset (putting money in the bank)
has the same Sharpe ratio. For any target risk, one can find a linear
combination of the risk-free asset and the tangent portfolio that has a
better Sharpe ratio than any other possible portfolio comprising the same
assets.

If we call « the fraction of the money to invest in the tangency portfolio
and 1 — « the fraction to keep in the bank at the risk free rate, the resulting
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combined portfolio has return:

ax-r+(1—a)r 4-77)
and risk
av xt Ax (4.78)

We can determine « by deciding how much risk we are willing to take,
and these formulas tell us the optimal portfolio for that amount of risk.

4.4.9 Linear least squares, x?

Consider a set of data points (xj,y;) = (t;,0; £ do;). We want to fit them
with a linear combination of linear independent functions f; so that

cofo(to) +cifi(to) +cafa(to) +... = eg =09+ dog (4-79)
cofo(t1) +afi(ty) +cafalty) +... = e ~o1Edo; (4.80)
cofo(tz) +c1fi(ta) + cafolta) +... = e ~o0ptdop (4.81)

= .. (4.82)

We want to find the {c;} that minimizes the sum of the squared distances
between the actual “observed” data o; and the predicted “expected” data
ej, in units of do;. This metric is called X% in general [? ]. An algorithm
that minimizes the x? and is linear in the c; coefficients (our case here) is
called linear least squares or linear regression.

2
(3]'—0]‘

dO]‘

(4.83)

=)
]
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If we define the matrix A and B as

folte)  filto)  falto) 0y

dﬂg dOO dOO dgo

ft;l(fl) fb(tl) f%i(tl) ;71

— 0 0 0 o — 0
A= 4l Aty s b=1 9
doy doy doy doy

then the problem is reduced to

minx? = min|Ac—b?
C C
= min(Ac —b)!(Ac—Db)
C
= min(c'A’Ax — 2b'Ac + b'D)
C

This is the same as solving the following equation:

V.(c!A'Ax — 2¢' A'b + b'b)
AlAc— A =

Its solution is

c=(A'A)"1(Alb)

(4-84)

(4-85)
(4.86)
(4.87)

(4.88)
(4-89)

(4.90)

The following algorithm implements a fitting function based on the pre-

ceding procedure. It takes as input a list of functions f; and a list of points

pj = (tj,0j,do;) and returns three objects—a list with the c coefficients, the

value of )(2 for the best fit, and the fitting function:

Listing 4.37: in file: nlib.py
def fit least_squares(points, f):

Computes c_j for best linear fit of y[i] \pm dy[i] = fitting f(x[i])
where fitting f(x[i]) is \sum_j c_j f[j](x[1])
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parameters:
- a list of fitting functions
- a list with points (x,y,dy)

returns:
- column vector with fitting coefficients
- the chi2 for the fit
- the fitting function as a lambda x:
def eval_fitting_function(f,c,x):
if len(f)==1: return c*xf[0](x)
else: return sum(func(x)*c[i,0] for i,func in enumerate(f))
A = Matrix(len(points),len(f))
b = Matrix(len(points))
for i in xrange(A.nrows):
weight = 1.0/points[i][2] if len(points[i])>2 else 1.0
b[i,0] = weight*float(points[i][1])
for j in xrange(A.ncols):
A[i,j] = weight*f[j](float(points[i][0]))
c = (1.0/(A.T*A))*(A.Txb)
chi = Axc-b
chi2 = norm(chi,2)*x2
fitting_f = lambda x, c=c, f=f, g=eval_fitting_function: q(f,c,x)
cs = [c] if isinstance(c,float) else c.flatten()
return cs, chi2, fitting_f

# examples of fitting functions
def POLYNOMIAL(n):

return [(lambda x, p=p: xx*p) for p in xrange(n+1)]
CONSTANT = POLYNOMIAL(O)

LINEAR = POLYNOMIAL(1)
QUADRATIC = POLYNOMIAL(2)
CUBIC = POLYNOMIAL(3)
QUARTIC = POLYNOMIAL(4)

As an example, we can use it to perform a polynomial fit: given a set of
points, we want to find the coefficients of a polynomial that best approxi-
mate those points.
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In other words, we want to find the ¢; such that, given £ and 0j,

co+ 1 t(l) + c2t% +.. = ey~o09Edog (4.91)
co+ clt% + czt% 4+.. = e ~o0]%do; (4.92)
co+ 1 t% + czt% +.. = e ~o0y*do (4.93)
(4-94)
(4.95)

Here is how we can generate some random points and solve the problem
for a polynomial of degree 2 (or quadratic fit):

Listing 4.38: in file: nlib.py

1 >>> points = [(k,5+0.8+%k+0.3x*kxk+math.sin(k),2) for k in xrange(100)]
> >>> a,chi2, fitting_f = fit_least_squares(points,QUADRATIC)

5 >>> for p in points[-10:]:

4 e print p[0], round(p[l],2), round(fitting f(p[0]),2)

5 90 2507.89 2506.98

6 91 2562.21 2562.08

; 92 2617.02 2617.78

8 93 2673.15 2674.08

9 94 2730.75 2730.98

0 95 2789.18 2788.48

11 96 2847.58 2846.58

12 97 2905.68 2905.28

13 98 2964.03 2964.58

14 99 3023.5 3024.48

15 >>> Canvas(title='polynomial fit',xlab="'t"',ylab="'e(t),o(t)"

16 4 ) .errorbar(points[:10],legend="0(t)"

17 aas ).plot([(p[0],fitting_f(p[0])) for p in points[:10]1,legend='e(t)"'
18 4. ) .save('images/polynomialfit.png')

Fig. ?? is a plot of the first 10 points compared with the best fit:

We can also define a X%o ;= X*/(N — 1) where N is the number of ¢
parameters determined by the fit. A value of x3, =l indicates a good
fit. In general, the smaller )(i ofr the better the fit. A large value of )(5 of
is a symptom of poor modeling (the assumptions of the fit are wrong),
whereas a value x2, f much smaller than 1 is a symptom of an overestimate
of the errors do; (or perhaps manufactured data).
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40

polynomial fit

e(t),olt)

Figure 4.4: Random data with their error bars and the polynomial best fit.

4.4.10 Trading and technical analysis

In finance, technical analysis is an empirical discipline that consists of fore-
casting the direction of prices through the study of patterns in historical
data (in particular, price and volume). As an example, we implement a
simple strategy that consists of the following steps:

e We fit the adjusted closing price for the previous seven days and use
our fitting function to predict the adjusted close for the next day.

¢ If we have cash and predict the price will go up, we buy the stock.

¢ If we hold the stock and predict the price will go down, we sell the
stock.

Listing 4.39: in file: nlib.py
class Trader:
def model(self,window):
"the forecasting model"
# we fit last few days quadratically
points = [(x,y['adjusted close']) for (x,y) in enumerate(window) ]
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a,chi2, fitting f = fit_least_squares(points,QUADRATIC)
# and we extrapolate tomorrow's price
tomorrow_prediction = fitting_f(len(points))

return tomorrow_prediction

def strategy(self, history, ndays=7):

"the trading strategy"

if len(history)<ndays:
return

else:
today_close = history[-1]['adjusted close']
tomorrow_prediction = self.model(history[-ndays:])
return 'buy' if tomorrow_prediction>today_close else 'sell'

def simulate(self,data,cash=1000.0,shares=0.0,daily_rate=0.03/360):
"find fitting parameters that optimize the trading strategy"
for t in xrange(len(data)):
suggestion = self.strategy(datal[:t])
today_close = datal[t-1]['adjusted close']
# and we buy or sell based on our strategy
if cash>0 and suggestion=='buy':
# we keep track of finances
shares_bought = int(cash/today_close)
shares += shares_bought
cash -= shares_boughtxtoday_close
elif shares>0 and suggestion=='sell"':
cash += sharesxtoday_close
shares = 0.0
# we assume money in the bank also gains an interest
cashx=math.exp(daily_rate)
# we return the net worth
return cash+sharesxdata[-1]['adjusted close']

Now we back test the strategy using financial data for AAPL for the year

2011:

Listing 4.40: in file: nlib.py

>>> from datetime import date

>>> data = YStock('aapl').historical(
start=date(2011,1,1),stop=date(2011,12,31))

>>> print Trader().simulate(data, cash=1000.0)

1120...

>>> print 1000.0xmath.exp(0.03)

1030...

>>> print 1000.0xdatal[-1]['adjusted close']/datal[0]['adjusted close']

1228...

Our strategy did considerably better than the risk-free return of 3% but
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not as well as investing and holding AAPL shares over the same period.

Of course, we can always engineer a strategy based on historical data that
will outperform holding the stock, but past performance is never a guarantee
of future performance.

According to the definition from investopedia.com, “technical analysts be-
lieve that the historical performance of stocks and markets is an indication
of future performance.”

The efficacy of both technical and fundamental analysis is disputed by
the efficient-market hypothesis, which states that stock market prices are
essentially unpredictable [? ].

It is easy to extend the previous class to implement other strategies and
back test them.

4.4.11 Eigenvalues and the Jacobi algorithm

Given a matrix A, an eigenvector is defined as a vector x such that Ax
is proportional to x. The proportionality factor is called an eigenvalue, e.
One matrix may have many eigenvectors x; and associated eigenvalues ¢;:

Ax; = ejx (4.96)

A= ( 1 -42 > and xX; = ( -11 > (4-97)
3*( _11 ) (4.98)

In this case, x; is an eigenvector and the corresponding eigenvalue is ¢ = 3.

For example:

VR
[
SN
~__—
*
VR
oA
~_—
Il

Some eigenvalues may be zero (¢; = 0), which means the matrix A is
singular. A matrix is singular if it maps a nonzero vector into zero.
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Given a square matrix A, if the space generated by the linear indepen-
dent eigenvalues has the same dimensionality as the number of rows (or
columns) of A, then its eigenvalues are real and the matrix can we written
as

A =upu' (4-99)

where D is a diagonal matrix with eigenvalues on the diagonal D;; = ¢;
and U is a matrix whose column i is the x; eigenvalue.

