
Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

1

Section : IT Systems Development (DSI)

Module : Framework cross-platform workshop
Teaching unit : Mobile Developpment and Web
Level : 3rd Year (Applied license: LMD)

Workshop 6 : Communicating with a cloud Firebase

database

Objective

Create, update, read, and delete fiction products. Its UI is neat and clean with a single screen, a

ListView, a bottom sheet, and a floating button

Technical requirements

In order to start with Flutter, we need a few tools:

• A PC with a recent Windows version, or a Mac with a recent version of the macOS or

Linux operating system. we can also use a Chrome OS machine, with a few tweaks.

• An Android/iOS setup.

• The Flutter SDK. It's free, light, and open source.

• Physical device/emulator/simulator

• Android Studio/IntelliJ IDEA or Visual Studio Code

• A registered Firebase account.

• A clean Flutter project with the firebase_core plugin installed and correctly configured.

• Knowing Firebase’s terms of service.

content

We will cover the following recipe:

- Create a Firebase project.

- Adding Firebase SDK and installing the firebase_core package

- Creating a cloud Firestore database

- Common Errors and How to Fix Them

Project configuration

1. Launch your web browser, go to

https://console.firebase.google.com/, login, and click on the “+” button or select an

existing project.

https://pub.dev/packages/firebase_core
https://pub.dev/packages/firebase_core
https://console.firebase.google.com/

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

2

2. Give your project a name then click on the “Continue” button.

3. You can disable Google Analytics but you can reenable it later as you want. Click on

the “Create project” button to initialize your project.

Here’s the project’s dashbaord:

4. Create a new Flutter project by running your IDE and give the name :

product_firebase

5. Add firebase_core package to the dependencies section in your pubspec.yaml file:

dependencies:

 flutter:

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

3

 sdk: flutter

 firebase_core: ^1.7.0

6. Run the following command in a terminal within the directory of your project Flutter:

flutter pub get

We’ll work with 2 build.gradle files. One lies in <your-project>/android and the other

locates in <your–project>/android/app.

7. Open product_firebase /android/app/build.gradle, go to the defaultConfig section

and see your applicationId:

defaultConfig {

 // TODO: Specify your own unique Application ID

(https://developer.android.com/studio/build/application-id.html).

 applicationId "com.example.product_firebase"

 minSdkVersion 16

 targetSdkVersion 30

 versionCode flutterVersionCode.toInteger()

 versionName flutterVersionName

 multiDexEnabled true

}

8. Go back to your Firebase project’s dashboard, click on the “+ Add app” button and

register an Android app. Enter the applicationId you have seen in the previous step into

the “Android package name” field. Note that it cannot be changed for this Firebase

Android app after it’s registered with your Firebase project.

9. Download the “google-services.json” file

10. Move the “google-services.json” file into

your product_firebase/android/app directory:

11. Open product_firebase/android/build.gradle and add the following line to

the dependencies section:

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

4

dependencies {

 classpath 'com.android.tools.build:gradle:4.1.0'

 classpath "org.jetbrains.kotlin:kotlin-gradle-

plugin:$kotlin_version"

 classpath 'com.google.gms:google-services:4.3.5'

}

12. Open product_firebase/android/app/build.gradle and add the following line right

below the apply plugin: ‘com.android.application’ line:

apply plugin: 'com.android.application'

apply plugin: 'com.google.gms.google-services'

apply plugin: 'kotlin-android'

apply from: "$flutterRoot/packages/flutter_tools/gradle/flutter.gradle"

android {…

Create a firebase database

13. Go to your Firebase project’s dashbaord, select “Firestore Database” then click on the

“Create database” button

14. Select “Start in test mode” then click on the “Next” button (you can change to

“production mode” later if you want).

15. Select a location then click the “Enable” button. The closer the location is, the lower

the latency will be and the faster your app will function.

16. Click “+ Start Collection” to create a new collection.

17. Enter “products” and click “Next”.

18. Add the first documents to our “products” collection. It has 2 fields: “name” (string)

and “price” (number).

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

5

19. Fill in the fields then click “Save”. Now we get a Firestore database ready to use.

Installing cloud_firestore

20. You can add cloud_firestore to your project by executing the command below:

flutter pub add cloud_firestore

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

6

21. Or you can also follow the traditional method: Add the following to

the dependencies block in your pubspec.yaml:

cloud_firestore: ^2.5.3

22. Run:

flutter pub get

23. write now the main code for crud operation

And add an example of product. Swich it in the firebase DB

Workshop Framework Cross-platform Workshop 6: Communicating with a cloud

Firebase database

7

Common Errors and How to Fix Them

1- In some cases, you need to upgrade fire_core

2- Error about multiDex

This error happens when your app and the libraries it references exceed 65,536 methods,
the build error just means your app has reached the limit of the Android build architecture,
so to fix this go to android/app/build.gradle directory and add the multiDexEnabled

true and implementation 'com.android.support:multidex:2.0.1' in thus manner

defaultConfig {
 // TODO: Specify your own unique Application ID
(https://developer.android.com/studio/build/application-id.html).

 multiDexEnabled true
 }

dependencies {

 implementation 'com.android.support:multidex:2.0.1'
}

Application

Predict crud operations on classes and students tables with Firebase

