
PHY3907 Work Term Report

Computational Neuroscience and Fiber Loss

Simulation at uOttawa

Mohammed A. Chamma - 6379153

Submitted to Professor Serge Desgreniers

University of Ottawa

September 12, 2014

Contents

Introduction . 1

Neurons . 2

Hodgkin-Huxley Model (1952) . 3

McNeal Model (1976) . 6

Nerve Damage Model (Boucher, Joós, Morris 2012) 8

Simulation . 9

Code . 10

Classes . 10

Integration . 11

User Interface . 12

Results . 14

Conclusion . 16

References . 18

1

Abstract

In this report I describe my time at the uOttawa Physics Department doing computational

neuroscience under Professor Bela Joós during the summer of 2014. The purpose of my

research project was to model the measured voltage signal of a bundle of nerves in an arm

from an experiment where nerves in the elbow are stimulated and then the propagated

signal is measured further down the nerves, around the wrist. In damaged nerves, the

signal does not propagate properly down the arm, and can be a clear signal of some

diseases. I describe different models of neurons used in developping our own model of

the arm nerves and I describe a form of damage nerves can experience called “coupled

left-shift sodium channels”, modelled by Professor Joós’s group. Finally, I describe my

completed simulation model written in the Python programming language and give a

brief overview of its use and some sample results.

Introduction

I spent my summer coop term at the University of Ottawa studying neuroscience under

Professor Bela Joós. The term lasted four months, starting in May and ending in August.

It was also my first time living on my own; I moved out of my home in Kanata and

rented a room in a neighbourhood very close to the University with the goal of shaving off

almost 2 hours spent commuting every day. I worked on the third-floor of Macdonald, the

Physics building, in an office with two other students also doing research with Professor

Joós. The environment was very relaxed and academic. I worked on my own laptop.

During my time there I learned the basics of neuroscience. Professor Joós and I talked

about a project to model an experiment where nerve damage in an arm is measured by

electrically stimulating one area of the arm (like the elbow) and then measuring the prop-

agated signal through the nerves at another point (like the wrist). In arms with damaged

nerves, this signal can arrive more slowly or more weakly than in arms with healthy

nerves. Therefore, being able to detect and characterize signals that aren’t propagating

properly can lead to more accurate diagnoses.

Before I could model a bundle of damaged nerves in an arm I had to learn and under-

stand how single neurons behaved. This meant learning the basic physiology of a neuron:

about axons, myelin sheaths, and axon nodes. After that, I learned about the Hodgkin-

Huxley model of an axon node: a mathematical model developped in the 1950s used to

model voltage clamp experiments with a giant squid axon. After I could successfully

model a single node, we found a paper by Donald McNeal written in 1976 that presented

a model of axon nodes connected to each other. With this model we could simulate signals

propagating from node to node, and successfully simulated results that indicated prop-

agation. After that, we added a model of damage to each node of the axon. The model

for this damage was developped by Professor Joós’s group. With all these pieces we were

able to represent a bundle of nerve fibers as found in an arm; we could control the length

of the nerve, the size of each nerve and the amount of damage in each nerve. This model

lets us simulate the experiment with different kinds of arms, healthy and unhealthy ones.

This report will give an overview of the concepts necessary for the building of the

1

model and a look at the simulation code and how it can be used to produce data on the

arm signal experiment with a wide variety of parameters. In addition some results from

the model will be shown and direction for the future will be explored.

Neurons

At the heart of the project is the behaviour of neurons. Neurons are cells capable of trans-

mitting electrical signals. In human bodies they form the structure of our brains and con-

trol the movement of our limbs. In 1952 A. L. Hodgkin and A. F. Huxley measured spikes

of potential in the cellular membrane of a giant squid axon. These spikes are referred to

as action potentials, and are signals that can propagate down the length of a neuron and

stimulate an adjacent neuron, thus transmitting the signal even further. Hodgkin and

Huxley’s innovation was in creating a mathematical model that attempted to explain the

electrical activity of the neuron.