The following algorithm is called the Jacobi algorithm. It takes as input a
symmetric matrix A and returns the matrix U and a list of corresponding
eigenvalues ¢, sorted from smallest to largest:

Listing 4.41: in file: nlib.py
def sqrt(x):
try:
return math.sqrt(x)
except ValueError:
return cmath.sqrt(x)

def Jacobi_eigenvalues(A,checkpoint=False):
"""Returns U end e so that A=Uxdiagonal(e)xtransposed(U)
where i-column of U contains the eigenvector corresponding to
the eigenvalue e[i] of A.

from http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
def maxind(M,K):
j=k+1
for i in xrange(k+2,M.ncols):
if abs(M[k,i])>abs(M[k,j]):
j=i
return j
n = A.nrows
if n!=A.ncols:
raise ArithmeticError('matrix not squared')
indexes = xrange(n)
S = Matrix(n,n, fill=lambda r,c: float(A[r,c]))
E = Matrix.identity(n)
state = n
ind = [maxind(S,k) for k in indexes]
e = [S[k,k] for k in indexes]
changed = [True for k in indexes]
iteration = 0
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while state:
if checkpoint: checkpoint('rotating vectors (%i) ...' %
m=0
for k in xrange(1l,n-1):
if abs(S[k,ind[k]])>abs(S[m,ind[m]]): m=k

pass

k,h = m,ind[m]

p = S[k,h]

y = (e[h]-e[k])/2

t = abs(y)+sqrt(pxp+y*y)
s = sqrt(pxp+txt)

c = t/s

s = p/s

t = pxp/t

if y<0: s,t = -s,-t
S[k,h] =0

y = e[kl

e[k] = y-t

if changed[k] and y==e[k]:
changed[k],state = False,state-1
elif (not changed[k]) and y!=e[Kk]:
changed[k],state = True,state+1
y = e[h]
e[h] = y+t
if changed[h] and y==e[h]:
changed[h],state = False,state-1
elif (not changed[h]) and y!=e[h]:
changed[h],state = True,state+1
for i in xrange(k):
S[i,k],S[i,h] = cxS[i,k]-s*S[i,h],s*S[i,k]+c*S[i,h]
for i in xrange(k+1,h):
S[k,1],S[i,h] = cxS[k,i]-s*S[i,h],s*S[k,i]+c*S[i,h]
for i in xrange(h+1,n):
S[k,i],S[h,i] = c*S[k,i]-s*S[h,i],s*S[k,i]+c*S[h,i]
for i in indexes:
E[k,1],E[h,i] = cxE[k,i]-s*E[h,i],s*E[k,i]+c*E[h,i]
ind[k],ind[h]=maxind(S,k),maxind(S,h)
iteration+=1
# sort vectors
for i in xrange(1l,n):
j=i
while j>0 and e[j-1]>e[j]:
eljl,elj-11 = e[j-11,elj]
E.swap_rows(j,j-1)
j-=1
# normalize vectors
U = Matrix(n,n)
for i in indexes:
norm = sqrt(sum(E[i,j]**2 for j in indexes))

187
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for j in indexes: U[j,i] = E[i,j]/norm
return U,e
Here is an example that shows, for a particular case, the relation between
the input, A, of the output of the U, e of the Jacobi algorithm:

Listing 4.42: in file: nlib.py

>>> import random
>>> A = Matrix(4,4)
>>> for r in xrange(A.nrows):

for c in xrange(r,A.ncols):
. Alr,c] = A[c,r] = random.gauss(10,10)
>>> U,e = Jacobi_eigenvalues(A)
>>> print is_almost_zero(U*Matrix.diagonal(e)*U.T-A)
True

Eigenvalues can be used to filter noise out of data and find hidden depen-
dencies in data. Following are some examples.

4.4.12 Principal component analysis

One important application of the Jacobi algorithm is for principal compo-
nent analysis (PCA). This is a mathematical procedure that converts a set
of observations of possibly correlated vectors into a set of uncorrelated
vectors called principal components.

Here we consider, as an example, the time series of the adjusted arithmetic
returns for the S&P100 stocks that we downloaded and stored in chapter
2.

Each time series is a vector. We know they are not independent because
there are correlations. Our goal is to model each time series and a vec-
tor plus noise where the vector is the same for all series. We also want
find that vector that has maximal superposition with the individual time
series, the principal component.

First, we compute the correlation matrix for all the stocks. This is a non-
trivial task because we have to make sure that we only consider those
days when all stocks were traded:

Listing 4.43: in file: nlib.py
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1 def compute_correlation(stocks, key='arithmetic return'):

2

w

"The input must be a list of YStock(...).historical() data"
# find trading days common to all stocks
days = set()
nstocks = len(stocks)
iter_stocks = xrange(nstocks)
for stock in stocks:
if not days: days=set(x['date'] for x in stock)
else: days=days.intersection(set(x['date'] for x in stock))
n len(days)
v =[]
# filter out data for the other days
for stock in stocks:
v.append([x[key] for x in stock if x['date'] in days])
# compute mean returns (skip first day, data not reliable)
mus = [sum(v[i][k] for k in xrange(1l,n))/n for i in iter_stocks]
# fill in the covariance matrix
var = [sum(v[i][k]**2 for k in xrange(1l,n))/n - mus[i]**2 for i in
iter_stocks]
corr = Matrix(nstocks,nstocks,fill=lambda i,j: \
(sum(v[i][k]l*v[jl[k] for k in xrange(1l,n))/n - mus[il*mus[j])/ \
math.sqrt(var[i]*var[jl))
return corr

We use the preceding function to compute the correlation and pass it as
input to the Jacobi algorithm and plot the output eigenvalues:

Listing 4.44: in file: nlib.py

>>> storage = PersistentDictionary('spl00.sqlite')

>>> symbols = storage.keys('*/2011')[:20]

>>> stocks = [storage[symbol] for symbol in symbols]

>>> corr = compute_correlation(stocks)

>>> U,e = Jacobi_eigenvalues(corr)

>>> Canvas(title='SP100 eigenvalues',xlab='1i',ylab='e[i]"
).plot([(i,ei) for i,ei, in enumerate(e)]
) .save('images/splO0eigen.png')

The image shows that one eigenvalue, the last one, is much larger than
the others. It tells us that the data series have something in common. In
fact, the arithmetic returns for stock j at time ¢ can be written as

rit = Bipt + it (4.100)

where p is the principal component given by
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Figure 4.5: Eigenvalues of the correlation matrix for 20 of the S&P100 stocks, sorted by
their magnitude.

pr = Y Uy qmjs (4.101)
i

i = Zritpt (4.102)
t

ajp = Tip — Bipt (4.103)

Here p is the vector of adjusted arithmetic returns that better correlates

with the returns of the individual assets and therefore best represents the

market. The ; coefficient tells us how much r; overlaps with p; «, at first

approximation, measures leftover noise.

4.5 Sparse matrix inversion

Sometimes we have to invert matrices that are very large, and the Gauss-

Jordan algorithms fails. Yet, if the matrix is sparse, in the sense that most
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of its elements are zeros, than two algorithms come to our rescue: the
minimum residual and the biconjugate gradient (for which we consider a
variant called the stabilized bi-conjugate gradient).

We will also assume that the matrix to be inverted is given in some im-
plicit algorithmic as y = f(x) because this is always the case for sparse
matrices. There is no point to storing all its elements because most of
them are zero.

4.5.1 Minimum residual

Given a linear operator f, the Krylov space spanned by a vector x is de-
fined as

K(f,y,1) = {y, f), fFFW) FFF W) (FH )} (4.104)

The minimum residual [? | algorithm works by solving x = f~1(y) itera-
tively. At each iteration, it computes a new orthogonal basis vector g; for
the Krylov space K(f,y, i) and computes the coefficients «; that project x;
into component i of the Krylov space:

xj =y +arq1 +aoq2 + ... +a;q; € K(f,y,i+1) (4.105)

which minimizes the norm of the residue defined as:

r=f(x) -y (4.106)

Therefore lim;_, f(x;) = y. If a solution to the original problem exists,
ignoring precision issues, the minimum residual converges to it, and the
residue decreases at each iteration.

Notice that in the following code, x and y are exchanged because we
adopt the convention that y is the output and x is the input:

Listing 4.45: in file: nlib.py
1 def invert_minimum_residual(f,x,ap=1e-4,rp=1le-4,ns=200):
2 import copy
3 y = copy.copy(Xx)
4 r = x-1.0%f(x)
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for k in xrange(ns):

q = f(r)

alpha = (gx*r)/(gx*q)

y =y + alphaxr

r = r - alphaxq

residue = sqrt((r*r)/r.nrows)

if residue<max(ap,norm(y)*rp): return y
raise ArithmeticError('no convergence')

4.5.2 Stabilized biconjugate gradient

The stabilized biconjugate gradient [? ] method is also based on con-
structing a Krylov subspace and minimizing the same residue as in the
minimum residual algorithm, yet it is faster than the minimum residual
and has a smoother convergence than other conjugate gradient methods:

Listing 4.46: in file: nlib.py
def invert_bicgstab(f,x,ap=1le-4,rp=1le-4,ns=200):
import copy

y = copy.copy(x)
r=x - 1.0xf(x)
q=r

p=20.0

s =0.0

rho_old = alpha = omega = 1.0
for k in xrange(ns):

rho = gqxr

beta = (rho/rho_old)=(alpha/omega)
rho_old = rho

p = betaxp + r - (betaxomega)x*s

s = f(p)

alpha = rho/(gxs)
r = r - alphaxs
t = f(r)
omega = (txr)/(txt)
y =y + omegaxr + alphaxp
residue=sqrt((r*r)/r.nrows)
if residue<max(ap,norm(y)*rp): return y
r =r - omegaxt
raise ArithmeticError('no convergence')

Notice that the minimum residual and the stabilized biconjugate gradient,
if they converge, converge to the same value.

As an example, consider the following. We take a picture using a cam-
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era, but we take the picture out of focus. The image is represented
by a set of m? pixels. The defocusing operation can be modeled as a
first approximation with a linear operator acting on the “true” image, x,
and turning it into an “out of focus” image, y. We can store the pixels
in a one-dimensional vector (both for x and y) as opposed to a matrix
by mapping the pixel (r,¢) into vector component i using the relation
(r,c) = (i/m,i%m).

Hence we can write

y = Ax (4.107)

Here the linear operator A represents the effects of the lens, which trans-
forms one set of pixels into another.

We can model the lens as a sequence of  smearing operators:

A=6P (4.108)

where a smearing operator is a next neighbor interaction among pixels:

Sij = (1—a/4)6;; + adjjr1 + adjjim (4.109)

Here « and  are smearing coefficients. When &« = 0 or § = 0, the lens
has no effect, and A = I. The value of a controls how much the value
of light at point 7 is averaged with the value at its four neighbor points:
left (j — 1), right (j + 1), top (j + m), and bottom (j — m). The coefficient B
determines the width of the smearing radius. The larger the values of
and «, the more out of focus is the original image.

In the following code, we generate an image x and filter it through a lens
operator smear, obtaining a smeared image y. We then use the sparse ma-
trix inverter to reconstruct the original image x given the smeared image
y. We use the color2d plotting function to represent the images:

Listing 4.47: in file: nlib.py
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= 30
= Matrix(m«m,1,fill=lambda r,c:(r//m in(10,20) or r%m in(10,20)) and 1. or
0.)

