Haxl:
Haskell at Facebook

Simon Marlow
Jon Coens
Louis Brandy
Bartosz Nitka
Jon Purdy
Aaron Roth
& others

What’s in this talk

* The Haxl project: ~¥12 months later, where are we
e Haxl| published at ICFP’14!

* Hax| open source release!
e walking through an example data source

No!

How does Sigma know what'’s
spam?

* FXL

JaffaCakeSpam =
MessageContains(“Jaffa Cakes”) &&

Let

LikesJaffaCakes(X) = Likes(JaffaCakes,X)

In
Length(Filter(LikesJaffaCakes, FriendsOf(SourceId))) < 3

* + machine learning.

SpamMessage = SpamScore > 0.99

 Where do the inputs to the ML come from?
* FXL expressions.

What can you do in FXL?

* Fetch data from the Facebook graph:

FriendCount(uid) = AssocCountByType(uid, AssocFriends)

* Fetch data from any of the other 18 data sources
* Run machine learning classifiers
e Perform simple computations

RatioFriendsSourceIdOver20 =
If FriendCountSourceld > ©

Then Ratio(CountFriendsSourceIdOver(20),
FriendCountSourceld)

Else 0.0;

What’s good about FXL?

* Clean syntax

Sl engineers concentrate on fighting spam, not the
language

* Static typing

* cannot push type-incorrect code

* We can push changes fast
* a couple of minutes from commit to production

What’s not so good?

What’s not so good?

* Limited abstractions
We're building larger systems in FXL now

What’s not so good?

* Limited abstractions
We're building larger systems in FXL now

* Design quirks and hysterical raisins

What’s not so good?

* Limited abstractions
We're building larger systems in FXL now

* Design quirks and hysterical raisins

Static typing is limited
* Only a few types: int, double, string, vector, map, JSON
* No user-defined types
* Type system doesn’t catch as many errors as it could

What’s not so good?

* Limited abstractions
We're building larger systems in FXL now

* Design quirks and hysterical raisins

Static typing is limited
* Only a few types: int, double, string, vector, map, JSON
* No user-defined types
* Type system doesn’t catch as many errors as it could

* Slow (it’s an interpreter)

Why are we switching to Haskell?

* Expressivity

e Learning resources available

* Lots of libraries

* Faster (it’s compiled)

* Better implementation (error messages etc.)

* Chance to redesign the whole system
e guaranteed replayability

Technical challenges

Implicit concurrency
Implement all the FXL functionality in Haskell
Translate all the FXL code

Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

o e =

e Status summary: we’re mostly done with 1,2,3 and
experimenting with a solution for 4.

* Now: testing, bug fixing and optimisation.

Implicit concurrency

* In FXL you can write this:

NumCommonFriends(x, y) =

Length(Intersect(FriendsOf(x), FriendsOf(y)));

* And Sigma automatically batches the two requests
together.

* With existing languages & frameworks you have to
specify the concurrency explicitly...

e e.g using Haskell asyncs:

ax <- async (friendsOf x)
ay <- async (friendsOf y)

fx <- wait ax
fy <- wait ay
return (length (intersect fx fy))

* Too verbose
* Prone to false dependencies

Larger example: a blog server

Popular posts

* Post2
* Post1l
* Post3

Categories

* Topic A
* Post3

* TopicB
* Post 2

* TopicC
* Postl

Another example: a blog server

Popular posts

=3 PosED
* Post1
¢ Post 3

Categories

* Topic A
¢ Post 3

¢ Topic B
¢ Post 2
Topic C
* Post1

Another example: a blog server

Popular posts Post 1

* Post 2
* Post1
¢ Post 3

Categories

* Topic A
* [Post 3

¢ Topic B
¢ Post 2
Topic C

Another example: a blog server

Popular posts Post 1

¢ Post 2
* Post1
¢ Post 3

Categories

* Topic A
¢ Post 3

¢ Topic B
¢ Post 2

¢ Topic C

-
I
I
I
I
I
I
I
I
I
I
I
I
L

data PostId
data Date
data PostContent

data PostInfo = PostInfo
{ postId :: PostId
, postDate :: Date
, postTopic :: String
}

-- data-fetching operations

getPostIds :: Haxl [PostId]

getPostInfo :: PostId -> Haxl PostInfo
getPostContent :: PostId -> Haxl PostContent
getPostViews :: PostId -> Haxl Int

