L ambdachine:
A Virtual Machine for Haskell

Thomas Schilling
Erudify

FP Afternoon 2013, Zlrich, Switzerland

INntroduction

- Haskell is a nice language and some very nice tools (GHCi, ThreadScope,
criterion), but could be better.

* Profiling requires recompiling your program and all the libraries it depends on!
- Libraries are distributed in source form and compilation can be quite slow.
- Solution: virtual machine

» Bonus: Send code over network?

« Bonus: JIT compiler may even provide better performance

Option 1: Use JVM / CLR

* Pro: 100s to 1000s of person years of implementation effort
- Pro: Battle-tested and available on many platforms (at least in some form)
* Pro: Interface with huge number of existing libraries

- Con: Designed with different usage pattern in mind -- Haskell is very different
in a number of aspects. GHC’s runtime system takes advantage of Haskell’s
idiosyncrasies in a number of ways.

+ Con: Interfacing with existing language requires mapping of types which is
often awkward.

Option 2: Build custom VM

- Lots of effort, though it may be possible to reuse some of GHC’s runtime
system.

 Features can be tuned for executing Haskell.
- May also be a good platform for other (statically typed) functional languages.

- Use ideas and some code from open source projects: PyPy, V8, Mono,
LuaJIT

Trace-based Just-in-time compilation

Trace-based Just-in-time compilation

Trace-based Just-in-time compilation

Sow
A scope of optimisation

D call
return |
J |

leprlelo]

E
_
to B
/
to interpreter L — toH

Trace-based Just-in-time Compilation

- Tracing JITs have recently found their way into the programming language
mainstream: Tracemonkey (Javascript), LuaJdlT 2, Android’s Dalvik VM, PyPy
(Python), others: SPUR (CIL/.net)

« Most of these languages are dynamically typed.

- Great for dynamic languages - very large static control flow graphs (due to
runtime type checks).

A trace-based JIT creates a specialised monomorphic version for each
frequently executed path.

- Simple and quick compiler, thus short warm-up time.

Haskell Is dynamic at runtime, too!

Thunks

f x = case x of ...

plusDouble
plusInteger

Overloading

Thunks and Specialisation
- map :: (@ -> b) -> [a] -> [b]

- map (+1) :: [Int] -> [Int]

- map (+1) (generateList ...)

« sum (map (+1) (upto 1 100))

« Supercompilation is not yet ready for production (progress seems stalled?)

10

Overloading

add::Numa=>a->a->a
- add :: DNuma->a->a->a
cadddxy=(plusd) xy

- addInt :: Int -> Int -> Int
addInt (I x) (I'y) = | (primIntAdd x y)

11

Lambdachine
Compilation Time Execution Time

NS

ooo

 : g .| Trace Compiler |..
[Typechecker J N T y

j f [Bytecode [Compied).
e : eCcoqe EEN omplie :
i | .lcbc Y P :

s Interpreter |« Machine Code | :
Core-to-core | : B 7N 4

:{ GHC AP

.~
AR
A

L

4)

Trace-detector

oo

12

An

—Xample

- upto :: Int -> Int -> [Int]

upto lo hi =

if lo > hi then [] else lo :

- sum :: Int => [Int] -> Int

sum 'acc 1 = case 1 of
[] -> acc
(x:xs) —> sum (acc + Xx) XS

upto (lo + 1) hi

- test = print (sum @ (upto 1 100))

13

- upto :: Int -> Int -> [Int]
upto lo hi =

if lo > hi then [] else lo :

- sum :: Int -> [Int] -> Int
sum lacc 1 = case 1 of

[] -> acc

(x:xs) —> sum (acc + Xx) XS

- sum 55 (upto 11 100)
case (upto 11 100) of ...
case (upto 11 100) of ...

upto (lo + 1) hi

case (if 11 > 100 then ...) of ...

case (if False then ...) of ...
case (11 : upto 12 100) of ...
case (11 : upto 12 100) of ...

sum (55 + 11) (upto 12 100)
sum 66 (upto 12 100)

start:

Obj *acc = basel@l; . upto :: Int# -> Int# -> [Int
guard (info(acc) == Int); Epto ié i = LInt]
Obj *1 = base[1]; p.f e .
guard (info(l) == upto_thunk) L O 1 then [] else .