>>> def smear(x):

>>> y
>>> 7
>>> y

alpha, beta = 0.4, 8
for k in xrange(beta):
y = Matrix(x.nrows,1)
for r in xrange(m):
for c in xrange(m):
y[rxm+c,0] = (1.0-alpha/4)*x[rxm+c,0]
if c<m-1: y[r*m+c,0] += alpha * x[r*m+c+1,0]

if c>0: y[r*m+c,0] += alpha * x[rxm+c-1,0]

if r<m-1: y[rxm+c,0] += alpha * x[r*m+c+m,0]

if c>0: y[r*m+c,0] += alpha * x[rxm+c-m,0]
X =y
return y
= smear(x)

= invert_minimum_residual(smear,y,ns=1000)
= y.reshape(m,m)

>>> Canvas(title="Defocused image").imshow(y.tolist()).save('images/defocused.
png')
>>> Canvas(title="refocus image").imshow(z.tolist()).save('images/refocused.png'

20

25

Defocused image

refocus image

Figure 4.6: An out-of-focus image (left) and the original image (image) computed from
the out-of-focus one, using sparse matrix inversion.

When the Hubble telescope was first put into orbit, its mirror was not

installed properly and caused the telescope to take pictures out of focus.

Until the defect was physically corrected, scientists were able to fix the

images using a similar algorithm.
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4.6 Solvers for nonlinear equations

In this chapter, we are concerned with the problem of solving in x the
equation of one variable:

f(x) =0 (4.110)

4.6.1 Fixed-point method

It is always possible to reformulate f(x) = 0 as g(x) = x using, for exam-
ple, one of the following definitions:

* o(x) = f(x)/c+ x for some constant ¢

e ¢(x) = f(x)/q(x) + x for some g(x) > 0 at the solution of f(x) =0

We start at x¢, an arbitrary point in the domain, and close to the solution
we seek. We compute

xo= g(x) (4.111)
x = gx) (4.112)
x3 = g(x2) (4-113)

= .. (4.114)

We can compute the distance between x; and x as

lxi—x| = [g(xi—1) —g(¥)] (4.115)
= |g(x) + &' (&) (xi1 —x) — g(x)] (4.116)
= 18/ (&xi1 — x| (4.117)

where we use de [’Hopital rule and ¢ is a point in between x and x;_;.

If the magnitude of the first derivative of g, |¢’|, is less than 1 in a neigh-
borhood of x, and if x is in such a neighborhood, then

lxj — x| = 18"(&)[|xi1 — x| < |xi—1 — x| (4.118)
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The x; series will get closer and closer to the solution x.

Here is the process implemented into an algorithm:

Listing 4.48: in file: nlib.py
def solve fixed_point(f, x, ap=1le-6, rp=le-4, ns=100):
def g(x): return f(x)+x # f(x)=0 <=> g(x)=x
Dg = D(g)
for k in xrange(ns):
if abs(Dg(x)) >= 1:
raise ArithmeticError('error D(g)(x)>=1")
(x_old, x) = (x, g(x))
if k>2 and norm(x_old-x)<max(ap,norm(x)*rp):
return x
raise ArithmeticError('no convergence')

And here is an example:

Listing 4.49: in file: nlib.py
>>> def f(x): return (x-2)*(x-5)/10
>>> print round(solve_fixed point(f,1.0,rp=0),4)
2.0

4.6.2 Bisection method

The goal of the bisection [? ] method is to solve f(x) = 0 when the
function is continuous and it is known to change sign in between x = a
and x = b. The bisection method is the continuous equivalent of the
binary search algorithm seen in chapter 3. The algorithm iteratively finds
the middle point of the domain x = (b + a)/2, evaluates the function
there, and decides whether the solution is on the left or the right, thus
reducing the size of the domain from (a, b) to (a,x) or (x,b), respectively:

Listing 4.50: in file: nlib.py
def solve bisection(f, a, b, ap=le-6, rp=le-4, ns=100):

fa, fb = f(a), f(b)
if fa == 0: return a
if fb == 0: return b
if faxfb > 0:

raise ArithmeticError('f(a) and f(b) must have opposite sign')
for k in xrange(ns):

X = (a+b)/2

fx = f(x)
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if fx==0 or norm(b-a)<max(ap,norm(x)#*rp): return x
elif fx x fa < 0: (b,fb) = (x, fx)
else: (a,fa) = (x, fx)

raise ArithmeticError('no convergence')

Here is how to use it:

Listing 4.51: in file: nlib.py
>>> def f(x): return (x-2)*(x-5)

>>> print round(solve bisection(f,1.0,3.0),4)
2.0

4.6.3 Newton method

The Newton [? ] algorithm also solves f(x) = 0. It is faster (on aver-
age) than the bisection method because it makes the additional assump-
tion that the function is also differentiable. This algorithm starts from an
arbitrary point xp and approximates the function at that point with its
first-order Taylor expansion

f(x) = f(xo) + f'(x0) (x — x0) (4.119)

and solves it exactly:

f(x0)
Fx0) (4120)

flx)=0—x=x)—

thus finding a new and better estimate for the solution. The algorithm
iterates the preceding equation, and when it converges, it approximates
the exact solution better and better:

Listing 4.52: in file: nlib.py
def solve_newton(f, x, ap=le-6, rp=le-4, ns=20):
x = float(x) # make sure it is not int
for k in xrange(ns):
(fx, Dfx) = (f(x), D(f)(x))
if norm(Dfx) < ap:
raise ArithmeticError('unstable solution')
(x_old, x) = (x, x-fx/Dfx)
if k>2 and norm(x-x_old)<max(ap,norm(x)*rp): return x
raise ArithmeticError('no convergence')
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The algorithm is guaranteed to converge if |f'(x)| > 1 in some neighbor-
hood of the solution and if the starting point is in this neighborhood. It
may also converge if this condition is not true. It is likely to fail when
|f'(x)| =~ 0 is in the neighborhood of the solution or the starting point
because the terms fx/Dfx would become very large.

Here is an example:
Listing 4.53: in file: nlib.py
>>> def f(x): return (x-2)*(x-5)

>>> print round(solve_newton(f,1.0),4)
2.0

4.6.4 Secant method

The secant method is very similar to the Newton method, except that
f'(x) is replaced by a numerical estimate computed using the current
point x and the previous point visited by the algorithm:

flxi) = fxia)

flx) = B (4.121)
Xiti = Xj— —{‘/((J;lz)) (4'122)

As the algorithm approaches the exact solution, the numerical derivative
becomes a better and better approximation for the derivative:

Listing 4.54: in file: nlib.py
def solve secant(f, x, ap=le-6, rp=le-4, ns=20):
x = float(x) # make sure it is not int
(fx, Dfx) = (f(x), D(f)(x))
for k in xrange(ns):
if norm(Dfx) < ap:
raise ArithmeticError('unstable solution')
(x_old, fx_old,x) = (x, fx, x-fx/Dfx)
if k>2 and norm(x-x_old)<max(ap,norm(x)*rp): return x
fx = f(x)
Dfx = (fx-fx_old)/(x-x_old)
raise ArithmeticError('no convergence')

Here is an example:
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Listing 4.55: in file: nlib.py
>>> def f(x): return (x-2)x*(x-5)

>>> print round(solve_secant(f,1.0),4)
2.0

4.7 Optimization in one dimension

While a solver is an algorithm that finds x such that f(x) = 0, an op-
timization algorithm is one that finds the maximum or minimum of the
function f(x). If the function is differentiable, this is achieved by solving

f(x) = 0.
For this reason, if the function is differentiable twice, we can simply re-
name all previous solvers and replace f(x) with f'(x) and f'(x) with

£ ().
4.7.1 Bisection method

Listing 4.56: in file: nlib.py
def optimize bisection(f, a, b, ap=le-6, rp=le-4, ns=100):
return solve_bisection(D(f), a, b , ap, rp, ns)

Here is an example:

Listing 4.57: in file: nlib.py
>>> def f(x): return (x-2)*(x-5)
>>> print round(optimize bisection(f,2.0,5.0),4)
3.5

4.7.2 Newton method

Listing 4.58: in file: nlib.py
def optimize newton(f, x, ap=le-6, rp=le-4, ns=20):
x = float(x) # make sure it is not int
(f, Df) = (D(f), DD(f))
for k in xrange(ns):
(fx, Dfx) = (f(x), Df(x))
if Dfx==0: return x
if norm(Dfx) < ap:
raise ArithmeticError('unstable solution')
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(x_old, x) = (x, x-fx/Dfx)
if norm(x-x_old)<max(ap,norm(x)*rp): return x
raise ArithmeticError('no convergence')

Listing 4.59: in file: nlib.py
>>> def f(x): return (x-2)x(x-5)
>>> print round(optimize_newton(f,3.0),3)
3.5

4.7.3 Secant method

As in the Newton case, the secant method can also be used to find ex-
trema, by replacing f with f’:

Listing 4.60: in file: nlib.py
def optimize secant(f, x, ap=le-6, rp=le-4, ns=100):
x = float(x) # make sure it is not int
(f, Df) = (D(f), DD(f))
(fx, Dfx) = (f(x), Df(x))
for k in xrange(ns):
if fx==0: return x
if norm(Dfx) < ap:
raise ArithmeticError('unstable solution')
(x_old, fx_old, x) = (x, fx, x-fx/Dfx)
if norm(x-x_old)<max(ap,norm(x)*rp): return x
fx = f(x)
Dfx = (fx - fx_old)/(x-x_old)
raise ArithmeticError('no convergence')

Listing 4.61: in file: nlib.py
>>> def f(x): return (x-2)*(x-5)

>>> print round(optimize secant(f,3.0),3)
3.5

4.7.4 Golden section search

If the function we want to optimize is continuous but not differentiable,
then the previous algorithms do not work. In this case, there is one al-
gorithm that comes to our rescue, the golden section [? ] search. It is
similar to the bisection method, with one caveat; in the bisection method,
at each point, we need to know if a function changes sign in between two
points, therefore two points are all we need. If instead we are looking
for a max or min, we need to know if the function is concave or convex
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in between those two points. This requires one extra point in between
the two. So while the bisection method only needs one point in between
[a,b], the golden search needs two points, x; and xy, in between [a, b], and
from them it can determine whether the extreme is in [a, x3] or in [x1, b].
This is also represented pictorially in fig. ??. The two points are chosen in
an optimal way so that at the next iteration, one of the two points can be
recycled by leaving the ratio between x; — a and b — x; fixed and equal to

1:

Listing 4.62: in file: nlib.py

def optimize golden_search(f, a, b, ap=le-6, rp=le-4, ns=100):
a,b=float(a), float(b)
tau = (sqrt(5.0)-1.0)/2.0
x1, X2 = a+(1.0-tau)*(b-a), a+taux(b-a)
fa, f1, f2, fb = f(a), f(x1), f(x2), f(b)
for k in xrange(ns):
if f1 > f2:
a, fa, x1, f1 = x1, f1, x2, f2
X2 = at+taux(b-a)
f2 = f(x2)
else:
b, fb, x2, f2 = x2, f2, x1, fl
x1 = a+(1.0-tau)*(b-a)
fl = f(x1)
if k>2 and norm(b-a)<max(ap,norm(b)*rp): return b
raise ArithmeticError('no convergence')

Here is an example:

Listing 4.63: in file: nlib.py

>>> def f(x): return (x-2)x*(x-5)
>>> print round(optimize_golden_search(f,2.0,5.0),3)

;3 3.5

4.8 Functions of many variables

To be able to work with functions of many variables, we need to introduce
the concept of the partial derivative:

9f() _ . f(x+hy) — f(x—h)

ax;  hoo 20 (4.123)
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Figure 4.7: Pictorial representation of the golden search method. If the function is

concave (f”(x) > 0), then knowledge of the function in 4 points (a,x1,x2,b) permits us
to determine whether a minimum is between [a, x| or between [x1, b].

where h; is a vector with components all equal to zero but #; = h > 0.