The neuron is composed of the cell body, dendrites, synapses, and axons. It is the

axons that are critical in understanding the Hodgkin-Huxley model. Axons are long ten-

drils that jut out from the cell body; they are long, thin extensions of the cell that usually

reach out to other neurons. In mature neurons the arm of the axon is protected by a

myelin sheath. This sheath does not cover the entire axon, since it is the membrane of the

axon and not the myelin sheath that allows ions to flow through the membrane. Instead,

the sheath covers the axon in a way that leaves periodic gaps of axon membrane exposed.

These axonal gaps are called nodes of Ranvier. In this report I refer to them as axon nodes.

The myelin sheath is important in that it changes the way signals propagate down the

axon. Without the sheath, signals flow smoothly down the membrane of the axon, each

spiking patch of membrane stimulating a patch of membrane right next to it. With the

sheath, the signal jumps from exposed node to exposed node. This form of propagation

is called saltatory propagation and is faster than propagation without the myelin sheath.

Figure 1 shows a neuron depicting axon nodes, myelin sheaths and saltatory propagation.

2

Figure 1: Depiction of a neuron with an axon and nodes seperated by myelin sheaths.

Hodgkin-Huxley Model (1952)

The wall of the axon, the cellular membrane, is polarized. A concentration gradient of

ions is maintained between the inside and the outside of the membrane so that the in-

side of the cell is more negatively charged than the outside. Hodgkin and Huxley stud-

ied a squid axon using a voltage clamp to measure the flow of ionic currents through

the membrane of the cell. They later theorized that when an action potential occurs,

positively charged sodium ions would flood into the cell through a point in the mem-

brane of the axon, suddenly raising the membrane potential at that point, and disturbing

the membrane potential a little further down the axon. After the flood of sodium ions

into the axon, potassium ions leave through the membrane, the flood of sodium into the

axon at the inital point slows and eventually stops, “resetting” the membrane potential

of the axon at that point to its resting potential. Though they didn’t have the computa-

tional power to prove the mechanism of action potential propagation, they theorized that,

meanwhile, at a point nearby on the axon, after being destabilized by it’s neighbour, the

same thing occurs and the potential spike is observed a little further down. This continues

and the spike can be said to travel down the axon, and all the while the axon attempts to

restore the concentration gradient and maintain a polarized potential all along the inside

and outside of the cellular wall.

3

Though Hodgkin and Huxley didn’t know it at the time, the concentration gradient

is maintained by ion channels in the cellular membrane. These ion channels are proteins

embedded in the membrane that can selectively allow ions in and out of the cell, control-

ling ionic currents through the membrane. Without knowledge of ion channels, Hodgkin

and Huxley modelled the ionic currents as selective permeabilities in the membrane, con-

trolled by “activation” and “inactivation” variables that depended on the voltage of the

membrane. These would eventually be understood as voltage-gated ion channels that

open and close depending on the current voltage of the membrane.

The Hodgkin-Huxley model is a set of four differential equations that can be solved

in response to a stimulus for a solution of the membrane voltage. The model successfully

produces action potentials and closely matches the experimental data acquired from the

squid axon. Since then, the model has been used as the basis for more complicated mod-

els, and it’s parameters can be tweaked for a wide variety of applications outside of the

squid axon.

The equations in the Hodgkin-Huxley model that form the basis of our model are the

following:

Cm
dVm

dt
= −INa − IK − IL + Istim (1)

The equation is an application of the capacitance equation with the cellular membrane

as a sort of capacitor because it separates charges from the inside and outside of the cell.

The term Cm represents the membrane capacitance, and Vm represents the potential dif-

ference between the inside and outside of the cell. Vm is called the membrane voltage.

The current terms INa and IK represent the ionic currents due to sodium and potassium

through the cellular membrane. Hodgkin and Huxley introduced an IL term for what

they called ’leakage’ current, to account for current flow that wasn’t caused by sodium

or potassium. The current terms are treated using Ohm’s law and in turn obey more

equations:

4

INa = ḡNam3h(V − ENa)

IK = ḡKn4(V − EK)

IL = ḡL(V − EL)

(2)

In these equations, the ḡ terms are conductances (the inverse of resistance). The m,

h, and n variables are dimensionless quantities between 0 and 1 and represent sodium

channel activation, sodium channel inactivation, and potassium channel activation re-

spectively. These variables capture the effect of the ion channels in the cellular membrane.

