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About me

I Programming since about 8 years old.

I Studied physics and chemistry.

I Worked at small software company.

I Software technology master at Utrecht University.

I Started Silk with 3 others.
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About us

I Started in 2009.

I Started with 4 people, now 10.

I Initial funding by one founder.

I Seed investment by Atomico (Skype) and 4 angels (2011).

I Later investment by NEA, Atmico.
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About Silk

“Silk is new way to create and consume content.”

What does that mean?
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Silk - concept

I Site consists of documents (cf. Wikipedia).

I Documents have a name, e.g. ‘Netherlands’.
I Documents contain tags.

I Value, e.g. tag ‘16,783,092’ as population.
I Link, e.g. tag link to ‘Amsterdam’ as capital.

I Tagged links yield a graph structure.
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Silk - queries

Users can query the total set of information, e.g.:

What countries have a population under 5 milion, but a
capital with a population over 1 million?

Results can be shown in different ways: a table, a graph, a map.

Erik Hesselink Haskell web application architecture

http://world.erik.silk/explore/%257B%2522query%2522%253A%257B%2522raw%2522%253Afalse%252C%2522relations%2522%253A%255B%255B%2522document%2520name%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522nonempty%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522filters%2522%253A%255B%255B%2522type%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%2522%252C%255B%2522document%2520name%2522%255D%255D%252C%255B%2522greater%2520than%2522%252C%25221%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%255D%252C%255B%2522less%2520than%2522%252C%25225%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522filterrels%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522orders%2522%253A%255B%255Btrue%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522limits%2522%253A%255B%255D%252C%2522query%2522%253A%2522from%2520all%2520documents%255Cu000a%255Cu000awhere%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520%2520%255Cu000aand%2520%28document%2520has%2520type%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%29%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520greater%2520than%2520%255C%25221%2520million%255C%2522%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520less%2520than%2520%255C%25225%2520million%255C%2522%255Cu000a%255Cu000aselect%2520document%2520name%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aorder%2520ascending%2520by%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aslice%2520from%25200%2520to%252099%2522%257D%252C%2522view%2522%253A%2522http%253A%252F%252Ftyplab.com%252F2010%252Fcomponents%252Fquerytable%2522%252C%2522basefields%2522%253A%255B%255D%257D
http://world.erik.silk/explore/%257B%2522query%2522%253A%257B%2522raw%2522%253Afalse%252C%2522relations%2522%253A%255B%255B%2522document%2520name%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522nonempty%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522filters%2522%253A%255B%255B%2522type%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%2522%252C%255B%2522document%2520name%2522%255D%255D%252C%255B%2522greater%2520than%2522%252C%25221%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%255D%252C%255B%2522less%2520than%2522%252C%25225%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522filterrels%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522orders%2522%253A%255B%255Btrue%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522limits%2522%253A%255B%255D%252C%2522query%2522%253A%2522from%2520all%2520documents%255Cu000a%255Cu000awhere%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520%2520%255Cu000aand%2520%28document%2520has%2520type%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%29%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520greater%2520than%2520%255C%25221%2520million%255C%2522%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520less%2520than%2520%255C%25225%2520million%255C%2522%255Cu000a%255Cu000aselect%2520document%2520name%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aorder%2520ascending%2520by%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aslice%2520from%25200%2520to%252099%2522%257D%252C%2522view%2522%253A%2522http%253A%252F%252Ftyplab.com%252F2010%252Fcomponents%252Fquerytable%2522%252C%2522basefields%2522%253A%255B%255D%257D


Results in a table.



Results on a map.



Editor

I Users can create their own content.

I Inline WYSIWIG editor.
I Tagging made easy.

I Suggestions.
I Instant gratification.

I Can embed components, like query results.

I Charts and maps can be embedded externally.
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Architecture

I Web-facing server (Haskell) with HTTP (REST) interface.

I Talks to other servers (Haskell) through HTTP.

I Fat client (Javascript).

I Talks to server API through AJAX.

I Web site (Haskell) also uses API.
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Architecture - diagram

Figure: Silk architecture
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Server-side technology

I Documents stored on Amazon S3.

I Relational database storing users, permissions, sessions etc.

I Graph database stores tag structure and processes queries.

I Embeds cached in Varnish.
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Architecture lessons

I Split app in separate processes.
I Easier to see what’s going on.
I Easier to scale.
I Easier to test.
I Harder to coordinate.

I Interface with HTTP APIs.

I Seperate machine per process.

I Continuous integration.

I Binary deployment.
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Server packages

A service Foo results in four packages:

I The server (foo-server).

I The domain/API (foo-api).

I The client (foo-client).

I The shared types (foo-types).
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Packages: server

The server package handles:

I Configuration (command line, file, runtime).

I Starting HTTP server.
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Packages: api

The api package contains the actual handlers and domain logic.

