
Haskell web application architecture

Erik Hesselink

August 29, 2013

Erik Hesselink Haskell web application architecture

About me

I Programming since about 8 years old.

I Studied physics and chemistry.

I Worked at small software company.

I Software technology master at Utrecht University.

I Started Silk with 3 others.

Erik Hesselink Haskell web application architecture

About us

I Started in 2009.

I Started with 4 people, now 10.

I Initial funding by one founder.

I Seed investment by Atomico (Skype) and 4 angels (2011).

I Later investment by NEA, Atmico.

Erik Hesselink Haskell web application architecture

About Silk

“Silk is new way to create and consume content.”

What does that mean?

Erik Hesselink Haskell web application architecture

Silk - concept

I Site consists of documents (cf. Wikipedia).

I Documents have a name, e.g. ‘Netherlands’.
I Documents contain tags.

I Value, e.g. tag ‘16,783,092’ as population.
I Link, e.g. tag link to ‘Amsterdam’ as capital.

I Tagged links yield a graph structure.

Erik Hesselink Haskell web application architecture

Silk - queries

Users can query the total set of information, e.g.:

What countries have a population under 5 milion, but a
capital with a population over 1 million?

Results can be shown in different ways: a table, a graph, a map.

Erik Hesselink Haskell web application architecture

http://world.erik.silk/explore/%257B%2522query%2522%253A%257B%2522raw%2522%253Afalse%252C%2522relations%2522%253A%255B%255B%2522document%2520name%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522nonempty%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522filters%2522%253A%255B%255B%2522type%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%2522%252C%255B%2522document%2520name%2522%255D%255D%252C%255B%2522greater%2520than%2522%252C%25221%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%255D%252C%255B%2522less%2520than%2522%252C%25225%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522filterrels%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522orders%2522%253A%255B%255Btrue%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522limits%2522%253A%255B%255D%252C%2522query%2522%253A%2522from%2520all%2520documents%255Cu000a%255Cu000awhere%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520%2520%255Cu000aand%2520%28document%2520has%2520type%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%29%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520greater%2520than%2520%255C%25221%2520million%255C%2522%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520less%2520than%2520%255C%25225%2520million%255C%2522%255Cu000a%255Cu000aselect%2520document%2520name%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aorder%2520ascending%2520by%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aslice%2520from%25200%2520to%252099%2522%257D%252C%2522view%2522%253A%2522http%253A%252F%252Ftyplab.com%252F2010%252Fcomponents%252Fquerytable%2522%252C%2522basefields%2522%253A%255B%255D%257D
http://world.erik.silk/explore/%257B%2522query%2522%253A%257B%2522raw%2522%253Afalse%252C%2522relations%2522%253A%255B%255B%2522document%2520name%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522nonempty%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522filters%2522%253A%255B%255B%2522type%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%2522%252C%255B%2522document%2520name%2522%255D%255D%252C%255B%2522greater%2520than%2522%252C%25221%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%255D%252C%255B%2522less%2520than%2522%252C%25225%2520million%2522%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522filterrels%2522%253A%255B%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%252C%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2522%255D%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%252C%2522orders%2522%253A%255B%255Btrue%252C%255B%2522http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2522%255D%255D%255D%252C%2522limits%2522%253A%255B%255D%252C%2522query%2522%253A%2522from%2520all%2520documents%255Cu000a%255Cu000awhere%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520%2520%255Cu000aand%2520%28document%2520has%2520type%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCountry%29%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520greater%2520than%2520%255C%25221%2520million%255C%2522%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520less%2520than%2520%255C%25225%2520million%255C%2522%255Cu000a%255Cu000aselect%2520document%2520name%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%2520for%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FCapital%2520%2520%255Cu000aand%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aorder%2520ascending%2520by%2520http%253A%252F%252Fworld.erik.silk%252Ftag%252FPopulation%255Cu000a%255Cu000aslice%2520from%25200%2520to%252099%2522%257D%252C%2522view%2522%253A%2522http%253A%252F%252Ftyplab.com%252F2010%252Fcomponents%252Fquerytable%2522%252C%2522basefields%2522%253A%255B%255D%257D

Results in a table.

Results on a map.

Editor

I Users can create their own content.

I Inline WYSIWIG editor.
I Tagging made easy.

I Suggestions.
I Instant gratification.

I Can embed components, like query results.

I Charts and maps can be embedded externally.

Erik Hesselink Haskell web application architecture

Architecture

I Web-facing server (Haskell) with HTTP (REST) interface.

I Talks to other servers (Haskell) through HTTP.

I Fat client (Javascript).

I Talks to server API through AJAX.

I Web site (Haskell) also uses API.

Erik Hesselink Haskell web application architecture

Architecture - diagram

Figure: Silk architecture

Erik Hesselink Haskell web application architecture

Server-side technology

I Documents stored on Amazon S3.

I Relational database storing users, permissions, sessions etc.

I Graph database stores tag structure and processes queries.

I Embeds cached in Varnish.

Erik Hesselink Haskell web application architecture

Architecture lessons

I Split app in separate processes.
I Easier to see what’s going on.
I Easier to scale.
I Easier to test.
I Harder to coordinate.

I Interface with HTTP APIs.

I Seperate machine per process.

I Continuous integration.

I Binary deployment.

Erik Hesselink Haskell web application architecture

Server packages

A service Foo results in four packages:

I The server (foo-server).

I The domain/API (foo-api).

I The client (foo-client).

I The shared types (foo-types).

Erik Hesselink Haskell web application architecture

Packages: server

The server package handles:

I Configuration (command line, file, runtime).

I Starting HTTP server.

Erik Hesselink Haskell web application architecture

Packages: api

The api package contains the actual handlers and domain logic.

I Can be run from GHCi.

I Reusable from e.g. command line program.