The ENa, EK and EL terms are constants called Nernst potentials.

The final pieces are the equations that govern the m, h, and n variables. These three

variables are governed by first-order differential equations and by transition rate func-

tions α and β. These functions are voltage dependent and represent the number of times

per second that a closed gate opens (the α function) and the number of times per second

that an open gate closes (the β function). These equations are given by:

dm
dt

= αm(1 − m)− βmm

dh
dt

= αh(1 − h)− βhh

dn
dt

= αn(1 − n)− βnn

(3)

The alpha-beta functions are found empirically, and each of the m, h and n variables

have their own pair of alpha-beta functions:

αm = 0.1
V + 40

1 − exp(−(V + 40)/10)
αh = 0.07exp(−(V + 65)/20)

βm = 4exp(−(V + 65)/18) βh =
1

exp(−(V + 35)/10) + 1

αn = 0.01
V + 55

1 − exp(−(V + 55)/10)

βn = 0.125exp(−(V + 65)/80)

These equations can be solved for Vm using the the following scheme:

1. Set initial values for Vm, m, h, and n.
5

2. Calculate values for INa, IK, IL, and all the alpha-beta functions using the current

values of Vm, m, h, and n.

3. Numerically integrate the differential equations on Vm, m, h, and n (equations (1)

and (3)).

4. Repeat from step 2.

Figure 2 shows an example solution of the membrane voltage with action potentials

caused by a stimulus.

Figure 2: A solution of the Hodgkin-Huxley model (in blue) with an applied stimulus.

McNeal Model (1976)

In 1976 Donald R. McNeal published a paper analyzing a model of interconnected axon

nodes. The paper included a model for a simple stimulus to be applied at a single node

and for the action potentials to propagate from one node to the next. We adapted this

model for our purposes and used it to model an arbitrary number of axon nodes con-

nected to each other. This model also takes into account the dimensions of the neuron,

that is, its length, its diameter, and the width of the axon node gap between the myelin

sheaths.
6

In this model the equation on the membrane voltage, in addition to the ionic current

terms, has current terms for the currents leaving the node, the currents entering the node,

as well as a stimulus current caused by an external potential.

For a given axon node n, the change in its membrane voltage Vn depends on an axial

conductance Ga, which represents the conductance between the nodes, the membrane

voltages of the node’s neighbours Vn−1 and Vn+1, and the external potential felt by the

node and it’s neighbours due to some stimulus Ve,n−1, Ve,n, and Ve,n+1. In addition to

these new terms are the usual terms for the ionic currents through the membrane of the

node. The equation is given by:

Cm
dVn

dt
= Ga(Vn−1 − 2Vn + Vn+1 + Ve,n−1 − 2Ve,n + Ve,n+1)− πdl(iNa + iK + iL) (4)

The current terms become lowerscript i’s because they are current densities; current

per unit area of cellular membrane. The πdl term multiplies by the sum of the current

densities to form a term representing the total ionic current. The axon node is modelled

as a cylinder and the wall of the cylinder (not the caps) serves as the part of the cellu-

lar membrane exposed to surrounding ions. The area of this wall is πdl where d is the

diameter of the cylinder and l is its length.

The external potential felt by a node Ve is assumed to be due to a stimulus I from a

monopolar spherical electrode r distance away from the node. Assuming an isotropic

medium (where the permittivity ε and the permeability µ are uniform in all directions),

the expression for Ve is given by

Ve =
ρe I
4πr

(5)

Where ρe is the resistivity of the medium.

