
Workshop Framework cross-platform Workshop 1: Starting with Flutter project

1

Section : IT Systems Development (DSI)

Module : Framework cross-platform workshop
Teaching unit : Mobile Developpment and Web
Level : 3rd Year (Applied license : LMD)

Workshop 1: Starting with Flutter

What is Flutter

In the simplest terms, Flutter is a software development toolkit from Google for building

cross-platform apps. Flutter apps consist of a series of packages, plugins and widgets — but

that’s not all. Flutter is a process, a philosophy and a community as well.

Flutter has a modular, layered architecture. This allows you to write your application logic

once and have consistent behavior across platforms, even though the underlying engine

code differs depending on the platform

The Flutter architecture consists of three main layers:

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

2

1. The Framework layer is written in Dart and contains the high-level libraries that you’ll use

directly to build apps. This includes the UI theme, widgets, layout and animations, gestures and

foundational building blocks. Alongside the main Flutter framework are plugins: high-level

features like JSON serialization, geolocation, camera access, in-app payments and so on. This

plugin-based architecture lets you include only the features your app needs.

2. The Engine layer contains the core C++ libraries that make up the primitives that support

Flutter apps. The engine implements the low-level primitives of the Flutter API, such as I/O,

graphics, text layout, accessibility, the plugin architecture and the Dart runtime. The engine is

also responsible for rasterizing Flutter scenes for fast rendering onscreen.

3. The Embedder is different for each target platform and handles packaging the code as a

stand-alone app or embedded module

Technical requirements

In order to start with Flutter, we need a few tools:

• A PC with a recent Windows version, or a Mac with a recent version of the macOS

or Linux operating system. we can also use a Chrome OS machine, with a few

tweaks.

• An Android/iOS setup.

• The Flutter SDK. It's free, light, and open source.

• Physical device/emulator/simulator

• Android Studio/IntelliJ IDEA or Visual Studio Code

Installation and configuration

1- Install Android Studio

2- Install Android SDK in (for example) D:\Android\Sdk

3- Install Flutter

4- Configure Flutter\bin in user environnement variable

5- Execute Flutter doctor

You may accept all the Android license agreements. You can do this quickly from

the terminal line with this command:

flutter doctor –-android-licenses

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

3

If the sdk is not configurated, execute the next commande

flutter config --D:\Android\Sdk

6- If Android SDK Command-line Tools is not configurated

Install then Android SDK Command-line Tools in Android Studio:

Preferences > Appearance & Behavior > System Settings > Android SDK > SDK Tools >

Android SDK Command-line Tools (latest)

7- In some cases you need to add the following lines to your path variable

C:\Program Files\Git\bin
C:\Program Files\Git\cmd
C:\Windows\System32
C:\Windows\System32\WindowsPowerShell\v1.0

Be sure you have installed git framework

8- Create the first application my_first_app

flutter create my_first_app

Execute then

flutter devices

9- It is sometimes recommended to install an emulator in Android studio

flutter run

10- To run your app on one of the available devices, type the following command:

flutter run -d [your_device_name]

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

4

11- It will be necessary to install the flutter plugins and configure flutter in Android

studio

File->Settings->Language & Framework->Flutter

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

5

12- To speed up the tests, it is wise to consider the default browser to run these tests

In an Android Studio terminal select chrome as an emulator when executing the

Flutter run command

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

6

Install Android SDK in Visual Studio code

The simplest way to set up the prerequisites is to download "Android Studio for Windows",

run it, and follow the "Setup Wizard" it will present to guide you through installing the

Android SDK. After that, the Android SDK will be available in %APPDATA%/Android/SDK ,

where vscode will pick it up automatically.

In vscode to lunch an emulator Do Ctrl + Shift + P

Then type Flutter:launch emulator

You can see the bottom menu in VScode, click on this button and you will able to see all

the available devices.

To optimize time execution, you can change the path to android\avd
in my Android Studio

1- Open the directory: C:\Users\Username\. android\avd , you will find the directory

named with your AVD and a . ini file.