We can implement it as follows:

Listing 4.64: in file: nlib.py
def partial(f,i,h=1e-4):
def df(x,f=f,i=i,h=h):
x = list(x) # make copy of x
x[i] += h
f_plus = f(x)
x[i] -= 2xh
f_minus = f(x)
if isinstance(f_plus, (list,tuple)):
return [(f_plus[i]-f_minus[i])/(2xh) for i in xrange(len(f_plus))]
else:
return (f_plus-f_minus)/(2xh)
return df

Similarly to D(f), we have implemented it in such a way that partial(f,i)
returns a function that can be evaluated at any point x. Also notice that
the function f may return a scalar, a matrix, a list, or a tuple. The if
condition allows the function to deal with the difference between two
lists or tuples.

Here is an example:
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Listing 4.65: in file: nlib.py

>>> def f(x): return 2.0xx[0]+3.0%x[1]+5.0xx[1]*x[2]
>>> df0 = partial(f,0)
>>> dfl = partial(f,1)
>>> df2 = partial(f,2)

>>> x = (1,1,1)
>>> print round(df0(x),4), round(dfl(x),4), round(df2(x),4)
2.0 8.0 5.0

4.8.1 Jacobian, gradient, and Hessian

A generic function f(xg, x1, Xy, ...) of multiple variables x = (xo, x1, X2, ..)
can be expanded in Taylor series to the second order as

f(xo,x1,%x2,...) = f(%o,%1,%,..) + (4.124)
X %J(:)(xi - %)+ (4.125)
1 9*f

Z Eax«ax/’ (%) (x; — %) (xj — %j) + ... (4.126)
ij !

We can rewrite the above expression in terms of the vector x as follows:

f(x) = f(%) + V(%) (x — %) + %(x —%)"Hf(X)(x —X) + ... (4.127)

where we introduce the gradient vector

of (x)/dxo
of(x)/0x1

VI =1 o5 ) s

(4.128)
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and the Hessian matrix

02f(x)/dxgdxg 9%f(x)/9xgdx; 9*f(x)/dx00x2
Ho(x) = 02f(x)/0x10xg 9%f(x)/9x10x; 9%f(x)/0x10x2
A 02f(x)/0x0x9 9%f(x)/0x20x; 9%f(x)/0x20x7
(4.129)
Given the definition of partial, we can compute the gradient and the Hes-
sian using the two functions

Listing 4.66: in file: nlib.py
def gradient(f, x, h=le-4):
return Matrix(len(x),1,fill=lambda r,c: partial(f,r,h)(x))

def hessian(f, x, h=le-4):
return Matrix(len(x),len(x),fill=lambda r,c: partial(partial(f,r,h),c,h)(x))

Here is an example:

Listing 4.67: in file: nlib.py
>>> def f(x): return 2.0%x[0]+3.0*x[1]+5.0xx[1]*x[2]
>>> print gradient(f, x=(1,1,1))

[[1.999999...1, [7.999999...], [4.999999...]1]

>>> print hessian(f, x=(1,1,1))
[[6.06, 0.0, 0.0], [0.0, 0.0, 5.000000...], [0.0, 5.000000..., 0.0]]

When dealing with functions returning multiple values like
f(x) = (fo(x), A1(x), f2(x), -..) (4.130)

we need to Taylor expand each component:

fo(x) fo(%) + Vg (x=%) + ...
g | AR | | AR +VAK=%)+.. .
f) f2(x) fo(x X — %) + (4.131)

)+ Vi

which we can rewrite as

fx) = f(%) + (%) (x =X) + .. (4.132)
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where ¢ is called Jacobian and is defined as

ajb(x)/axo ajb(x)/axl ajb(x)/axz
afi(x)/axo aji(x)/axl aj&(x)/aX2
afé(x)/axo afé(x)/axl afﬁ(x)/BXQ

Jr = (4.133)

which we can implement as follows:

Listing 4.68: in file: nlib.py

: def jacobian(f, x, h=le-4):
2 partials = [partial(f,c,h)(x) for c in xrange(len(x))]
3 return Matrix(len(partials[0]),len(x),fill=lambda r,c: partials[cl[r])

Here is an example:
Listing 4.69: in file: nlib.py
1 >>> def f(x): return (2.0xx[0]+3.0%x[1]+5.0*x[1]xx[2], 2.0*x[0])

> >>> print jacobian(f, x=(1,1,1))
5 [[1.9999999..., 7.999999..., 4.9999999...], [1.9999999..., 0.0, 0.0]]

4.8.2 Newton method (solver)

We can now solve eq. ?? iteratively as we did for the one-dimensional
Newton solver with only one change—the first derivative of f is replaced
by the Jacobian:

Listing 4.70: in file: nlib.py
: def solve_newton_multi(f, x, ap=le-6, rp=le-4, ns=20):
3 Computes the root of a multidimensional function f near point x.
5 Parameters
6 f is a function that takes a list and returns a scalar

7 x is a list

9 Returns x, solution of f(x)=0, as a list

11 n = len(x)
12 X = Matrix(len(x))
13 for k in xrange(ns):

14 fx = Matrix(f(x.flatten()))



N

1

206 ANNOTATED ALGORITHMS IN PYTHON

J = jacobian(f,x.flatten())
if norm(J) < ap:
raise ArithmeticError('unstable solution')
(x_old, x) = (x, x-(1.0/3)*fx)
if k>2 and norm(x-x_old)<max(ap,norm(x)*rp): return x.flatten()
raise ArithmeticError('no convergence')

Here is an example:

Listing 4.71: in file: nlib.py
>>> def f(x): return [x[0]+x[1], x[0]+x[1]*x2-2]
>>> print solve_newton_multi(f, x=(0,0))
[1.0..., -1.0...]

4.8.3 Newton method (optimize)

As for the one-dimensional case, we can approximate f(x) with its Taylor
expansion at the first order,

f(x) = f(%) + V(%) (x = %) + 5 (x = %) Hf (%) (x = %) (4-134)
set its derivative to zero, and solve it, thus obtaining
x=x-H;'Vy (4.135)
which constitutes the core of the multidimensional Newton optimizer:

Listing 4.72: in file: nlib.py
def optimize newton_multi(f, x, ap=le-6, rp=le-4, ns=20):

Finds the extreme of multidimensional function f near point x.

Parameters
f is a function that takes a list and returns a scalar
x 1s a list

Returns x, which maximizes of minimizes f(x)=0, as a list
X = Matrix(list(x))
for k in xrange(ns):
(grad,H) = (gradient(f,x.flatten()), hessian(f,x.flatten()))
if norm(H) < ap:
raise ArithmeticError('unstable solution')
(x_old, x) = (x, x-(1.0/H)xgrad)
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if k>2 and norm(x-x_old)<max(ap,norm(x)*rp): return x.flatten()
raise ArithmeticError('no convergence')

Listing 4.73: in file: nlib.py
>>> def f(x): return (x[0]-2)**2+(x[1]-3)**2
>>> print optimize_newton_multi(f, x=(0,0))
[2.0, 3.0]

4.8.4 Improved Newton method (optimize)

We can further improve the Newton multidimensional optimizer by us-
ing the following technique. At each step, if the next guess does not
reduce the value of f, we revert to the previous point, and we perform
a one-dimensional Newton optimization along the direction of the gradi-
ent. This method greatly increases the stability of the multidimensional
Newton optimizer:

Listing 4.74: in file: nlib.py
def optimize newton_multi_imporved(f, x, ap=le-6, rp=le-4, ns=20, h=10.0):

Finds the extreme of multidimensional function f near point x.

Parameters
f is a function that takes a list and returns a scalar
x 1s a list

Returns x, which maximizes of minimizes f(x)=0, as a list
X = Matrix(list(x))
fx = f(x.flatten())
for k in xrange(ns):
(grad,H) = (gradient(f,x.flatten()), hessian(f,x.flatten()))
if norm(H) < ap:
raise ArithmeticError('unstable solution')
(fx_old, x_old, x) = (fx, x, x-(1.0/H)*grad)
fx = f(x.flatten())
while fx>fx old: # revert to steepest descent
(fx, x) = (fx_old, x_old)
norm_grad = norm(grad)
(x_old, x) = (x, x - grad/norm_gradxh)
(fx_old, fx) = (fx, f(x.flatten()))
h = h/2
h = norm(x-x_old)*2
if k>2 and h/2<max(ap,norm(x)*rp): return x.flatten()
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raise ArithmeticError('no convergence')

4.9 Nonlinear fitting

Finally, we have all the ingredients to implement a very generic fitting
function that will work linear and nonlinear least squares.

Here we consider a generic experiment or simulated experiment that gen-
erates points of the form (x;,y; £ dy;). Our goal is to minimize the x2
defined as

f(xj,a, b)
(Syl

=y |”

i

(4.136)

where the function f is known but depends on unknown parameters a =
(ap,a1,...) and b = (bg, by, ...). In terms of these parameters, the function
f can be written as follows:

f(x,a,b) Za]f] x,b) (4-137)

Here is an example:
f(x,a,b) = age 0% 4 ge X gy t2X 4 (4.138)

The goal of our algorithm is to efficiently determine the parameters a and
b that minimize the x2.

We proceed by defining the following two quantities:

Yo / dyo

/6
z= | N (4-139)
Y2/ 6y>
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and

fo(xo,b)/dy0  fi(x0,b)/dy0  f2(x0,b)/dyo
A(b) = fo(x1,b)/6y1 fi(x1,b)/0y1  fa(x1,b) /61

(4.140)
fo(x2,0)/0y2  fi(x2,b)/0y2  fa(x2,b)/dy2 i
In terms of A and z, the x* can be rewritten as
x*(a,b) = |A(b)a —z| (4-141)

We can minimize this function in 4 using the linear least squares algo-
rithm, exactly:

a(b) = (A(b)A(b)") " (A(b)'2) (4-142)

We define a function that returns the minimum x? for a fixed input b:

g(b) = minx*(a,b) = x*(a(b),b) = |A(b)a(b) - 2’ (4-143)

Therefore we have reduced the original problem to a simple problem by
reducing the number of unknown parameters from N; + N}, to Nj.

