MeetDockOne

Team 1 Scoring: A machine learning strategy

Paula Milán Rodríguez, François Gravey, Guillaume Delevoye, Ilyes Abdelhamid, Maxime Borry

Meet-U

a meeting story

MEET THE PROBLEMATIC

MEET US: PAULA'S ANGELS

MEET THE PIPELINE

MeetDockOne

Meet-U 2018

MEET THE SCORING

SCORING - RESIDUE DEPTH

Two methods :

MSMS -> adjustable cut-off (4Å by default)

NACCESS -> Accessible Surface Area (ASA) Surface identified by the residue whose relative ASA is at least 25% of the total residue surface.

Surface representation of 2ZA4

Statistical Potential

Glaser et al.'s knowledge-based method

Reference : Pons, C., Glaser, F., and Fernandez-Recio, J. (2011). Prediction of protein-binding areas by small-world residue networks and application to docking. BMC Bioinformatics 12:378.

Methodology:

- Characterizing unbound proteins as networks
- Using different topology measures to predict protein protein binding sites
- Integrating these measures in pyDock (a docking scoring algorithm based on physico-chemical terms

Combining pyDock and network-based scoring :

 $pyDockCloseness_P^d = pyDock_P + wCloseness_P^d$

Example of protein binding site predictions Pons et al. BMC Bioinformatics 2011, 12:378

MeetDockOne

Meet-U 2018

SHAPE COMPLEMENTARITY

ELECTROSTATIC AND VDW

Electrostatic energy

$$Velec = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{q_{i} q_{j}}{4 \pi \varepsilon_{0} r_{ij}}$$

Computed for residues: TYR, HIS, CYS, ASP, GLN, LYS, ARG Lennard-Jones potential

$$V_{ij} = 4\varepsilon \left[\left(\frac{\theta}{r_{ij}} \right)^{12} - \left(\frac{\theta}{r_{ij}} \right)^{6} \right]$$

Default values:
$$\varepsilon = 10$$
$$\theta = 3.9$$
 Van der Waals force

MeetDockOne

Meet-U 2018

MACHINE LEARNING

Goal : Predict the Tm score from the other MeetDockOne function

Learning data : 17 native complexes; 5936 decoys

Data preparation : Scikits learn pipeline

Missing values : Sklearn Imputer, Median strategy Normalisation : StandardScaler

Three machine learning algorithms :

Linear regression Decision tree regressor Random forest regressor

Algorithms evaluation : Cross Validation

Mean squared error 'K fold' cross validation (n = 10)

Best hyper-parameters values : GridSearchCV

Number of trees (n=10, 50 or 100) Number of features (n=1, 2, 3, or 4) Bootstrap (True or False)

Meet-U 2018

MACHINE LEARNING - Learning Dataset

Type of interaction	Name	Database	Software that generated the poses	Minimizer	Type of sampling	Number	Near-natives
	1inl					100	>=1
	3cin		Meetu-organization	Yes	Naive	100	>=1
nomomeres_02	1inl					100	>=1
	1sjw					100	>=1
	4r30					100	>=1
	4r30_2					100	>=1
	5r30_3	Meety Organization				100	>=1
Macroassemblages	4r30_4	Weetd-Organization				100	>=1
1	1ppj					100	>=1
	1ppj_2					100	>=1
8	1ppj_3					100	>=1
homomeres_c2	1ocv					100	>=1
	1mjf					100	>=1
	1j5p					100	>=1
έ.	1ewy	Protein-protein docking benchmark 5.0	Team6 Software	No		567	-
	1z5y					567	10
	1zm4					567	8
enzyme_ligand - - -	2a9k					567	-
	2mta					567	-
	2080v					567	1
	200b					567	3
	4h03					567	0

A-Z WITH 2PCC

CYTOCHROME C PEROXIDASE AND CYTOCHROME C

MeetDockOne predictions	Ranking regarding the 'real' Tm score values							
	Тор 1 - 10	Тор 11 - 50	Тор 51 -100	Тор 101 - 200	Тор 201 - 300	Тор 301 - 567	Total	
Excellent	0	23	10	4	1	0	38	
Good	1	6	14	24	38	128	211	
Passable	9	11	26	72	61	139	318	
Poor	0	0	0	0	0	0	0	
Total	10	40	50	100	100	267	567	

MeetDockOne predictions	Ranking regarding the 'real' Tm score values							
G ▲ (gao kén té jó	Тор 1 - 10	Тор 11 - 50	Тор 51 -100	Тор 101 - 200	Тор 201 - 300	Тор 301 - 567	Total	
Excellent	0	23	10	4	1	0	38	
Good	1	6	14	24	38	128	211	
Passable	9	11	26	72	61	139	318	
Poor	0	0	0	0	0	0	0	
Total	10	40	50	100	100	267	567	

MeetDockOne predictions	Ranking regarding the 'real' Tm score values							
	Тор 1 - 10	Тор 11 - 50	Тор 51 -100	Тор 101 - 200	Тор 201 - 300	Тор 301 - 567	Total	
Excellent	0	23	10	4	1	0	38	
Good	1	6	14	24	38	128	211	
Passable	9	11	26	72	61	139	318	
Poor	0	0	0	0	0	0	0	
Total	10	40	50	100	100	267	567	

Best predicted pose

Predicted TM-score	Real TM-score			
0.81	0.77			

Best pose

Predicted TM-score	Real TM-score			
0.55	0.81			

Limitations:

Issues with the minimizer : many distant poses which decreased the performance of our algorithm (important distances resulted in having many "0" values)

Few protein-protein interactions nature included into our "machine learning database"

"Low" throughput technique ~ 10 seconds per pose

Opportunities of improvement:

Add more features into our code : Desolvatation energy Sequence alignment docking

Docking using flexible binding domain for receptor

Enriched input data : original scoring function based on several approaches (complementarity, knowledge based, energetic)

The use of a machine learning program increases the reliability of our results

Multithreading coding allowed us to minimize running time