The McNeal model is solved by choosing initial values for Vm, m, h, and n, like in the

Hodgkin-Huxley model, as well as a position r for the central node (where n = 0) and a

stimulus I. The positions of the other nodes are calculated based on their index n and a

value for the internodal length L. Essentially each node is located a multiple of L away
7

from the central node. Each node’s position is precisely nL units away from the central

node. Given some position coordinates for I, the distance r between the stimulus and

node n can be calculated from a little geometry and Pythagorean theorem.

The actual values for the dimensions are calculated in the following way. McNeal

chooses a value of 20µm for the fiber diameter D, which represents the diameter of the

axon and the myelin sheath. McNeal then cites a source stating that the axonal diamter d

is calculated from the ratio:
d
D

= 0.7

The internodal length L is then calculated from

L
D

= 100

Finally, the nodal gap width l is simply l = 2.5µm.

Nerve Damage Model (Boucher, Joós, Morris 2012)

With a group of axon nodes connected to each other able to experience propagating action

potentials, the task was to be able to damage the nerve and to then see the effect this

had on the propagation of signals and the measured compound action potential. The

damage model used in this simulation was developped by Professor Joós’s group and

focuses on a specific type of damage related to the functioning of the sodium channels.

In this model the voltage-gated sodium channels are much more excitable and respond

to lower voltages than normal. Mathematically this corresponsds to a left shift in the

sodium activation and inactivation variables m and h, caused by left-shifting the alpha-

beta functions αm, βm, αh, and βh. This is done by simply replacing the function argument

V with V + LSAC in the alpha-beta functions, where LSAC is the left-shift (in volts) of

affected channels. Each node has a property AC which represents the fraction of affected

channels on the node. In addition to solving for m and h using the regular alpha-beta

functions, we must now calculate values for mLS and hLS using the left-shifted alpha-

beta functions. Accordingly, the expression for the total sodium current becomes the sum

of the current due to healthy channels (with regular m and h) and the current due to
8

unhealthy, affected, channels (with mLS and hLS):

INa = ḡNam3h(1 − AC)(V − ENa) + ḡNam3
LShLS AC(V − ENa)

or simply,

INa = [m3h(1 − AC) + m3
LShLS AC] ḡNa(V − ENa)

Simulation

With the mathematical framework in place, a virtual arm is created for the simulation.

The arm is a bundle of nerve fibers, and each fiber is a set of axon nodes connected to each

other. Each of the nodes obey the equations explained above. Each fiber has a different

diameter and is placed in a different position. A stimulus is placed some position away

from the bundle of nerves so that each nerve fiber feels a slightly different stimulus. Many

parts of the simulation can be tweaked for different virtual experiments: the number of

fibers, the number of nodes each fiber has, the diameter distribution of the fibers, the

radius of the whole bundle, the fraction of damaged sodium channels different nodes

have, the position of the stimulus, the magnitude of the stimulus, and the amount of time

to simulate.

The following is a table of the physical constants used in the simulation, mostly from

McNeal’s paper:

9

Table 1: Constants
Constant Value Description

Vr -65.5 mV resting voltage
cm 1 ¯F/cm2 membrane capacitance per unit area
ḡNa 120 mS/cm2 sodium conductance per unit area
ḡK 36 mS/cm2 potassium conductance per unit area
ḡl 0.25 mS/cm2 leakage current conductance per unit area

ENa 50 mV Nernst potential of sodium
EK -77 mV Nernst potential of potassium
El -54.4 mV Nernst potential of leakage stuffs
ρe 300 Ω · cm external resistivity
ρi 110 Ω · cm internal resistivity
LS 35 mV left-shift
D 0.0019-0.021 cm fiber diameter
l 2.5 ∗ 10−4cm axon node length
I -2.59 µA magnitude of stimulus current

Some results will be shown after the code and the details of the simulation and its

implementation are examined more closely.

Code

The code for the simulation is available open-source and online at github.com/mef51/FiberLoss.

This section will give a brief overview of how the code is structured and a look at some

of the algorithms used.

Classes

Several classes are defined that describe and implement the different components of the

simulation.