The following code takes as input the data as a list of (x;,y;,dy;), a list
of functions (or a single function), and a guess for the b values. If the fs
argument is not a list but a single function, then there is no a to compute,
and the function proceeds by minimizing the x? using the improved New-
ton optimizer (the one-dimensional or the improved multidimensional
one, as appropriate). If the argument b is missing, then the fitting pa-
rameters are all linear, and the algorithm reverts to regular linear least
squares. Otherwise, run the more complex algorithm described earlier:

Listing 4.75: in file: nlib.py
. def fit(data, fs, b=None, ap=le-6, rp=le-4, ns=200, constraint=None):
if not isinstance(fs, (list,tuple)):
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def g(b, data=data, f=fs, constraint=constraint):

chi2 = sum(((y-f(b,x))/dy)**2 for (x,y,dy) in data)
if constraint: chi2+=constraint(b)
return chi2

if isinstance(b, (list,tuple)):

b = optimize_newton_multi_imporved(g,b,ap,rp,ns)

else:

b = optimize_newton(g,b,ap, rp,ns)

return b, g(b,data,constraint=None)

elif not b:
a, chi2, ff = fit_least_squares(data, fs)
return a, chi2

else:

na

= len(fs)

def core(b,data=data, fs=fs):

A = Matrix([[fs[k](b,x)/dy for k in xrange(na)l \
for (x,y,dy) in data])

z = Matrix([[y/dy] for (x,y,dy) in data])

a = (1/(A.T*A))*(A.Txz)

chi2 = norm(Axa-z)*x*2
return a.flatten(), chi2

def g(b,data=data, fs=fs,constraint=constraint):

b

a, chi2 = core(b, data, fs)
if constraint:
chi += constraint(b)
return chi2
= optimize_newton_multi_imporved(g,b,ap,rp,ns)

a, chi2 = core(b,data,fs)
return a+b,chi2

Here is an example:

>>> data [(i, i+2.0%1i%%2+300.0/(i+10), 2.0) for i in xrange(1,10)]

>>> fs = [(lambda b,x: x), (lambda b,x: xxx), (lambda b,x: 1.0/(x+b[0]))]
>>> ab, chi2 = fit(data,fs,[5])

>>> print ab, chi2

[0.999..., 2.000..., 300.000..., 10.000...]

In the preceding implementation, we added a somewhat mysterious argu-
ment constraint. This is a function of b, and its output gets added to the
value of x2, which we are minimizing. By choosing the appropriate func-
tion, we can set constraints about the expected values b. These constraints
represent a priori knowledge about the parameters, that is, knowledge

that does not come from the data being fitted.

For example, if we know that b; must be close to some b; with some

uncertainty Jdb;, then we can use
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def constraint(b, bar_b, delta_b):
return sum(((b[i]-bar_b[i])/delta_b[i])=**2 for i in xrange(len(b)))

and pass the preceding function as a constraint. From a practical effect,
this stabilizes our fit. From a theoretical point of view, the b; are the priors
of Bayesian statistics.

4.10 Integration

Consider the integral of f(x) for x in domain [a,b], which we normally
represent as

b
I= /a f(x)dx (4-144)

and which measures the area under the curve y = f(x) delimited on the
left by x = a and on the right by x = b.

f(x)

fla) —f I

/ a X b

Figure 4.8: Visual representation of the concept of an integral as the area under a curve.

As we did in the previous subsection, we can approximate the possible
values taken by x as discrete values x = hi, where h = (b —a)/n. At those
values, the function f evaluates to f; = f(hi). Thus the integral can be
approximated as a sum of trapezoids:

i<n h
=) 5 (fit+ fia) (4-145)

i=0
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fx) \

Io I I.

f(X0)

/ Xo X, X, X3

Figure 4.9: Visual representation of the trapezoid method for numerical integration.

If a function is discontinuous only in a finite number of points in the
domain [a, ], then the following limit exists:

lim I, = I (4.146)

n—oo

We can implement the naive integration as a function of N as follows:

Listing 4.76: in file: nlib.py
def integrate_naive(f, a, b, n=20):
Integrates function, f, from a to b using the trapezoidal rule
>>> from math import sin
>>> integrate(sin, 0, 2)
1.416118...
a,b= float(a),float(b)
h = (b-a)/n
return h/2x(f(a)+f(b))+hxsum(f(a+h*i) for i in xrange(1,n))

And here we implement the limit by doubling the number of points until
convergence is achieved:

Listing 4.77: in file: nlib.py
def integrate(f, a, b, ap=le-4, rp=le-4, ns=20):
Integrates function, f, from a to b using the trapezoidal rule
converges to precision
I = integrate_naive(f,a,b,1)
for k in xrange(1l,ns):



NUMERICAL ALGORITHMS 213

8 I old, I =1I, integrate_naive(f,a,b,2x*xk)
9 if k>2 and norm(I-I_old)<max(ap,norm(I)*rp): return I
10 raise ArithmeticError('no convergence')

We can test the convergence as follows:

Listing 4.78: in file: nlib.py
+ >>> from math import sin, cos
> >>> print integrate_naive(sin,0,3,n=2)
3 1.6020...
4+ >>> print integrate_naive(sin,0,3,n=4)
5 1.8958...
6 >>> print integrate_naive(sin,0,3,n=8)
7 1.9666. ..
g >>> print integrate(sin,0,3)
9 1.9899...
10 >>> print 1.0-cos(3)
11 1.9899...

4.10.1 Quadrature

In the previous integration, we divided the domain [4, b] into subdomains,
and we computed the area under the curve f in each subdomain by ap-
proximating it with a trapezoid; for example, we approximated the func-
tion in between x; and x;;; with a straight line. We can do better by
approximating the function with a polynomial of arbitrary degree n and
then compute the area in the subdomain by explicitly integrating the poly-
nomial.

This is the basic idea of quadrature. For a subdomain delimited by (0,1),
we can impose

01 ldx  =h =Y c(i/n)° (4.147)
/01 xdx =h?/2 = Zci(i/n)l (4.148)
(4.149)

1
/0 "ldx =n"'/n = Zci(i/n)2 (4.150)

where ¢; are coefficients to be determined:
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Listing 4.79: in file: nlib.py

: class QuadratureIntegrator:
3 Calculates the integral of the function f from points a to b
4 using n Vandermonde weights and numerical quadrature.

6 def __init__(self,order=4):

7 h =1.0/(order-1)

8 A = Matrix(order, order, fill = lambda r,c: (cxh)x*xr)

9 s = Matrix(order, 1, fill = lambda r,c: 1.0/(r+l))

10 w = (1/A)x*s

11 self.w =w

12 def integrate(self,f,a,b):

13 w = self.w

14 order = len(w.rows)

15 h = float(b-a)/(order-1)

16 return (b-a)*sum(w[i,0]*f(a+ixh) for i in xrange(order))

s def integrate_quadrature_naive(f,a,b,n=20,order=4):

19 a,b = float(a), float(b)

20 h float(b-a)/n

21 g = QuadratureIntegrator(order=order)

22 return sum(q.integrate(f,a+ixh,a+ixh+h) for i in xrange(n))

Here is an example of usage:

Listing 4.80: in file: nlib.py

>>> from math import sin

> >>> print integrate_quadrature_naive(sin,0,3,n=2,order=2)
1.60208248595

4 >>> print integrate_quadrature_naive(sin,0,3,n=2,order=3)
1.99373945223

>>> print integrate_quadrature_naive(sin,0,3,n=2,order=4)
7 1.99164529955

w

w

o
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4.11 Fourier transforms

A function with a domain over a finite interval [4, b] can be approximated
with a vector. For example, consider a function f(x) with domain [0, T].
We can sample the function at points x; = a + (b —a)k/N and represent
the discretized function with a vector

up = {cf(x0), cf (x1), ¢f (x2), .cf (xn)} (4.151)

where ¢ is an arbitrary constant that we choose to be ¢ = /(b —a)/N.
This choice simplifies our later algebra. Summarizing, we define

b—
U = Naf(xk) (4.152)

Given any two functions, we can define their scalar product as the limit
of N — oo of the scalar product between their corresponding vectors:

o .. b—a
f-g= Jim up-ug = lim — ;f(xk)g(xk) (4.153)

Using the definition of integral, it can be proven that, in the limit N — oo,
this is equivalent to

fog= [ fst (4150

This is because we have chosen ¢ such that ¢? is the width of a rectangle
in the Riemann integration.

From now on, we will omit the f subscript in u and simply use different
letters for vectors representing different sampled functions (u, v, b, etc.).

Because we are interested in numerical algorithms, we will keep N finite
and work with the sum instead of the integral.

Given a fixed N, we can always find N vectors by, by...by, that are linearly
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independent, normalized, and orthogonal, that is,

b;-b; =) byby = 5 (4.155)
K

Here bjy is the k component of vector b; and §;; is the Kroneker delta
defined as o when i # j and 1 when i == .

Any set of vectors {b;} meeting the preceding condition is called an or-
thonormal basis. Any other vector u can be represented by its projections
over the basis vectors:

uj =y o;bj; (4.156)
i

where v; is the projection of u along b;, which can be computed as

vj =Y _u;bjj (4.157)
i

In fact, by direct substitution, we obtain

o = Ly (4.158)
= ;(Zvibik)bjk (4-159)
= Zvil(zbikbjk) (4.160)
- ivi&ifk (4.161)
- vlf (4.162)

In other words, once we have a basis of vectors, the vector u can be rep-
resented in terms of the vector v of v; coefficients and, conversely, v can
be computed from u; u and v contain the same information.
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The transformation from u to v, and vice versa, is a linear transformation.

We call TT the transformation from u to v and T~ its inverse:

v="T"(u) u=

T (v) (4.163)

From the definition, and without attempting any optimization, we can

implement these operators as follows:

def transform(u,b):

return [sum(u[k]*bi[k] for k in xrange(len(u))) for bi in b]

def antitransform(v,b):

return [sum(v[i]*bi[k] for i,bi in enumerate(b)) for k in xrange(len(v))]

Here is an example of usage:

>>> def make_basis(N):
>>>
>>> b = make_basis(4)
>>> print b

[r1, e, o, o1, o, 1, 0, 01, [0, 0, 1, 0],
[1.0, 2.0, 3.0, 4.0]

>>> U =

>>> v = transform(u,b)

>>> print antitransform(v,b)

[1.0, 2.0, 3.0, 4.0]

return [[1 if i==] else O for i in xrange(N)] for j in xrange(N)]

(e, o, 0, 111

Of course, this example is trivial because of the choice of basis which

makes v the same as u. Yet our argument works for any basis b;. In

particular, we can make the following choice:

L onnij/N
bji = e/

VT (4.164)

where [ is the imaginary unit. With this choice, the T™ and T~ functions

become

Yj

= N~z 3 uje2 /N (4.165)

1

_ -1 ,—2mlij/N
= N~2) ve
j

(4.166)

and they take the names of Fourier transform and anti-transform [? ],
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respectively; we can implement them as follows:

from cmath import exp as cexp

def fourier(u, sign=1):
N, D = len(u), xrange(len(u))
coeff, omega = 1.0/sqrt(N), 2.0xpixsignx(1j)/N
return [sum(coeffxu[i]*cexp(omegaxixj) for i in D) for j in D]

def anti_fourier(v):
return fourier(v, sign=-1)

Here 1j is the Python notation for I and cexp is the exponential function
for complex numbers.