I# lo : upto (lo +# 1#) hi

int lo = 1[11;

int hi = 1[2];

guard (lo <= hi);: - sum :: Int -> [Int] -> Int
Obj *y = new I#(lo); sum lacc 1 = case 1 of

int 102 = lo + 1; [] -> acc

Obj *ys = new upto_thunk(lo2, hi); (x:xs) -> sum (acc + X) XS

Obj *res = new Cons(y, yS);
update(l, res);

guard (info(res) == Cons);
Obj *x = res[0];
Obj *xs = res[1];
int x_u = x[0];
int acc_u = accl0];
int acc_u2 = acc_u + X_u;
Obj *acc?2 = new I#(acc_u2);
base[0] = acc?
base[1] = xs
goto start;

start:

Obj *acc = basel[0];

guard (info(acc) == Int);

Obj *1 = basel[1];

guard (info(l) == upto_thunk)

int lo = 1[1];

int hi = 1[2];

guard (lo <= hi);
Obj *y = new I#(lo);

- upto :: Int# -> Int# -> [Int]

upto lo hi =
1f lo ># hi then [] else
I# lo : upto (lo +# 1#) hi

- sum :: Int -> [Int] -> Int

sum lacc 1 = case 1 of

4)

A few microseconds later ... XS
. y
guard (info(res) == Cons);

Obj *x = res[0];
Obj *xs = res[1];
int x_u = x[0];
int acc_u = accl0];
int acc_u2 = acc_u + X_u;
Obj *acc?2 = new I#(acc_u2);
base[0] = acc?
base[1] = xs
goto start;

16

start:

Obj *acc = basel[0];

guard (info(acc) == Int);

Obj *1 = basel[1];

guard (info(l) == upto_thunk)
int lo = 1[11];

int hi = 1[2];

guard (lo <= hi);

Obj *y = new I#(lo);

int lo2 = 1o + 1;

Obj *ys = new upto_thunk(lo2, hi);
Obj *res = new Cons(y, ys);
int acc_u = accl0];

int acc_u2 = acc_u + lo;

Obj *acc2 = new I#(acc_u2);
loop:

guard (lo2 <= hi);

lo2 = 102 + 1;

acc_u2 = acc_u?2 + lo2;

goto loop;

Thunks and Updates

sum 55 (upto 11 100)

hi\
upto, 1)

18

Thunks and Updates

sum 55 (11 : upto 12 100)

19

Thunks and Updates

sum 55 (11 : upto 12 100)

20

Thunks and Updates

sum 66 (upto 12 100)

hi

21

Thunks and Updates

sum 66 (12 : upto 13 100)

(0 /)
0

};,

Thunks and Updates

sum 78 (upto 13 100)

(0 /)
0

};,

Benchmarks (micro)

Benchmark GHC -02 GHC -02 + JIT
SumFromTo 2.31s 1.80s
SumFromTo2 4.02s 2.32S

SumSquare 2.45s 2.35S

Sumstream 0.24s 1.11s

Tak 1.01s 0.84s

24

Benchmarks (small)

Benchmark GHC -02 GHC -02 + JIT
WheelSieve?2 0.34s 0.59s
Boyer 0.75s 0.74s
Constraints 0.88s 0.89s
Circsim 1.71s 3.49s
Lamlbda 0.74s 1.00s

25

Conclusions & Ongoing Work

* Trace selection is tricky. Haskell’s control flow graphs are large messy.
Preferring tail-recursive loops could help.

 How can we detect (cheaply) when an update can be omitted? -- Some
recent work by SPJ et al

e Only a subset of the Prelude currently supported.

e Single-threaded and very simple garbage collector -- need to integrate GHC
runtime system (scheduler, generational GCs, sparks, STM, ...)

26

Questions?

27