I Used to generate client libraries, documentation.

Sometimes wrapped in with server.

Erik Hesselink Haskell web application architecture

Packages: client

The client package communicates with the server through
HTTP.

I Generated from api description (ideally).

I Doesn’t hide all http details.

Erik Hesselink Haskell web application architecture

Packages: types

The types package contains the types shared between server and
client.

I Contains all public types.

I Includes needed instances, e.g. (de)serialization.

I Small utility functions (e.g. smart constructors) but no more.

Types and client can be released, server and api are private.

Erik Hesselink Haskell web application architecture

Types of a server

A server uses a newtyped monad transformer:

newtype Foo a =
Foo {unFoo :: ReaderT FooConfig (ServerPartT IO) a}

And a simple runner:

runFoo :: Config → Foo a→ ServerPartT IO a
runFoo cfg foo = runReaderT (unFoo foo) cfg

Erik Hesselink Haskell web application architecture

Why a newtype?

Why a newtype? The alternatives:

I Using the literal types.
I Verbose.
I Lots of change everywhere.

I Using a type synonym.
I Cannot have custom type class instances.
I Less type safety.

I Using type class contexts.
I Verbose.
I Lots of change everywhere.
I But more granularity.

Erik Hesselink Haskell web application architecture

Derive all the things!

With GeneralizedNewtypeDeriving

newtype Foo a = . . .
deriving (Functor ,Applicative,Monad

,MonadIO, ServerMonad , . . .
)

And occasionally StandaloneDeriving:

deriving instance Monad (f (Fix f))⇒ Monad (Fix f)

MonadBaseControl still problematic due to associated type
synonym.

Erik Hesselink Haskell web application architecture

Create you own class

Sometimes it’s useful to create your own copy of a standard class.

class ConfigReader m where
askConfig :: m Config
localConfig :: (Config → Config)→ m a→ m a

instance ConfigReader Foo where
askConfig = Foo ◦ ask ◦ unFoo
localConfig f = Foo ◦ local f ◦ unFoo

This way you can stack it later with another reader.

Erik Hesselink Haskell web application architecture

Create you own class - 2

Of course this is just the beginning of the boilerplate...

instance ConfigReader m⇒ ConfigReader (ReaderT r m) where
askConfig = lift askConfig
localConfig f = mapReaderT ◦ localConfig

instance ConfigReader m⇒ ConfigReader (StateT s m) where
. . .

Erik Hesselink Haskell web application architecture

API resource

DSL for our REST API describes resources.

site :: Resource Root WithSite Site
site = mkResource
{ identifier = "site"

, multiGet = Just listing
, singleGetBy = [("uri", byId)]
, singleUpdateBy = [("uri", update)]
, singleDelete = Just delete
, singleActions = [("query", query)

, ("wipe", wipe)
]

}

Erik Hesselink Haskell web application architecture

API artifacts

I Run to get API server.
I Can also generate clients . . .

I Haskell
I Javascript
I Ruby

I . . . and documentation.

Erik Hesselink Haskell web application architecture

API resource - 2

site :: Resource Root WithSite Site

I Context the resource runs in (Root).

I Context subresources run in (WithSite).

I Type the resource describes (Site).

Erik Hesselink Haskell web application architecture

API resource - 3

site = mkResource
{ identifier = "site"

, multiGet = Just listing
, singleGetBy = [("uri", byId)]
. . .

I Uris will begin with site.

I Listing by GETting site/.

I Single item by GETting site/uri/<uri>.

Erik Hesselink Haskell web application architecture

API resource - 4

. . .
, singleUpdateBy = [("uri", update)]
, singleDelete = Just delete
, singleActions = [("query", query)

, ("wipe", wipe)
]

}

I Update item by PUTting site/uri/<uri>.

I Delete item by DELETEing site/uri/<uri>.

I Special actions by POSTing to site/query and site/wipe.

Erik Hesselink Haskell web application architecture

API tree

Combine to create nested resources.

silk :: Router
silk = api → user

→ site → page → autosave
→ version

→ tag

Erik Hesselink Haskell web application architecture

API endpoint

byId :: Handler Root Site
byId = mkGetter (readId ◦ xmlJsonO) $ λu →
do repo ← queryRepository u ‘orThrow ‘ NotFound

readableFor (Repo.uri repo)
return repo

I Handler contains input and output dictionary.
I Handler action runs in context.

I Root for getters.
I WithSite for actions.

I Inputs and outputs described to capture dictionaries.
I Read for the identifier.
I XML and JSON serialization for the output.

I Can throw predefined exceptions, or define its own
(serializable).

Erik Hesselink Haskell web application architecture

Using the client

{-# LANGUAGE OverloadedStrings #-}
import Silk.Client
import qualified Silk .Client.Site as Site

getSite :: String → String → IO Site
getSite username password = run "api.silkapp.com" $
do signin username password

Site.byUri "world.silkapp.com"

newtype ApiT m a =
ApiT {unApiT :: StateT ApiState

(ReaderT ApiInfo (ResourceT m)) a}

Erik Hesselink Haskell web application architecture

Contact

Interested?

I Check out Silk at http://silkapp.com.

I Email me at erik@silkapp.com.

I Follow us on twitter: @silkapp.

Questions?

Erik Hesselink Haskell web application architecture

http://silkapp.com

Contact

Interested?

I Check out Silk at http://silkapp.com.

I Email me at erik@silkapp.com.

I Follow us on twitter: @silkapp.

Questions?

Erik Hesselink Haskell web application architecture

http://silkapp.com

Contact

Interested?

I Check out Silk at http://silkapp.com.

I Email me at erik@silkapp.com.

I Follow us on twitter: @silkapp.

Thank you.

Erik Hesselink Haskell web application architecture

http://silkapp.com