• AxonPositionNode: This class defines the concept of the axon node. Specifically it

creates variables that will track the node’s index, it’s position, the fraction of affected

channels it has and its dimensions. In addition, the solution variables are stored in

this class: each node stores its own Vm, m, h, and n solutions. Moreover it is here that

the alpha-beta functions and the method of numerical integration is defined. All the

10

mathematical calculations happen within instances of this class. Each node in the

simulation creates an instance of this class. This class also defines somes plotting

functions that will generate images of plots. The plots in this class are the primary

visualisation tool of the simulation.

• NerveFiber: The NerveFiber class represents a single nerve and essentially stores a

list of nodes that are connected to each other. When the fiber is instatiated it creates

AxonPositionNode classes for each node and assigns it it’s position, index, and its

damage. A NerveFiber class is instantiated for each nerve fiber in the simulation.

• NerveBundleSimulation: This class manages the simulation. It tracks the timeline,

the attributes of the nerve bundle (including how many fibers there are and how

many nodes to create per fiber), and implements the main simulation loop. When

this class is instantiated it will create and place the NerveFibers. If it succeeds, the

simulation can be started. The main simulation loop iterates over every moment

of time. In each moment it will iterate over each nerve fiber in the bundle, and

for each fiber it will iterate over each node in the fiber. It computes the distance

between the node and the external stimulus and then steps the node forward in time

by calling the node’s integration method. This loop continues until every node has

been stepped, in every fiber, and for every moment of time. When the simulation is

complete the data is stored in memory under each AxonPositionNode class. From

this point the plotting functions can be called to produce a plot for each node in the

simulation, or the entirety of the data generated can be dumped into some machine

readable format for future analysis.

Integration

The equations on Vm, m, h, and n are solved numerically using a very simple scheme.

The equations are solved using what’s referred to as the Euler-forward method, which is

highly prone to error if dt is not small enough but is very easy to implement and worked

well for our purposes. In the future it should be straightforward to replace the current

integration scheme with a more robust Runge-Kutta method or similar.
11

The Euler-forward method can be reached through a simple manipulation of the dif-

ferential equation. Let f (x) be some differentiable function that obeys the differential

equation:
d f
dx

= g(f)

where g(f) is some arbitrary function. Recalling the definition of the derivative, sub-

stitute d f = f2 − f1, f = f1, and dx = some arbitrarily small number. Then,

d f
dx

=
f2 − f1

dx
= g(f1)

Now solving for f2 we arrive at:

f2 = dx · g(f1) + f1 (6)

Using this expression, we can pick an initial value for f1 and a small number for dx (for

example dx = 0.025) knowing that the smaller dx is, the more accurate the solution, we

then calculate the “next” value f2. To move forward in time, we just set f1 = f2 and repeat

the process, calculating the “next, next” value using the equation on f2. Storing all these

values, we ultimately get at a solution of f with arbitrary precision and arbitrary length.

In highly intensive applications this method is not very efficient, but for this project it

serves just fine.

User Interface

The current interface for a researcher wishing to study the model is hardly ideal –it is

simply a few lines of code stuck at the bottom of the file. In the future it will be much

more pleasant to have some sort of visual interface to set parameters. In the meantime

however, the current method still provides lots of control.

The stimulus current is specified with a simple object. This object specifies the x, y,

and z position of the stimulus, and its magnitude. The code for that looks like this:

1 stimulusCurrent = {

12

2 "magnitude" : -2.59, # uA. the current applied at the surface

3 "x" : 0 # cm

4 "y" : 0.3 # cm

5 "z" : 0 # cm

6 }

The nerve is specified with a similar object. The nerve object represents the bundle as

a whole and specifies the number of fibers there are, the number of nodes each fiber has,

the x, y, and z position of the bundle and the length of each axon node. In addition, the

minimum and maximum diameter of a fiber is specified and the algorithm attempts to

randomly create and place fibers so that they are not overlapping. The diameter of each

fiber is randomly generated and forced to be in the range specified by the minimum and

maximum diameter. The code for the nerve object is written as:

