Workshop Framework cross-platform

Section

Workshop 2: Using Stateful Widgets

. IT Systems Development (DSI)

Module : Framework cross-platform workshop
Teaching unit : Mobile Developpment and Web

Leve

: 3@ Year (Applied license : LMD)

Workshop 2: Using Stateful Widgets

In order to start with Flutter, we need a few tools:

A PC with a recent Windows version, or a Mac with a recent version of the macOS
or Linux operating system. we can also use a Chrome OS machine, with a few
tweaks.

An Android/iOS setup.

The Flutter SDK. It's free, light, and open source.
Physical device/emulator/simulator

Android Studio/Intelli] IDEA or Visual Studio Code

1. Create a class that extends StatelessWidget.

2. Override the build() method.

3. Return a widget.

So in the main.dart file, remove the example code and write the code given as follows:

import 'package:flutter/material.dart';

void main () => runApp (My2App());

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp (

title: 'Measures Converter',

home: Scaffold(

appBar: AppBar (
title: Text ('Measures Converter'),

)
body: Center (
child: Text ('Measures Converter'),

A Stateless widget is a class that extends a StatelessWidget. Extending a StatelessWidget
class requires overriding a build() method.



Workshop Framework cross-platform Workshop 2: Using Stateful Widgets

Using stateful widgets

Transform the MyApp class into a stateful widget,

class MyApp extends StatefulWidget {

class MyApp extends StatefulWidget {

joverri . i i i :
@ . Missing concrete implementation of ‘StatefulWidget.createState’. (Documentation)
Widget
retur Try implementing the missing method, or make the class abstract.
L titl Create missing override(s) Alt+Maj+Entrée More actions... Alt+Entrée
hom

a package:tp2/main.dart
L class MyApp extends StatefulWidget

Y,
body: Center(
| child: Text('Measures Converter'),

What these errors are trying to tell us is the following:
a. A stateful widget requires a createState() method.
b. In a stateful widget, there is no build() method to override.

So

1- Add the necessary createState() method
@Qoverride

MyAppState createState() => MyAppState();

2- Create a new class called MyAppState, that extends the State, and in particular, the State of
MyApp:
class MyAppState extends State<MyApp> {}

The revised code should look like this:

import 'package:flutter/material.dart';

void main () => runApp (MyApp());

class MyApp extends StatefulWidget {
@override
MyAppState createState() => MyAppState();

}
class MyAppState extends State<MyApp> {
@override
Widget build(BuildContext context) {
return MaterialApp (
title: 'Measures Converter',
home: Scaffold(
appBar: AppBar (
title: Text ('Measures Converter'),
)
body: Center (
child: Text ('Measures Converter'),
) s



Workshop Framework cross-platform Workshop 2: Using Stateful Widgets

To sum it up, from a syntax perspective, the difference between a Stateless widget and a stateful
widget is that the former overrides a build() method and returns a widget, whereas a stateful
widget overrides a createState() method, which returns a State. The State class overrides a
build() method, returning a widget.

the app layout:

1038 @

Measures Converter

In the State class, let's add a member called _numberFrom. As shown in the following code,
this is a value that will change based on user input:
double _numberFrom;

1- Then, in the body of the build() method, let's delete the text widget, and add TextField
instead:

body: Center (
child: TextField(),

)y



Workshop Framework cross-platform

Measures Converter

PCOPYIN ]

4 okl <
A 2 3 4 - 7 I 0
B - I S A I ol ol o
g g e J oy e db
I N R TR B - Y €3
sz © @ sl _ °

Workshop 2: Using Stateful Widgets

For this application, we'll respond to each change in the content of TextField through the

onChanged method, and then we'll update the State.

In order to update the State, you need to call the setState() method

2- let's add a Text widget that will show the content of the TextEdit widget, and then wrap the

two widgets into a Column widget:

Before trying the app, let's add another method to the MyAppState class:

double numberFrom = 0;
@Qoverride
void initState () {
_numberFrom = 0;
super.initState();

}

The new code is :
import 'package:flutter/material.dart';

void main () => runApp (My2App());

class MyApp extends StatefulWidget {
@override

MyAppState createState () => MyAppState();

}

class MyAppState extends State<MyApp> {
double numberFrom = 0;

Qoverride
void initState () {
_numberFrom = 0;



Workshop Framework cross-platform Workshop 2: Using Stateful Widgets

super.initState();

}

@override
Widget build(BuildContext context) {
return MaterialApp (
title: 'Measures Converter',
home: Scaffold(
appBar: AppBar (
title: Text ('Measures Converter'),
)
body: Center (
child: Column (
children: [
TextField(
onChanged: (text) {
var rv = double.tryParse(text);

if (rv != null) {
setState (() {
_numberFrom = rv;
)
}
I
)
Text ((_numberFrom == null) ? '' : numberFrom.toString())

Here is a diagram that highlights the steps described previously: with a few variations, you'll
notice a similar pattern whenever you use stateful widgets in your apps:

Widget gets

Respond to Call
drawn with

Set initial B onChanged() setState() to

the updated

State Bl 103 event of update State
value(s)

first time TextField value(s)

Creating a DropdownButton widget

DropdownButton is a widget that lets users select a value from a list of items.

1. Create an instance of DropdownButton, specifying the type of data that will be
included in the list.

2. Add an items property that will contain the list of items that will be shown to
the user.

3. The items property requires a list of DropdownMenultem widgets. Therefore,
you need to map each value that you want to show into DropdownMenultem.

4. Respond to the user actions by specifying an event; typically, for
DropdownButton, you will call a function in the onChanged property.



Workshop Framework cross-platform Workshop 2: Using Stateful Widgets

import 'package:flutter/material.dart';
void main () => runApp (MyApp());

class MyApp extends StatefulWidget {
@override
MyAppState createState () => MyAppState();
}

class MyAppState extends State<MyApp> {
late double numberFrom;
@override
void initState () {
_numberFrom = 0;
super.initState();

}

@override
Widget build(BuildContext context) {
var fruits = ['Orange', 'Apple', 'Strawberry', 'Banana'];

return MaterialApp (
title: 'Measures Converter',
home: Scaffold(
appBar: AppBar (
title: Text ('Measures Converter'),
)y
body: Center (
child: Column (
children: [
TextField(
onChanged: (text) {
var rv = double.tryParse(text);
if (rv != null) {
setState (() {
_numberFrom = rv;
b
}
by

)
DropdownButton<String> (
items: fruits.map((String value) {
return DropdownMenultem<String> (
value: value,
child: Text (value),
) ;
}) .toList (),
onChanged: (value) {}),

Text ((_numberFrom == null) 2 "'

_numberFrom.toString())

5. Let's create a list of strings that will contain all the measures that we want to deal
with. At the beginning of the State class, let's add the following code after fruits list
declaration:



Workshop Framework cross-platform Workshop 2: Using Stateful Widgets

final List<String> measures = |
'meters’',
'kilometers',
'grams',
'kilograms',
'feet',
'miles’',
'pounds (lbs) ',
'ounces',

1247 @ &

Measures Converter

meters
kilometers
grams
kilograms
feet

miles
pounds (Ibs)

ounces

Complete the application

Use the following Ul to complete this application

To do this, you can refer to the 2nd chapter of the book “Flutter Projects”



Workshop Framework cross-platform

| e 40917
060
Measures Converter
Value
1000|
From
kilometers <
To
miles -
Convert
1000.0 kilometers are 621.371
miles

Workshop 2: Using Stateful Widgets