-- rendering functions
renderPosts :: [(PostInfo,PostContent)] -> Html
renderPage :: Html -> Html -> Html

blog :: Haxl Html
blog = renderPage <$> leftPane <*> mainPane

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = mapM getPostInfo =<< getPostIds

mainPane :: Haxl Html
mainPane = do
posts <- getAllPostsInfo
let ordered =
take 5 %
sortBy (flip (comparing postDate)) posts
content <- mapM (getPostContent . postId) ordered
return $ renderPosts (zip ordered content)

leftPane :: Haxl Html
leftPane = renderSidePane <$> popularPosts <*> topics

getPostDetails :: PostId -> Haxl (PostInfo, PostContent)
getPostDetails pid =
(,) <$> getPostInfo pid <*> getPostContent pid

popularPosts :: Haxl Html
popularPosts = do
pids <- getPostlds
views <- mapM getPostViews pids
let ordered =
take 5 $ map fst $
sortBy (flip (comparing snd)) (zip pids views)
content <- mapM getPostDetails ordered
return $ renderPostlList content

topics :: Haxl Html
topics = do
posts <- getAllPostsInfo

let topiccounts =
Map.fromListWith (+) [(postTopic p, 1) | p <- posts]
return $ renderTopics topiccounts

So how did we do?

Popular posts

=3 PosED
* Post1
¢ Post 3

Categories

* Topic A
¢ Post 3

¢ Topic B
¢ Post 2

¢ Topic C
* Post1

So how did we do?

Popular posts Post 1

* Post 2
* Post1
¢ Post 3

Categories

* Topic A
¢ Post 3
¢ Topic B
¢ Post 2
Topic C
* Post1

L ————

So how did we do?

Popular posts Post 1

¢ Post 2
* Post1
¢ Post 3

* Topic A
¢ Post 3
¢ Topic B
¢ Post 2
Topic C
* Post1

|

|

|

|

|

|

| :
I Categories
|

|

|

|

|

|

|

. getPostlds

getPostViews

O getPostinfo

. getPostContent

blog

PN

leftPane mainPane

topics popularPosts

---.@%E}-.

Demo

Implementation

 Start with a concurrency monad

data Result a

| Blocked
(Seq BlockedRequest)
(Hax1l a)

Start with a concurrency monad

data Result a
= Done a
| Blocked (Seq BlockedRequest) (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)
Blocked br c -> return (Blocked br (c >>= k))

Add an Applicative instance

instance Applicative Haxl where
pure = return

Haxl f <*> Haxl x = Haxl $ do
f' <- f
X' <- X
case (f',x"') of
(Done g, Done y) -> return (Done (g y))
(Done g, Blocked br ¢) -> return (Blocked br (g <$> c))
(Blocked br c, Done vy) -> return (Blocked br (c <*> return y))

(Blocked brl c, Blocked br2 d) -> return (Blocked (brl <> br2) (c <*> d))

Fetching Data

dataFetch :: Request a -> Haxl a

Fetching Data

dataFetch :: Request a -> Haxl a

data Request a where
FetchPosts :: Request [PostId]
FetchPostInfo :: PostId -> Request PostInfo
FetchPostContent :: PostId -> Request PostContent
FetchPostViews :: PostId -> Request Int

Fetching Data

dataFetch :: Request a -> Haxl a

data Request a where
FetchPosts :: Request [PostId]
FetchPostInfo :: PostId -> Request PostInfo
FetchPostContent :: PostId -> Request PostContent
FetchPostViews :: PostId -> Request Int

data FetchStatus a = NotFetched | FetchSuccess a

data BlockedRequest =
forall a . BlockedRequest (Request a) (IORef (FetchStatus a))

* We can implement dataFetch:

dataFetch :: Request a -> Haxl a
dataFetch request = Haxl $ do

box <- newIORef NotFetched

let br = BlockedRequest request box

let cont = Haxl $ do
FetchSuccess a <- readIORef box
return (Done a)

return (Blocked (singleton br) cont)

* To fetch data, we need

fetch :: [BlockedRequest] -> I0 ()

* To run a computation to completion, we need a
loop:

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do

r <- h

case r of

Done a -> return a
Blocked br cont -> do
fetch (toList br)

runFetch cont

e Done!

We also want caching

 Reader monad passes an |IORef DataCache around

 Complication:
* cache maps Request a to a
e can’t do this with Data.Map alone

newtype DataCache =

DataCache (forall a . Map (Request a) (IORef (FetchStatus a)))

There is no Fork: an Abstraction for Efficient,

Concurrent, and Concise Data Access

Simon Marlow Louis Brandy
Facebook Facebook
smarlow@fb.com Idbrandy®fb.com

Abstract

We describe a new programming idiom for concurrency, based on
Applicative Functors, where concurrency is implicit in the Applica-
tive <*> operator. The result is that concurrent programs can be
written in a natural applicative style, and they retain a high degree
of clarity and modularity while executing with maximal concur-
rency. This idiom is particularly useful for programming against
external data sources, where the application code is written without
the use of explicit concurrency constructs, while the implementa-
tion is able to batch together multiple requests for data from the
same source, and fetch data from multiple sources concurrently.
Our abstraction uses a cache to ensure that multiple requests for
the same data return the same result, which frees the programmer
from having to arrange to fetch data only once, which in turn leads
to greater modularity.