Notice how the transformation works even when u is a vector of complex
numbers.

Something special happens when u is real:

Re(vj) = +Re(vy—j-1) (4.167)
Im(v;)) = —Im(on_j1) (4.168)

We can speed up the code even more using recursion and by observing
that if N is a power of 2, then

1 i)j
vj = N2 Zuziezﬂl(m)]/l\] + (4.169)
1
N Zu2i+1ezn1(2i+1)j/N (4.170)
i
= 2_% (U;UEH + eZn]/Nv;f'Uﬁ’”) (4.171)

where v]?”e” is the Fourier transform of the even terms and v;?dd is the
Fourier transform of the odd terms.

The preceding recursive expression can be implemented using dynamic
programming, thus obtaining

from cmath import exp as cexp

def fast_fourier(u, sign=1):
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N, sqrtN, D = len(u), sqrt(len(u)), xrange(len(u))
v = [ui/sqrtN for ui in u]
k = N/2
while k:
omega = cexp(2.0xpix1jxk/N)
for i in D:
j=1i~k
if 1 < k:
ik, jk = int(i/k), int(j/k)
v[il, v[j] = v[i]+(omegax*ik)*v[j], v[i]+(omegax*jk)*v[j]
k/=2
return v

def fast_anti_fourier(v):
return fast_fourier(v, sign=-1)

This implementation of the Fourier transform is equivalent to the previ-
ous one in the sense that it produces the same result (up to numerical
issues), but it is faster as it runs in ®(N log, N) versus ©(N?) of the naive
implementation. Here i ~ j is a binary operator, specifically a XOR. For
each binary digit of i, it returns a flipped bit if the corresponding bit in j
is 1. For example:

i : 10010010101110
j : 00010001000010
i”j: 10000011001110

4.12 Differential equations

In this section, we deal specifically with differential equations of the fol-
lowing form:

f0f (x) + /() + anf" () + . = g(x) (4172)
where f(x) is an unknown function to be determined; f/, f”, and so on,

are its derivatives; a; are known input coefficients; and g(x) is a known
input function:

f(x) = 4f'(x) + f(x) = sin(x) (4-173)
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In this case, a3(x) =1, a1(x) = —4, ap(x) = 1, and g(x) = sin(x).

This can be solved using Fourier transforms by observing that if the
Fourier transform of f(x) is f(y), then the Fourier transform of f’(x)

is iy f(y).

Hence, if we Fourier transform both the left and right side of

;akf(k)(x) = g(x) (4-174)
we obtain
(; ar(iy))f(y) = &(v) (4.175)

therefore f(x) is the anti-Fourier transform of

)~ 8W) )
fly) = T a0 (4-176)

In one equation, the solution of eq. ?? is

fa) =T (T*(2)/ (L a(iy)")) (4-177)

k

This is fine and useful when the Fourier transformations are easy to com-
pute.

A more practical numerical solution is the following. We define

yi(x) = f9(x) (4.178)

and we rewrite the differential equation as
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Yo = »n (4.179)
Vi = 1 (4.180)
Vo = Y3 (4.181)
(4.182)
yno1 = yn=(8(x) = ) axyi(x))/an(x) (4.183)
k<N
or equivalently
y' = E(y) (4.184)
where
n
W
Fly) =y + Y3 (4.185)

(9(x) - Tron ax(x)1e(x)) /an (x)

The naive solution is due to Euler:

y(x+h) =y(x)+ hF(y, x) (4.186)

The solution is found by iterating the latest equation. Here & is an arbi-
trary discretization step. Euler’s method works even if the a; coefficients
depend on x.

Although the Euler integrator works in theory, its systematic error adds
up and does not disappear in the limit # — 0. More accurate integra-
tors are the Runge—Katta and the Adam-Bashforth. In the fourth-order
Runge—Katta, the classical Runge—Katta method, we also solve the differen-
tial equation by iteration, except that eq. ?? is replaced with

y(x+h) =y(x) + h/6(ky + 2ky + 2ks + ky) (4.187)
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where
ki = FE(yx) (4.188)
ky = F(y+hki/2,x+h/2) (4.189)
ks = F(y+hky/2,x+h/2) (4.190)
ks = F(y-+hks,x+h) (4.191)



5
Probability and Statistics

5.1 Probability

Probability derives from the Latin probare (to prove or to test). The word
probably means roughly “likely to occur” in the case of possible future
occurrences or “likely to be true” in the case of inferences from evidence.
See also probability theory.

What mathematicians call probability is the mathematical theory we use
to describe and quantify uncertainty. In a larger context, the word prob-
ability is used with other concerns in mind. Uncertainty can be due to
our ignorance, deliberate mixing or shuffling, or due to the essential ran-
domness of Nature. In any case, we measure the uncertainty of events on
a scale from zero (impossible events) to one (certain events or no uncer-
tainty).

There are three standard ways to define probability:

¢ (frequentist) Given an experiment and a set of possible outcomes S, the
probability of an event A C S is computed by repeating the experiment
N times, counting how many times the event A is realized, N4, then
taking the limit

Prob(A) = Z%im % (5.1)
—00
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This definition actually requires that one performs an experiment, if
not an infinite, then a number of times.

® (a priori) Given an experiment and a set of possible outcomes S with
cardinality ¢(S), the probability of an event A C S is defined as

Prob(A) = i((?)) (5.2)

This definition is ambiguous because it assumes that each “atomic”
event x € S has the same a priori probability and therefore the def-
inition itself is circular. Nevertheless we use this definition in many
practical circumstances. What is the probability that when rolling a
dice we will get an even number? The space of possible outcomes is
5$=1{1,2,3,4,5,6} and A = {2,4,6} therefore Prob(A) = c(A)/c(S) =
3/6 = 1/2. This analysis works for an ideal die and ignores the fact
that a real dice may be biased. The former definition takes into account
this possibility, whereas the latter does not.

* (axiomatic definition) Given an experiment and a set of possible out-
comes S, the probability of an event A C S is a number Prob(A) € [0, 1]
that satisfies the following conditions: Prob(S) = 1; Prob(A; U Ay) =
PI‘Ob(Al) + PI‘Ob(Az) if AiNA, =0.

In some sense, probability theory is a physical theory because it applies
to the physical world (this is a nontrivial fact). While the axiomatic defi-
nition provides the mathematical foundation, the a priori definition pro-
vides a method to make predictions based on combinatorics. Finally the
frequentist definition provides an experimental technique to confront our
predictions with experiment (is our dice a perfect dice, or is it biased?).

We will differentiate between an “atomic” event defined as an event that
can be realized by a single possible outcome of our experiment and a
general event defined as a subset of the space of all possible outcomes. In
the case of a dice, each possible number (from 1 to 6) is an event and is
also an atomic event. The event of getting an even number is an event but
not an atomic event because it can be realized in three possible ways.

The axiomatic definition makes it easy to prove theorems, for example,
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IfS=AUA and AN A° = 0 then Prob(A) = 1 — Prob( A°)

Python has a module called random that can generate random numbers,
and we can use it to perform some experiments. Let’s simulate a dice
with six possible outcomes. We can use the frequentist definition:

Listing 5.1: in file: nlib.py
>>> import random
>>> S = [1,2,3,4,5,6]
>>> def Prob(A, S, N=1000):
56 return float(sum(random.choice(S) in A for i in xrange(N)))/N
>>> Prob([6],S)
0.166
>>> Prob([1,2],S)
0.308

Here Prob(A) computes the probability that the event is set A using N=1000
simulated experiments. The random.choice function picks one of the
choices at random with equal probability.

We can compute the same quantity using the a priori definition:

Listing 5.2: in file: nlib.py
>>> def Prob(A, S): return float(len(A))/len(S)
>>> Prob([6],S)
0.16666666666666666
>>> Prob([1,2],S)

5 0.3333333333333333

As stated before, the latter is more precise because it produces results for
an “ideal” dice while the frequentist’s approach produces results for a
real dice (in our case, a simulated dice).

5.1.1 Conditional probability and independence

We define Prob(A|B) as the probability of event A given event B, and we

write
Prob(AB)

Prob(B)
where Prob(AB) is the probability that A and B both occur and Prob(B) is
the probability that B occurs. Note that if Prob(A|B) = Prob(A), then we
say that A and B are independent. From eq.(??) we conclude Prob(AB) =

Prob(A|B) = (5.3)
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Prob(A)Prob(B); therefore the probability that two independent events
occur is the product of the probability that each individual event occurs.

We can experiment with conditional probability using Python. Let’s con-
sider two dices, X and Y. The space of all possible outcomes is given by
S2 = S x S. And we are interested in the probability of the second die
giving a 6 given that the first dice is also a 6:

Listing 5.3: in file: nlib.py

>>> def cross(u,v): return [(i,j) for i in u for j in v]

> >>> def Prob_conditional(A, B, S): return Prob(cross(A,B),cross(S,S))/Prob(B,S)

ENE

>>> Prob_conditional([6],[6],S)
0.16666666666666666

Because we are only considering cases in which the second die is 6, we
will pretend that when the second die is 1 through 5 didn’t occur. Not
surprisingly, we find that Prob_conditional([6],[61,S) produces the same
result as Prob([6],S) because the two dices are independent.

In fact, we say that two sets of events A and B are independent if and only
if P(A|B) =P(A).

5.1.2 Discrete random variables

If S is in the space of all possible outcomes of an experiment and we
associate an integer number X to each element of S, we say that X is a
discrete random variable. If X is a discrete variable, we define p(x), the
probability mass function or distribution, as the probability that X = x:

p(x) = Prob(X = x) (5.4

We also define the expectation value of any function of a discrete random
variable f(X) as

E[f(X)] =} f(xi)p(xi) (5.5)

where i loops all possible variables x; of the random variable X.