I Can be run from GHCi.

I Reusable from e.g. command line program.

I Used to generate client libraries, documentation.

Sometimes wrapped in with server.
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Packages: client

The client package communicates with the server through
HTTP.

I Generated from api description (ideally).

I Doesn’t hide all http details.
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Packages: types

The types package contains the types shared between server and
client.

I Contains all public types.

I Includes needed instances, e.g. (de)serialization.

I Small utility functions (e.g. smart constructors) but no more.

Types and client can be released, server and api are private.
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Types of a server

A server uses a newtyped monad transformer:

newtype Foo a =
Foo {unFoo :: ReaderT FooConfig (ServerPartT IO) a}

And a simple runner:

runFoo :: Config → Foo a→ ServerPartT IO a
runFoo cfg foo = runReaderT (unFoo foo) cfg
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Why a newtype?

Why a newtype? The alternatives:

I Using the literal types.
I Verbose.
I Lots of change everywhere.

I Using a type synonym.
I Cannot have custom type class instances.
I Less type safety.

I Using type class contexts.
I Verbose.
I Lots of change everywhere.
I But more granularity.
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Derive all the things!

With GeneralizedNewtypeDeriving

newtype Foo a = . . .
deriving (Functor ,Applicative,Monad

,MonadIO, ServerMonad , . . .
)

And occasionally StandaloneDeriving:

deriving instance Monad (f (Fix f ))⇒ Monad (Fix f )

MonadBaseControl still problematic due to associated type
synonym.
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Create you own class

Sometimes it’s useful to create your own copy of a standard class.

class ConfigReader m where
askConfig :: m Config
localConfig :: (Config → Config)→ m a→ m a

instance ConfigReader Foo where
askConfig = Foo ◦ ask ◦ unFoo
localConfig f = Foo ◦ local f ◦ unFoo

This way you can stack it later with another reader.
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Create you own class - 2

Of course this is just the beginning of the boilerplate...

instance ConfigReader m⇒ ConfigReader (ReaderT r m) where
askConfig = lift askConfig
localConfig f = mapReaderT ◦ localConfig

instance ConfigReader m⇒ ConfigReader (StateT s m) where
. . .
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API resource

DSL for our REST API describes resources.

site :: Resource Root WithSite Site
site = mkResource
{ identifier = "site"

, multiGet = Just listing
, singleGetBy = [ ("uri", byId)]
, singleUpdateBy = [ ("uri", update)]
, singleDelete = Just delete
, singleActions = [ ("query", query)

, ("wipe", wipe)
]

}
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API artifacts

I Run to get API server.
I Can also generate clients . . .

I Haskell
I Javascript
I Ruby

I . . . and documentation.
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API resource - 2

site :: Resource Root WithSite Site

I Context the resource runs in (Root).

I Context subresources run in (WithSite).

I Type the resource describes (Site).
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API resource - 3

site = mkResource
{ identifier = "site"

, multiGet = Just listing
, singleGetBy = [("uri", byId)]
. . .

I Uris will begin with site.

I Listing by GETting site/.

I Single item by GETting site/uri/<uri>.
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API resource - 4

. . .
, singleUpdateBy = [ ("uri", update)]
, singleDelete = Just delete
, singleActions = [ ("query", query)

, ("wipe", wipe)
]

}

I Update item by PUTting site/uri/<uri>.

I Delete item by DELETEing site/uri/<uri>.

I Special actions by POSTing to site/query and site/wipe.
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API tree

Combine to create nested resources.

silk :: Router
silk = api → user

→ site → page → autosave
→ version

→ tag
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API endpoint

byId :: Handler Root Site
byId = mkGetter (readId ◦ xmlJsonO) $ λu →
do repo ← queryRepository u ‘orThrow ‘ NotFound

readableFor (Repo.uri repo)
return repo

I Handler contains input and output dictionary.
I Handler action runs in context.

I Root for getters.
I WithSite for actions.

I Inputs and outputs described to capture dictionaries.
I Read for the identifier.
I XML and JSON serialization for the output.

I Can throw predefined exceptions, or define its own
(serializable).
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Using the client

{-# LANGUAGE OverloadedStrings #-}
import Silk.Client
import qualified Silk .Client.Site as Site

getSite :: String → String → IO Site
getSite username password = run "api.silkapp.com" $
do signin username password

Site.byUri "world.silkapp.com"

newtype ApiT m a =
ApiT {unApiT :: StateT ApiState

(ReaderT ApiInfo (ResourceT m)) a}
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Contact

Interested?

I Check out Silk at http://silkapp.com.

I Email me at erik@silkapp.com.

I Follow us on twitter: @silkapp.

Questions?
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Contact

Interested?

I Check out Silk at http://silkapp.com.

I Email me at erik@silkapp.com.

I Follow us on twitter: @silkapp.

Thank you.
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