1 nerve = {

2 "numFibers" : 2,

3 "numNodes" : 11,

4 "fibers" : [], # initialize an empty list

5 "radius" : 0.0, # cm

6 "x" : 0.0, # cm

7 "y" : 0.0, # cm

8 "z" : 0.0, # cm

9 "minFiberDiam" : 0.0019 , # cm

10 "maxFiberDiam" : 0.0021 , # cm

11 "axonalLength" : 2.5e-6 # cm

12 }

The final property of the nerve object is a “damage map”. This object specifies the

proportion of damaged channels in each node by index. It is a set of key-value pairs

where the key is the index of a node and the value is a number from 0 to 1 representing

the proportion. For example, attaching the following property to the nerve object:

1 damageMap : {

2 11 : 0.9 # heavily damaged node at n = 11

3 }

will cause the node with index n = 11 to have an AC of 0.9. Currently this affects all

nodes with n = 11 in all fibers.

13

With all this setup out of the way the simulation can be started, the plots can be cre-

ated, and the data dumped to a file:

1 T = 55 # ms

2 dt = 0.025 # ms

3 simulation = NerveBundleSimulation(T, dt, nerve , stimulusCurrent)

4 simulation.simulate () # modifies the nerve object

5 plotInfoOfNodes(simulation)

6 simulation.dumpJSON("data.json")

7 print "Done."

The complete source code is available free and open-source online at

github.com/mef51/FiberLoss

Results

The following is an example simulation run using the model described above. In this

simulation, a single fiber with 41 nodes is stimulated. The eleventh node in the fiber, that

is, the node with n = 11 is damaged completely with AC = 1.0. By our convention,

the node that is closest to the stimulus is given n = 0, with the nodes on the right given

n = 1, 2, 3, 4... and the nodes on the left given n = −1, −2, −3,−4... and so on. In the

graphs you’ll see information on the membrane voltage of the node, the time-course of

the m, h, and n variables, and the time-course of the ionic currents. We can see healthy,

action potentials at n = 1, and at n = 11, where all the channels are damaged, no action

potentials at all, and only a slight response to the stimulus. Moreoever, past the damaged

n = 11 node, we see only a single action potential has survived at the healthy n = 12

node, unlike the multiple spikes seen at n = 1.

14

Figure 3: Multiple action potentials caused by a stimulus

Figure 4: Response of a damaged node

15

Figure 5: Faulty signal transmission past the damaged node

These results are promising with regard to the model’s usefulness for studying these

types of situations. Much more simulations will be needed to produce concrete results!

Conclusion

During my summer at the uOttawa Physics Department I worked with Professor Bela

Joós to create a simulation model of an experiment whereby nerve damage in an arm

is assessed by stimulating near the elbow and measuring the propagated signal down

the arm around the wrist. We succeeded in completing a preliminary Python script that

simulates a bundle of nerve fibers with axon nodes connected to each other, and were

able to observe effects like signal propagation and signal loss due to damage. Our model

was built up from earlier models of the neuron, specifically the famous Hodgkin-Huxley

model from 1952 and the McNeal model from 1976. In the future our goal is to refine the

simulation model and to use it to answer specific questions about nerve damage. Can

we characterize neural pathologies by the measured signal? What kind of damage is
16

completely destructive to signal propagation? If a single node is completely damaged is

the whole fiber useless? These are questions we should be able to answer with our model.

The answers to these questions can open doors to diagnosis and treatment of patients.

17

References

Boucher P.A., Joós B., Morris C.E. Coupled left-shift of Nav channels: modeling the Na+

loading and dysfunctional excitability of damaged axons. J Comput Neurosci. 33: 301-19,
October 2012.

Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application
to conduction and excitation in nerve. J Physiol. 117:500-544, August 1952.

McNeal D.R. Analysis of a Model for Excitation of Myelinated Nerve. IEEE Transations on
Biomedical Engineering. BME-23 No. 4, July 1976.

SaltatoryConduction.jpg. Accessed online Sept 8.
http://bio1903.nicerweb.com/Locked/media/ch48/48_15SaltatoryConduction.jpg.

18