2- move the file .avd to your desirable path, then change the path variable in the . ini

file to the new location.

https://stackoverflow.com/questions/40501341/how-can-i-change-the-path-to-android-avd-in-my-android-studio
https://stackoverflow.com/questions/40501341/how-can-i-change-the-path-to-android-avd-in-my-android-studio
https://stackoverflow.com/questions/40501341/how-can-i-change-the-path-to-android-avd-in-my-android-studio
https://stackoverflow.com/questions/40501341/how-can-i-change-the-path-to-android-avd-in-my-android-studio

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

7

3- start the Android studio, you will find that the AVD can work properly.

For example in C:\Users\user\.android\avd we retain the file Pixel_3_API_24.ini witch

contain :

avd.ini.encoding=UTF-8
path=D:\Android\avd\Pixel_3_API_24.avd
path.rel=avd\Pixel_3_API_24.avd
target=android-24

To avoid the next message during launch of an AVD, go to
File -> Project Structure -> Project Settings -> Project, and select the Project SDK, which is
set to [No SDK] by default.

The files that Flutter generates when you build a project should look like this:

The main folders in your projects are listed here:

android

build

ios

lib

test

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

8

- The android and ios folders contain

the platform shell projects that host our

Flutter code. You can open the

Runner.xcworkspace file in Xcode or the

android folder in Android Studio, and they

should run just like normal native apps.

Any platform-specific code or

configurations should be placed in these

folders.

- The build folder calls all the artifacts

that are generated when you compile your

app.

- The lib folder is the heart and soul

(âme) of your Flutter app. This is where

you will put all your Dart code. When a

project is created for the first time, there is

only one file in this directory: main.dart.

- The next file, pubspec.yaml, holds

the configuration for your app. This

configuration file uses a markup language

called YAML Ain't Markup Language

(YAML), which you can read more about

at https://yaml.org. In the pubspec.yaml

file, you'll declare your app's name, version

number, dependencies, and assets.

pubspec.lock is a file that gets generated

based on the results of your pubspec.yaml

file. It can be added to your Git repository,

but it shouldn't be edited.

- Finally, the last folder is test. Here,

you can put your unit and widget tests,

which are also just Dart code. As your app expands, automated testing will become an

increasingly important technique to ensure the stability of your project.

13- Test : Update the primary swatch to green, as shown in the following code snippet, and

hit Save:

primarySwatch: Colors.green

14- Now consider the icon button to decrement the value to display

In addition, display the message "Hello" with this value

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

9

You may insert the following code

class _MyHomePageState extends State<MyHomePage> with

WidgetsBindingObserver {

 int _counter = 0;

String message = "Hello";

@override

void didChangeAppLifecycleState(AppLifecycleState state) {

 print('state = $state');

}

@override

void initState() {

 super.initState();

 WidgetsBinding.instance.addObserver(this);

}

void _incrementCounter() {

 setState(() {

 _counter--;

 message = "Hello ${_counter}";

 });

}

choose the type of icon exposure_minus_1 for the button at the bottom

child: Icon(Icons.exposure_minus_1),

2nd application

1- Create a new flutter application named “navigation”. The aim is to navigate

between two screens via a RoutePages class

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

10

import 'package:flutter/material.dart';

import 'package:sec5_navigation/Screen1.dart';

import 'package:sec5_navigation/routes.dart';

void main() {

 runApp(MyApp());

}

class MyApp extends StatefulWidget {

 @override

 _MyAppState createState() => _MyAppState();

}

class _MyAppState extends State<MyApp> {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 routes: PageRoutes().routeMaker(),

 initialRoute: PageRoutes.screen1_page,

);

 }

}

2- Create routes.dart to configurate rourtes

import 'package:flutter/material.dart';

import 'package:navigation/Screen1.dart';

import 'package:navigation/Screen2.dart';

class PageRoutes {

 static String screen1_page = "screen1";

 static String screen2_page = "screen2";

 Map<String, WidgetBuilder> routeMaker() {

 return {

 screen1_page: (context) => Screen1(),

 screen2_page: (context) => Screen2(),

 };