For example, if X is the random variable associated with the outcome of
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rolling a dice, p(x) =1/6if x =1,2,3,4,5 or 6 and p(x) = 0 otherwise:

1
EX] =) xip(x;) = Y Xig =35 (5.6)
i x€{1,234,56}
and
E[(X=35)% =Y (x; —35)%p(x;) = Yo (- 3.5)2% = 29167
i x;€{1,2,3,4,56}

(5.7)

We call E[X] the mean of X and usually denote it with ux. We call E[(X —
1ix)?] the variance of X and denote it with 0%. Note that

ox = E[X?] — E[X]? (5.8)

For discrete random variables, we can implement these definitions as fol-
lows:

Listing 5.4: in file: nlib.py
def E(f,S): return float(sum(f(x) for x in S))/(len(S) or 1)
def mean(X): return E(lambda x:x, X)
def variance(X): return E(lambda x:xxx2, X) - E(lambda x:x, X)x**2
def sd(X): return sqrt(variance(X))

which we can test with a simulated experiment:

Listing 5.5: in file: nlib.py
>>> S = [random.random()+random.random() for i in xrange(100)]
>>> print mean(S)
1.000...
>>> print sd(S)
0.4...

As another example, let’s consider a simple bet on a dice. We roll the dice
once and win $20 if the dice returns 6; we lose $5 otherwise:

Listing 5.6: in file: nlib.py
>>> S = [1,2,3,4,5,6]
>>> def payoff(x): return 20.0 if x==6 else -5.0

3 >>> print E(payoff,S)

-0.83333...

The average expected payoff is —0.83..., which means that on average, we
should expect to lose 83 cents at this game.
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5.1.3 Continuous random variables

If S is the space of all possible outcomes of an experiment and we associate
a real number X with each element of S, we say that X is a continuous
random variable. We also define a cumulative distribution function F(x) as
the probability that X < x:

F(x) = Prob(X < x) (5.9)
If S is a continuous set and X is a continuous random variable, then we

define a probability density or distribution p(x) as

pla) =

(5.10)

and the probability that X falls into an interval [a, b] can be computed as
b

Prob(a < X <b) = / p(x)dx (5.11)
a

We also define the expectation value of any function of a random variable
f(X) as
EF(0] = [ flop(x)dx (512)

For example, if X is a uniform random variable (probability density p(x)
equal to 1 if x € [0,1], equal to 0 otherwise)

) 1
E[X] = [m xp(x)dx :/o xdx = % (5.13)

and
1

ElX— 5P = [ (== [[(#—x+ Pix =5 (514)

We call E[X] the mean of X and usually denote it with pux. We call E[(X —
1x)?] the variance of X and denote it with 0%. Note that

0% = E[X?] — E[X]? (5.15)
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By definition,

F(c0) =Prob(X <o0) =1 (5.16)
therefore o
Prob(—oc0 < X < o0) = / p(x)dx =1 (5.17)

The distribution p is always normalized to 1.

Moreover,

EaX+b] = /jo (ax +b)p(x)dx (5.18)
= a /j:o xp(x)dx+b /j:o p(x)dx (5.19)
= aE[X]+0D (5.20)

therefore E[X] is a linear operator.

One important consequence of all these formulas is that if we have a
function f and a domain [g, b], we can compute its integral by choosing p
to be a uniform distribution with values exclusively between a and b:

B = [ fpe = 5 [ fox (521

We can also compute the same integral by using the definition of expec-
tation value for a discrete distribution:

E[f] = L fGp(x) = 5 L f(xi) (5.22)
Xi Xi
where x; are N random points drawn from the uniform distribution p

defined earlier. In fact, in the large N limit,

0 b
lim S ) = [ fopdr= 2 [fwdx s2)

We can verify the preceding relation numerically for a special case:
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Listing 5.7: in file: nlib.py
>>> from math import sin, pi
>>> def integrate_mc(f,a,b,N=1000):
return sum(f(random.uniform(a,b)) for i in xrange(N))/Nx(b-a)
>>> print integrate_mc(sin,@,pi,N=10000)
2.000....

This is the simplest case of Monte Carlo integration, which is the subject
of a following chapter.
5.1.4 Covariance and correlations

Given two random variables, X and Y, we define the covariance (cov) and
the correlation (corr) between them as

cov(X,Y) = E[(X—ux)(Y —py)] = E[XY] - E[X]E[Y] (5.24)
corr(X,Y) = cov(X,Y)/(oxoy) (5.25)

Applying the definitions:

EIXY] = / / xyp(x,y)dxdy (5.26)
= / / xyp(x)p(y)dxdy (5.27)
= { / xp(x)dx} { / yp(y)dy} (5.28)
= E[X]E[Y] (5.29)

therefore
cov(X,Y) = E[XY] —E[X]E[Y] =0 (5.30)

Therefore
0%iy = 0% + 0% +2cov(X,Y) (5.31)

and if X and Y are independent, then cov(X,Y) = corr(X,Y) = 0.

Notice that the reverse is not true. Even if the correlation and the covari-
ance are zero, X and Y may be dependent.
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Moreover,
cov(X,Y) = E[X—ux)(Y —py)] (5.32)
E[(X — px)(£X F px)] (5.33)
TE[(X — px) (X — px)] (5:34)
= oy (5.35)

Therefore, if X and Y are completely correlated or anti-correlated (Y =
+X), then cov(X,Y) = +0% and corr(X,Y) = +1. Notice that the corre-
lation lies always in the range [—1,1].

Finally, notice that for uncorrelated random variables X;,
E[) a;X;] = ) aE[X]] (5-36)
i i
E[(X)% = Y EXP) (5:37)
1 1

We can define covariance and correlation for discrete distributions:

Listing 5.8: in file: nlib.py
def covariance(X,Y):
return sum(X[i]xY[i] for i in xrange(len(X)))/len(X) - mean(X)x*mean(Y)
def correlation(X,Y):
return covariance(X,Y)/sd(X)/sd(Y)

Here is an example:

Listing 5.9: in file: nlib.py

>>> X = []
>>> Y = []
>>> for i in xrange(1000):

u = random.random()

X.append (u+random. random())
Cs Y.append (u+random. random())
>>> print mean(X)
0.989780352018
>>> print sd(X)
0.413861115381
>>> print mean(Y)

> 1.00551523013

>>> print sd(Y)
0.404909628555
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>>> print covariance(X,Y)

s 0.0802804358268

>>> print correlation(X,Y)
0.479067813484

5.1.5 Strong law of large numbers

If X3, X»,...X, are a sequence of independent and identically distributed
random variables with E[X;] = p and finite variance, then

X1+ X+ L+ Xy
lim

n—00 n

= (5-38)

This theorem means that “the average of the results obtained from a large
number of trials should be close to the expected value, and will tend to
become closer as more trials are performed.” The name of this law is due
to Poisson [? ].

5.1.6 Central limit theorem

This is one of the most important theorems concerning distributions [? ]:
if Xy, Xy,...X, are a sequence of random variables with finite means, y;,
and finite variance, (71.2, then
1 i<N
Y = lim N Y X (5.39)
i=0

N—oc0

follows a Gaussian distribution with mean and variance:

1 iiV
po= lim =) (5.40)
N—oo N =0
2 1 ii\] 2
o = lim — o (5.41)
N—oo N i20 :

We can numerically verify this for the simple case in which X; are uniform
random variables with mean equal to o:
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Listing 5.10: in file: nlib.py

def added_uniform(n): return sum([random.uniform(-1,1) for i in xrange(n)l)/
n
def make_set(n,m=10000): return [added_uniform(n) for j in xrange(m)]
Canvas(title='Central Limit Theorem',xlab='y',ylab="p(y)"

) .hist(make_set(1l),legend='N=1").save('images/centrall.png")
Canvas(title='Central Limit Theorem',xlab='y',ylab="p(y)"

) .hist(make_set(2),legend="'N=2").save('images/central3.png")
Canvas(title='Central Limit Theorem',xlab='y',ylab="p(y)"

) .hist(make_set(4),legend='N=4").save('images/central4.png")
Canvas(title='Central Limit Theorem',xlab='y',ylab="p(y)"

) .hist(make_set(8),legend='N=8").save('images/central8.png")

600 Central Limit Theorem 1000 Central Limit Theorem

ply)

Central Limit Theorem Central Limit Theorem
1400 1600

% 05 00 05 10 05 08
y

Figure 5.1: Example of distributions for sums of 1, 2, 4, and 8 uniform random variables.
The more random variables are added, the better the result approximates a Gaussian
distribution.

This theorem is of fundamental importance for stochastic calculus. Notice

that the theorem does not apply when the X; follow distributions that do

not have a finite mean or a finite variance.

Distributions that do not follow the central limit are called Levy distribu-
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tions. They are characterized by fat tails for the form

1

x50 |x|1+0t’

p(x) O<a<2 (5-42)

An example if the Pareto distribution.

5.1.7 Error in the mean

One consequence of the Central Limit Theorem is a useful formula for
evaluating the error in the mean. Let’s consider the case of N repeated
experiments with outcomes X;. Let’s also assume that each X; is supposed
to be equal to an unknown value y, but in practice, X; = y + ¢, where ¢ is
a random variable with Gaussian distribution centered at zero. One could
estimate y by u = E[X] = %ZZXZ-. In this case, statistical error in the mean
is given by
2
op = % (5.43)

where 02 = E[(X — u)?] = %Zi(xi — )2

5.2 Combinatorics and discrete random variables

Often, to compute the probability of discrete random variables, one has
to confront the problem of calculating the number of possible finite out-
comes of an experiment. Often this problem is solved by combinatorics.

5.2.1 Different plugs in different sockets

If we have n different plugs and m different sockets; in how many ways
can we place the plugs in the sockets?

e Case 1, n > m. All sockets will be filled. We consider the first socket,
and we can select any of the n plugs (n combinations). We consider
the second socket, and we can select any of the remaining n — 1 plugs
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(n — 1 combinations), and so on, until we are left with no free sockets
and n — m unused plugs; therefore there are

n/(n—m)!=nn—-1)(n—-2)..(n—m+1) (5-44)

combinations.

* Case 2, n < m. All plugs have to be used. We consider the first plug,
and we can select any of the m sockets (m combinations). We consider
the second plug, and we can select any of the remaining m — 1 sockets
(m — 1 combinations), and so on, until we are left with no spare plugs
and m — n free sockets; therefore there are

m!/(m—n)!=m(m—1)(m—2)..(m—n-+1) (5.45)

combinations. Note that if m = n then case 1 and case 2 agree, as
expected.

5.2.2 Equivalent plugs in different sockets

If we have n equivalent plugs and m different sockets, in how many ways
can we place the plugs in the sockets?

® Case 1, n > m. All sockets will be filled. We cannot distinguish one
combination from the other because all plugs are the same. There is
only one combination.

* Case 2, n < m. All plugs have to be used but not all sockets. There are
m!/(m — n)! ways to fill the sockets with different plugs, and there are
n! ways to arrange the plugs within the same filled sockets. Therefore

there are ,
m m!