While it is generally applicable, our technique was designed
with a particular application in mind: an internal service at Face-
book that identifies particular types of content and takes actions
based on it. Our application has a large body of business logic that
fetches data from as many as 15 different external sources. The
framework described in this paper enables the business logic to ex-
ecute efficiently by automatically fetching data concurrently; we
present some preliminary results.

Jonathan Coens Jon Purdy
Facebook Facebook
jon.coens@fb.com Jjonp@fb.com

efficiency in this setting: accessing multiple remote data sources
efficiently requires concurrency, and that normally requires the
programmer to intervene and program the concurrency explicitly.

When the business logic is only concerned with reading data
from external sources and not writing, the programmer doesn’t
care about the order in which data accesses happen, since there
are no side-effects that could make the result different when the
order changes. So in this case the programmer would be entirely
happy with not having to specify either ordering or concurrency,
and letting the system perform data access in the most efficient way
possible. In this paper we present an embedded domain-specific
language (EDSL), written in Haskell, that facilitates this style of
programming, while automatically extracting and exploiting any
concurrency inherent in the program.

Our contributions can be summarised as follows:

* We present an Applicative abstraction that allows implicit
concurrency to be extracted from computations written with a
combination of Monad and Applicative. This is an extension
of the idea of concurrency monads [9], using Applicative <#>
as a way to introduce concurrency (Section[d)). We then develop
the idea into an abstraction that supports concurrent access to
remote data (Section[3), and failure (Section [§).

e We show how to add a cache to the framework (Section [6h.

But...

* The Request type was wired into the monad

 How can we make the monad independent of the data

SOUFCG(S)? Data sources

h

other
serV|ce

e Core code includes the monad, caching support etc.
* Core is generic: no data sources built-in

dataFetch :: Request a -> Haxl a

—

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)

=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

DataSource walk-through

* We'll walk through constructing a complete data
source

 We'll make a data source for the Facebook Graph
API
* web API for querying the Facebook Graph
 using Felipe Lessa’s fb package to do the real work

e our data source will perform requests concurrently up to
a maximum number of threads

 Start with the request type:

data FacebookReq a where
GetObject :: Id -> FacebookReq Object
GetUser :: Userld -> FacebookReq User
GetUserFriends :: UserlId -> FacebookReq [Friend]

deriving Typeable

* We also need some boilerplate:

deriving instance Eq (FacebookReq a)
deriving instance Show (FacebookReqg a)

instance Showl FacebookReq where showl = show

instance Hashable (FacebookReq a) where ...

e A data source has some state:

instance StateKey FacebookReq where
data State FacebookReq =
FacebookState
credentials :: Credentials
userAccessToken :: UserAccessToken
manager :: Manager
numThreads :: Int

* Initialise the state:

initGlobalState
.. Int
-> Credentials
-> UserAccessToken
-> I0 (State FacebookReq)

initGlobalState threads creds token = do

manager <- newManager tlsManagerSettings
return FacebookState
credentials = creds

manager = manager
userAccessToken = token
numThreads = threads

* nothing surprising there.

* Make an instance of DataSource

class DataSourceName req where
dataSourceName :: req a -> Text

class (DataSourceName req, StateKey req, Showl req)
=> DataSource u req where

fetch
:: State req
-> Flags
-> U
-> [BlockedFetch req]
-> PerformFetch

instance DataSourceName FacebookReq where
dataSourceName _ = "Facebook*

instance DataSource u FacebookReq where
fetch = facebookFetch

* Implement fetch

data PerformFetch
= SyncFetch (I0 ())
| AsyncFetch (IO () -> I0 ())

facebookFetch
:: State FacebookReq
-> Flags
-> ()
-> [BlockedFetch FacebookReq]
-> PerformFetch

facebookFetch FacebookState{..} flags _user bfs =
AsyncFetch $ \inner -> do
sem <- newQSem numThreads
asyncs <- mapM (async . fetchAsync credentials manager
userAccessToken sem) bfs
inner
mapM_ wait asyncs

* Implement fetchAsync

fetchAsync
:: Credentials -> Manager -> UserAccessToken -> QSem
-> BlockedFetch FacebookReq
-> 10 ()

fetchAsync creds manager tok sem (BlockedFetch req rvar) =
bracket (waitQSem sem) (signalQSem sem) $ do

e <- Control.Exception.try $
runResourceT $
runFacebookT creds manager $
fetchReq tok req

case e of

Left ex -> putFailure rvar (ex :: SomeException)
Right a -> putSuccess rvar a

» fetchReg maps FacebookReq to FacebookT
computations

fetchReq
:: UserAccessToken
-> FacebookReq a
-> FacebookT Auth (ResourceT IO) a

fetchReq tok (GetObject (Id id)) =
getObject ("/" <> id) [] (Just tok)

fetchReq _tok (GetUser id) =
getUser id [] Nothing

fetchReq tok (GetUserFriends id) = do
f <- getUserFriends id [] tok
source <- fetchAllNextPages f
source $$ consume