 }

}

3- Screen1 and screen2 classes are represented respectively in screen1.dart and

screen2.dart

import 'package:flutter/material.dart';

import 'package:navigation/routes.dart';

class Screen1 extends StatefulWidget {

 @override

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

11

 _Screen1State createState() => _Screen1State();

}

class _Screen1State extends State<Screen1> {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 backgroundColor: Colors.greenAccent,

 body: GestureDetector(

 behavior: HitTestBehavior.opaque,

 onTap: () {

 // Navigator.of(context)

 // .pushReplacement(MaterialPageRoute(builder: (context) {

 // return Screen2();

 // }));

 Navigator.of(context).pushNamed(PageRoutes.screen2_page);

 },

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 Center(

 child: Text(

 "Screen1",

 style: TextStyle(

 color: Colors.white,

 fontSize: 22.0,

 fontWeight: FontWeight.bold),

),

)

],

),

),

);

 }

}

screen2.dart

import 'package:flutter/material.dart';

class Screen2 extends StatefulWidget {

 @override

 _Screen2State createState() => _Screen2State();

}

class _Screen2State extends State<Screen2> {

 Future<bool> onBack() async {

 print("Back button clicked");

 return true;

 }

 @override

 Widget build(BuildContext context) {

 return WillPopScope(

 onWillPop: onBack,

 child: Scaffold(

 backgroundColor: Colors.lime,

 appBar: AppBar(

 backgroundColor: Colors.green,

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

12

 leading: IconButton(

 onPressed: () {

 Navigator.of(context).pop();

 },

 icon: Icon(

 Icons.arrow_back_ios,

),

),

),

 body: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 Center(

 child: Text(

 "Screen2",

 style: TextStyle(

 color: Colors.white,

 fontSize: 22.0,

 fontWeight: FontWeight.bold),

),

)

],

),

),

);

 }

}

3rd application

1- Create new Flutter application named “tp1”

2- Open main.dart and delete everything! Then, type the following code into the editor:

void main() => runApp(StaticApp());

class StaticApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: ImmutableWidget(),

);

 }

}

3- Import the material.dart

4- type the following code to create a new stateless widget in a new dart file named

immutable_widget.dart

import 'package:flutter/material.dart';

class ImmutableWidget extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Container(

 color: Colors.green,

 child: Padding(

 padding: EdgeInsets.all(40),

 child: Container(

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

13

 color: Colors.purpleAccent,

 child: Padding(

 padding: const EdgeInsets.all(50.0),

 child: Container(

 color: Colors.cyanAccent,

),

),

),

),

);

 }

}

5- Run the application in either the iOS simulator or Android emulator

6- Using a Scaffold :

Scaffold provides a basic structure of a screen.

We will be using the Scaffold widget to add an AppBar to the top of the screen and a slide-out

drawer that we can pull from the left.

a. In basic_screen.dart, type stless to create a new stateless widget and name that widget

BasicScreen. Don't forget to import the material library as well

import 'package:flutter/material.dart';

import './immutable_widget.dart';

class BasicScreen extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 backgroundColor: Colors.indigo,

 title: Text('Welcome to Flutter'),

 actions: <Widget>[

 Padding(

 padding: const EdgeInsets.all(10.0),

 child: Icon(Icons.edit),

),

],

),

 body: Center(

 child: AspectRatio(

 aspectRatio: 1.0,

 child: ImmutableWidget(),

Workshop Framework cross-platform Workshop 1: Starting with Flutter project

14

),

),

);

 }

}

b. Now, in main.dart, replace ImmutableWidget with BasicScreen. Hit the save button to

hot reload and your simulator screen should be completely white:

import 'package:flutter/material.dart';

import './basic_screen.dart';

void main() => runApp(StaticApp());

class StaticApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: BasicScreen(),

);

 }

}

c. Finally, let's add a drawer to the app. Add this code to Scaffold, just after body:

drawer: Drawer(

 child: Container(

 color: Colors.lightBlue,

 child: Center(

 child: Text("I'm a Drawer!"),

),

),

),

The final app should now have a hamburger icon in AppBar. If you press it, the drawer will

be shown:

	To optimize time execution, you can change the path to android\avd in my Android Studio

