Workshop Framework cross-platform Workshop 8: Testing in flutter

Section . IT Systems Development (DSI)
Module : Framework cross-platform workshop
Teaching unit : Mobile Developpment and Web
Level : 3@ Year (Applied license: LMD)

Workshop 8: Testing in flutter

Generate some tests in flutter applications

In order to start with Flutter, we need a few tools:

e A PC with a recent Windows version, or a Mac with a recent version of the macOS or
Linux operating system. we can also use a Chrome OS machine, with a few tweaks.

e An Android/iOS setup.

e The Flutter SDK. It's free, light, and open source.

e Physical device/emulator/simulator

e Android Studio/IntelliJ IDEA or Visual Studio Code

We will cover the following recipe:

e Unit testing
e Widget testing
e Integration testing

An introduction to unit testing

Unit tests are handy for verifying the behaviour of a :

1- Single method
2- Single function
3- Single class

The test package provides the core framewaork for writing unit tests, and the flutter test package
provides additional utilities for testing widgets.

Add the test dependency

dev_dependencies:
test: 71.19.2

https://pub.dev/packages/test
https://api.flutter.dev/flutter/flutter_test/flutter_test-library.html

Workshop Framework cross-platform Workshop 8:

Create a test file

1ib/

counter.dart
test/

counter test.dart

class Counter {

int value = 0;
void increment () => value++;
void decrement () => value--;

}

import 'package:test/test.dart';
import 'package:tp8 unit testing/Counter.dart';

void main () {
test ('Counter value should be incremented', () {
final counter = Counter();

counter.increment () ;
expect (counter.value, 1);

)
}

Run the tests

1- Run tests using Android studio

Build Tools VCS Window Help tp8_unit_testing - mair

dsDk b » Run ‘tests in main_testdart’ Maj+F10 p
= Debug 'tests in main_testdart’ Maj+F9
- U Run 'tests in main_test.dart' with Coverage
> Run.. Alt+Maj+F10
Debug... Alt+Maj+F9
@ Profile.. ncre
s Record Espresso Test
£% Attach to Process.. Ctrl+Alt+F5
Edit Configurations...

Stop Ctrl+F2

Testing in flutter

Workshop Framework cross-platform Workshop 8: Testing in flutter

Pubspec has been edited Get depende

class Counter {
int value = O;

vold increment() => value++;

void decrement() => value--;

Debug
0.4 Edit Configurations...

« main.dart »

tests in main_test.dart
Hold Maj to Run

Debug: . tests in main_test.dart

ﬁ Debugger

}‘ Frames Variables

-+

Frames are not available

El Console
o v @ 12 I =T = | » « Testspassed:10f1test—17ms
7 . Test Results 17ms D:\flutter\bin\flutter.bat --no-color test
2 ¥ W main_testdart 17ms Testing started at 09:48
M Counter value she 17 ms

2- Run tests in a terminal

flutter test test/main_test.dart

E:\TP_JEE\Etudiant\flutter_apps\tp8\tp8_unit_testing>flutter test test/main_test.dart
00:02 +1: ALL tests passed!

o
hi)
g
st
o
=
=
[F.
1.

E:\TP_JEE\Etudiant\ﬂutter'_apps\tp8\tp8_unit_testing>D

= TODO O Problems = B Terminal & Dart Analysis ~ *S, Build » Run = Messages

Change the value by 0 in expect function

expect (counter.value, 0);

After execution you will find a result:

Workshop Framework cross-platform Workshop 8: Testing in flutter

E:\TP_JEE\Etudiant\flutter_apps\tp8\tp8_unit_testing>flutter test test/main_test.dart
00:01 +0 -1: Counter value should be incremented [E]
Expected: <0>
Actual: <-1>

package:test_api expect
test\main_test.dart 13:5 main.<fn>

00:01 +0 -1: Some tests failed.

il

Mock dependencies using Mockito

Sometimes, unit tests might depend on classes that fetch data from live web services or
databases. This is inconvenient for a few reasons:

o Calling live services or databases slows down test execution.

e A passing test might start failing if a web service or database returns unexpected
results. This is known as a “flaky test.”

o Itisdifficult to test all possible success and failure scenarios by using a live web
service or database.

Therefore, rather than relying on a live web service or database, you can “mock” these
dependencies. Mocks allow emulating a live web service or database and return specific results
depending on the situation.

Generally speaking, you can mock dependencies by creating an alternative implementation of
a class. Write these alternative implementations by hand or make use of the Mockito package as
a shortcut.

Mock objects simulate the behavior of real (often complex) objects. They allow us to create an
object that will replace the real one used in the implementation code. A mocked object will
expect a defined method with defined arguments to return the expected result. It knows in
advance what is supposed to happen and how we expect it to react. Mockito is a mocking
framework with a clean and simple API. Tests produced with Mockito are readable, easy to
write, and intuitive

Add the package dependencies
dependencies:
flutter:
sdk: flutter
http: 70.13.4
cupertino icons: "71.0.3

dev_dependencies:
flutter test:
sdk: flutter
mockito: 75.0.16
build runner: "2.1.4

https://pub.dev/packages/mockito

Workshop Framework cross-platform Workshop 8: Testing in flutter

Create a function to test

1. Provide an http.Client to the function. This allows providing the correct http.Client depending
on the situation. For Flutter and server-side projects, provide an http.IOClient. For Browser
apps, provide an http.BrowserClient. For tests, provide a mock http.Client.