 Example

main :: IO ()
main = do
(creds, access _token) <- getCredentials
facebookState <- initGlobalState 10 creds access_token

env <- initEnv (stateSet facebookState stateEmpty) ()

r <- runHaxl env $ do
likes <- getObject "me/likes™

mapM getObject (likeIds likes)

Back to our Haxl project...

e But do people have to learn <S>, <*>, etc?

numCommonFriends x y =

length <$> (intersect <$> friendsOf x <*> friendsOf y)

* No, because this

numCommonFriends x y = do
fx <- friendsOf x
fy <- friendsOf y

return (length (intersect fx fy))

* can be silently translated to the Applicative form in
the compiler

* (not implemented yet)

* Going further, we could write a pre-processor from
this:

numCommonFriends :: Haxl Int

numCommonFriends =
length (intersect (friendsOf sourceld) (friendsOf targetld))

e To this:

numCommonFriends :: Haxl Int
numCommonFriends
= length <$>

(intersect <$>
(join (friendsOf <$> sourceld)) <*>
(join (friendsOf <$> targetld)))

e straightforward with haskell-src-exts

Dilemna: monads or no monads?

* Using a preprocessor

* Advantages
* Everything is monadic, but looks pure to the programmer
* Easier to understand
e Disadvantages
e Can’t write pure code
* Hard to interpret error messages
 Two languages adds complexity

* We decided not to go this route (for now)

Technical challenges

Implement all the FXL functionality in Haskell

3. Translate all the FXL code

Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

Implement all the FXL functionality in Haskell

e several data sources
* Each needs a Haskell/C++ FFI layer

e ~450 built-in functions

e Ranging from easy (StrCmp) to really annoying
(ParseActivityLog)

* We created lots of tasks
 some done by the team
* (we’re working on our 4t jteration of the TAO layer)

e others grabbed by interested people around Facebook:
hack-a-month projects and bootcamp

* As of two weeks ago, we have everything
implemented!

Technical challenges

3. Translate all the FXL code

4. Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

Translate all the FXL code

* We have a /ot of FXL code
* impractical to translate it all by hand

 Wrote a translation tool

* tricky bit is converting to do-syntax or Applicative where
necessary, while keeping as much code as possible pure

e Auto-translated code will become the source
* Try to produce readable code

Technical challenges

Implicit concurrency
Implement all the FXL functionality in Haskell
Translate all the FXL code

Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

) b =

Compile time

* At first, compiling the whole
translated codebase took
~30 mins

* (FXL push currently takes ~2
mins)

Reducing compile time

* Long laborious process to impose a sensible
module structure

 FXL source files now form a DAG
* Compilation has some parallelism now

* We have full compile down to ~5 mins
* incremental compile usually much faster (~2 mins)

How to push to Sigma machines?

* We're experimenting with GlusterFS for
distribution.

* seems good: all machines get a new object in <1 min

Hot code swapping

Hot code swapping

Hot code swapping

* Keep serving requests while we load new code

e Use GHC's built-in linker
* Had to modify it to unload code (shipped in GHC 7.8)
e GC detects when it is safe to release old code

* We can have multiple copies of the code running while
existing requests drain

Status

e Call graph complete
e Full FXL codebase translated

* Next goals:

e achieve 99% correctness (100% hard due to random
effects)

» get performance up par with FXL
e experiment with running production traffic
* open source...

Open Source! (coming next week

O This repository Explore Gist Blog Help simonmar 4 - j(E}-

facebook / Haxl @ Unwatch ~ 12 W Star 2 % Fork 0

A Haskell library for efficient, concurrent, concise data access

u I brancn- master ~ Hax| / + Pull Requests
Initial open source import Wiki
Simon Marlow latest commit 7120357ecd E—
Haxl tial open source import a day ago Pulse
example tial open source import a day ago Graphs
tests
B gitignore
= LICENSE
B PATENTS
B setuphs
B TARGETS tial open source import VT ERS [cione in Desktop
B hax.cabal tial open source import a day ago <> Download ZIP

= readme.md

readme.md

Haxl

Haxl is a Haskell library that simplifies access to remote data, such as databases or web-based services

Haxl can automatically

« batch multiple requests to the same data source,

Py i

Haxl:
Haskell at Facebook

Simon Marlow
Jon Coens
Louis Brandy
Bartosz Nitka
Jon Purdy
Aaron Roth
& others
<your name here>

Questions?