(n) -~ (m—n)n! (546)
ways to place n equivalent plugs into m different sockets. Note that if
m=n '

n n!

= - = 1 .
<n> (n—n)in! (5.47)

in agreement with case 1.
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Here is another example. A club has 20 members and has to elect a

president, a vice president, a secretary, and a treasurer. In how many

different ways can they select the four officeholders? Think of each office

as a socket and each person as a plug; therefore the number combination

is 20!/ (20 — 4)! ~ 1.2 x 10°.

5.2.3 Colored cards

We have 52 cards, 26 black and 26 red. We shuffle the cards and pick

three.
* What is the probability that they are all red?

2 2 24 2
Prob(3red) = 5—2 X 5—? X 25 = 17

* What is the probability that they are all black?

Prob(3black) = Prob(3red) = -

* What is the probability that they are not all black or all red?

Prob(mixture) = 1 — Prob(3red U 3black)
= 1 — Prob(3red) — Prob(3black)
2
= 1-2-
BEE
17

(5-48)

(5-49)

(5.50)
(5-51)
(5-52)

(5-53)

Here is an example of how we can simulate the deck of cards using Python

to compute an answer to the last questions:

Listing 5.11: in file: tests.py

>>> def make_deck(): return [color for i in xrange(26) for color in ('red','
black')]
>>> def make_shuffled_deck(): return random.shuffle(make_deck())

>>> def pick three_cards(): return make_shuffled_deck()[:3]
>>> def simulate_cards(n=1000):
counter = 0
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for k in xrange(n):
c = pick_three_cards()
if not (c[0]==c[1] and c[1]==c[2]): counter += 1
. return float(counter)/n
>>> print simulate_cards()

5.2.4 Gambler’s fallacy

The typical error in computing probabilities is mixing a priori probabil-
ity with information about past events. This error is called the gambler’s
fallacy [? ]. For example, we consider the preceding problem. We see the
first two cards, and they are both red. What is the probability that the
third one is also red?

* Wrong answer: The probability that they are all red is Prob(3red) =
2/17; therefore the probability that the third one is also 2/17.

e Correct answer: Because we know that the first two cards are red,
the third card must belong to a set of (26 black cards + 24 red cards);
therefore the probability that it is red is

24 12

Prob(red) = 2126 25 (5-54)
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Random Numbers and Distributions

In the previous chapters, we have seen how using the Python random mod-
ule, we can generate uniform random numbers. This module can also
generate random numbers following other distributions. The point of this
chapter is to understand how random numbers are generated.

6.1 Randomness, determinism, chaos and order

Before we proceed further, there are four important concepts that should
be defined because of their implications:

* Randomness is the characteristic of a process whose outcome is un-
predictable (e.g., at the moment I am writing this sentence, I cannot
predict the exact time and date when you will be reading it).

¢ Determinism is the characteristic of a process whose outcome can be
predicted from the initial conditions of the system (e.g., if I throw a ball
from a known position, at a known velocity and in a known direction,
I can predict—calculate—its entire future trajectory).

® Chaos is the emergence of randomness from order [? ] (e.g., if I am
on the top of a hill and I throw the ball in a vertical direction, I cannot
predict on which side of the hill it is going to end up). Even if the
equations that describe a phenomenon are known and are determinis-
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tic, it may happen that a small variation in the initial conditions causes
a large difference in the possible deterministic evolution of the system.
Therefore the outcome of a process may depend on a tiny variation
of the initial parameters. These variations may not be measurable in
practice, thus making the process unpredictable and chaotic. Chaos is
generally regarded as a characteristic of some differential equations.

¢ Order is the opposite of chaos. It is the emergence of regular and
reproducible patterns from a process that, in itself, may be random or
chaotic (e.g., if I keep throwing my ball in a vertical direction from
the top of a hill and I record the final location of the ball, I eventually
find a regular pattern, a probability distribution associated with my
experiment, which depends on the direction of the wind, the shape of
the hill, my bias in throwing the ball, etc.).

These four concepts are closely related, and they do not necessarily come
in opposite pairs as one would expect.

A deterministic process may cause chaos. We can use chaos to gener-
ate randomness (we will see examples when covering random number
generation). We can study randomness and extract its ordered properties
(probability distributions), and we can use randomness to solve determin-
istic problems (Monte Carlo) such as computing integrals and simulating
a system.

6.2 Real randomness

Note that randomness does not necessarily come from chaos. Random-
ness exists in nature [? ][? ]. For example, a radioactive atom “decays”
into a different atom at some random point in time. For example, an
atom of carbon 14 decays into nitrogen 14 by emitting an electron and a
neutrino

B —MUNte +7, (6.1)
at some random time f; ¢ is unpredictable. It can be proven that the
randomness in the nuclear decay time is not due to any underlying deter-
ministic process. In fact, constituents of matter are described by quantum
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physics, and randomness is a fundamental characteristic of quantum sys-
tems. Randomness is not a consequence of our ignorance.

This is not usually the case for macroscopic systems. Typically the ran-
domness we observe in some macroscopic systems is not always a con-
sequence of microscopic randomness. Rather, order and determinism
emerge from the microscopic randomness, while chaos originates from
the complexity of the system.

Because randomness exists in nature, we can use it to produce random
numbers with any desired distribution. In particular, we want to use the
randomness in the decay time of radioactive atoms to produce random
numbers with uniform distribution. We assemble a system consisting of
many atoms, and we record the time when we observe atoms decay:

tO/ tl/ t2/ t3/ t4/ t5/ (62)

One could study the probability distribution of the t; and find that it
follows an exponential probability distribution like

Prob(t; = t) = Ae M (6.3)

where tg = 1/A is the decay time characteristic of the particular type of
atom. One characteristic of this distribution is that it is a memoryless
process: t; does not depend on t; 1 and therefore the probability that
t; > t;_ is the same as the probability that t; < t;_.

6.2.1 Memoryless to Bernoulli distribution

Given the sequence {t;} with exponential distribution, we can build a
random sequence of zeros and ones (Bernoulli distribution) by applying
the following formula, known as the Von Neumann procedure [? ]:

1 ift; >t
X = 6.
! { 0 otherwise (64)
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Note that the procedure can be applied to map any random sequence into
a Bernoulli sequence even if the numbers in the original sequence do not
follow an exponential distribution, as long as t; is independent of ¢; for
any j < i (memoryless distribution).

6.2.2 Bernoulli to uniform distribution

To map a Bernoulli distribution into a uniform distribution, we need to
determine the precision (resolution in number of bits) of the numbers we
wish to generate. In this example, we will assume 8 bits.

We can think of each number as a point in a [0,1) segment. We gener-
ate the uniform number by making a number of choices: we break the
segment in two and, according to the value of the binary digit (o or 1),
we select the first part or the second part and repeat the process on the
subsegment. Because at each stage we break the segment into two parts
of equal length and we select one or the other with the same probability,
the final distribution of the selected point is uniform. As an example, we
consider the Bernoulli sequence

01011110110101010111011010 (6.5)

and we perform the following steps:

® break the sequence into chunks of 8 bits
01011110-11010101-01110110-..... (6.6)

e map each chunk agayaya3a4asa¢a; into x = Z’,ﬁig 1, /2¥+1 thus obtain-
ing:

0.3671875 — 0.83203125 — 0.4609375 — ... (6.7)

A uniform random number generator is usually the first step toward
building any other random number generator.

Other physical processes can be used to generate real random numbers
using a similar process. Some microprocessors can generate random num-
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bers from random temperature fluctuations. An unpredictable source of
randomness is called an entropy source.

6.3 Entropy generators

The Linux/Unix operating system provides its own entropy source acces-
sible via “/dev/urandom.” This data source is available in Python via

os.urandom().

Here we define a class that can access this entropy source and use it to
generate uniform random numbers. It follows the same process outlined
for the radioactive days:

class URANDOM(object):
def __init__(self, data=None):
if data: open('/dev/urandom','wb"').write(str(data))
def random(self):
import os
n =16
random_bytes = os.urandom(n)
random_integer = sum(ord(random_bytes[k])*256%xk for k in xrange(n))
random_float = float(random_integer)/256**n
Notice how the constructor allows us to further randomize the data by
contributing input to the entropy source. Also notice how the random()
method reads 16 bites from the stream (using os.urandom()), converts each
into 8-bit integers, combines them into a 128-bit integer, and then converts

it to a float by dividing by 256°.

6.4 Pseudo-randomness

In many cases we do not have a physical device to generate random num-
bers, and we require a software solution. Software is deterministic, the
outcome is reproducible, therefore it cannot be used to generate random-
ness, but it can generate pseudo-randomness. The outputs of pseudo
random number generators are not random, yet they may be considered
random for practical purposes. John von Neumann observed in 1951 that
“anyone who considers arithmetical methods of producing random digits
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is, of course, in a state of sin.” (For attempts to generate “truly random”
numbers, see the article on hardware random number generators.) Never-
theless, pseudo random numbers are a critical part of modern computing,
from cryptography to the Monte Carlo method for simulating physical
systems.

Pseudo random numbers are relatively easy to generate with software,
and they provide a practical alternative to random numbers. For some
applications, this is adequate.

6.4.1 Linear congruential generator

Here is probably the simplest possible pseudo random number generator:

x; = (ax;j_q+c)modm (6.8)
yi = xi/m (6.9)

With the choice a = 65539, ¢ = 0, and m = 23!, this generator is called
RANDU. It is of historical importance because it is implemented in the
C rand() function. The RANDU generator is particularly fast because the
modulus can be implemented using the finite 32-bit precision.

Here is a possible implementation for ¢ = 0:

Listing 6.1: in file: nlib.py
class MCG(object):
def __init__(self,seed,a=66539,m=2**31):
self.x = seed
self.a, self.m=a, m
def next(self):
self.x = (self.axself.x) % self.m
return self.x
def random(self):
return float(self.next())/self.m

which we can test with

>>> randu = MCG(seed=1071914055)
>>> for i in xrange(10): print randu.random()
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The output numbers “look” random but are not truly random. Running
the same code with the same seed generates the same output. Notice the
following:

¢ PRNGs are typically implemented as a recursive expression that, given
x;_1, produces x;.

e PRNGs have to start from an initial value, x¢, called the seed. A typical
choice is to set the seed equal to the number of seconds from the con-
ventional date and time “Thu Jan o1 01:00:00 1970.” This is not always
a good choice.

* PRNGs are periodic. They generate numbers in a finite set and then
they repeat themselves. It is desirable to have this set as large as possi-
ble.

* PRNGs depend on some parameters (e.g., a and m). Some parameter
choices lead to trivial random number generators. In general, some
choices are better than others, and a few are optimal. In particular,
the values of a and m determine the period of the random number
generator. An optimal choice is the one with the longest period.

For a linear congruential generator, because of the mod operation, the pe-
riod is always less than or equal to m. When c is nonzero, the