2. Use the provided client to fetch data from the internet, rather than the static http.get() method,
which is difficult to mock.

import 'dart:async';
import 'dart:convert';

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;

Future<Album> fetchAlbum (http.Client client) async {
final response = await client
.get (Uri.parse('https://jsonplaceholder.typicode.com/albums/1"));

if (response.statusCode == 200) {

// If the server did return a 200 OK response,

// then parse the JSON.

return Album.fromJson (jsonDecode (response.body)) ;
} else {

// If the server did not return a 200 OK response,

// then throw an exception.

throw Exception('Failed to load album');

}

class Album {
final int userId;
final int id;
final String title;

const Album({required this.userId, required this.id, required
this.title});

factory Album.fromJson (Map<String, dynamic> json) {
return Album/(

userId: json|['userId'],

id: json['id'],

title: Jjson['title'],

)

}
void main () => runApp (MyApp());

class MyApp extends StatefulWidget {
@override
_MyAppState createState() => MyAppState();
}

class MyAppState extends State<MyApp> {
late final Future<Album> futureAlbum;

Qoverride
void initState () {
super.initState();
futureAlbum = fetchAlbum(http.Client());

Workshop Framework cross-platform Workshop 8:

}

@override
Widget build(BuildContext context) {
return MaterialApp (
title: 'Fetch Data Example',
theme: ThemeData (
primarySwatch: Colors.blue,
)
home: Scaffold(
appBar: AppBar (
title: const Text ('Fetch Data Example'),

),
body: Center (
child: FutureBuillder<Album> (
future: futureAlbum,
builder: (context, snapshot) {
if (snapshot.hasData) {
return Text (
snapshot.data!.title,
style: TextStyle(
color: Colors.lightGreen,
fontWeight: FontWeight.w700,
fontSize: 25,
),
) ;
} else if (snapshot.hasError) {
return Text ('S${snapshot.error}');

}

Testing in flutter

// By default, show a loading spinner.
return const CircularProgressIndicator();

}y

Workshop Framework cross-platform Workshop 8: Testing in flutter

1216 8 @ &~

Fetch Data Example

quidem molestiae enim

Create a test file with a mock http.Client

1- Create a file called fetch_album_test.dart in the root test folder.
2- Add the annotation @GenerateMocks([http.Client]) to the main function to generate
a MockClient class with mockito.

import 'package:http/http.dart' as http;

import 'package:mockito/annotations.dart"';

// Generate a MockClient using the Mockito package.
// Create new instances of this class 1in each test.
@GenerateMocks ([http.Client])

void main () {}

3- Next, generate the mocks running the following command:

flutter pub run build runner build

The generated MockClient class implements the http.Client class. This allows you to pass
the MockClient to the fetchAlbum function, and return different http responses in each test.

The generated mocks will be located in fetch_album_test.mocks.dart. Import this file to use
them.

Write a test for each condition in fetch_album_test.dart

Workshop Framework cross-platform Workshop 8: Testing in flutter

import 'package:flutter test/flutter test.dart';
import 'package:http/http.dart' as http;

import 'package:mockito/annotations.dart';
import 'package:mockito/mockito.dart';

import 'package:tp8 unit mockito/main.dart';

import 'fetch album test.mocks.dart';
// Generate a MockClient using the Mockito package.

// Create new instances of this class 1in each test.
@GenerateMocks ([http.Client])

void main () {
group ('fetchAlbum', () {
test ('returns an Album if the http call completes successfully', ()
async {

final client = MockClient ();

// Use Mockito to return a successful response when it calls the
// provided http.Client.
when (client

.get (Uri.parse('https://jsonplaceholder.typicode.com/albums/1")))
.thenAnswer (() async =>

http.Response (' {"userId": 1, "id": 2, "title": "mock"}',
200))

expect (await fetchAlbum(client), isA<Album>()):;
1)

test ('throws an exception if the http call completes with an error', ()
final client = MockClient ();

// Use Mockito to return an unsuccessful response when it calls the
// provided http.Client.
when (client

.get (Uri.parse('https://jsonplaceholder.typicode.com/albums/1")))
.thenAnswer (() async => http.Response ('Not Found',6 404));

expect (fetchAlbum(client), throwsException);
)
P

Run the tests

flutter test test/fetch_album_test.dart

EA\TP_JEE\Etudiant\flutter_apps\tp8\tp8_unit_mockito>flutter test test/fetch_album_test.dart
00:07 +2: All tests passed!
E\TP_JEE\Etudiant\flutter_apps\tp8\tp8_unit_mockito>

Workshop Framework cross-platform Workshop 8: Testing in flutter

» To test that your codes in creating your widgets is working

» Test that for example tapping on a button will cause that changes or not

	An introduction to unit testing
	Mock dependencies using Mockito
	Add the package dependencies
	Create a function to test
	Create a test file with a mock http.Client
	Write a test for each condition in fetch_album_test.dart
	Run the tests

