
Haxl:
Haskell at Facebook

Simon Marlow
Jon Coens

Louis Brandy
Bartosz Nitka

Jon Purdy
Aaron Roth

& others

What’s in this talk

• The Haxl project: ~12 months later, where are we

• Haxl published at ICFP’14!

• Haxl open source release!
• walking through an example data source

Sigma

No!

Sigma

No!

How does Sigma know what’s
spam?
• FXL

• + machine learning.

• Where do the inputs to the ML come from?
• FXL expressions.

JaffaCakeSpam =
MessageContains(“Jaffa Cakes”) &&
Let
LikesJaffaCakes(X) = Likes(JaffaCakes,X)

In
Length(Filter(LikesJaffaCakes, FriendsOf(SourceId))) < 3

SpamMessage = SpamScore > 0.99

What can you do in FXL?

• Fetch data from the Facebook graph:

• Fetch data from any of the other 18 data sources

• Run machine learning classifiers

• Perform simple computations

FriendCount(uid) = AssocCountByType(uid, AssocFriends)

RatioFriendsSourceIdOver20 =
If FriendCountSourceId > 0
Then Ratio(CountFriendsSourceIdOver(20),

FriendCountSourceId)
Else 0.0;

What’s good about FXL?

• Clean syntax
• SI engineers concentrate on fighting spam, not the

language

• Static typing
• cannot push type-incorrect code

• We can push changes fast
• a couple of minutes from commit to production

What’s not so good?

What’s not so good?

• Limited abstractions
We’re building larger systems in FXL now

What’s not so good?

• Limited abstractions
We’re building larger systems in FXL now

• Design quirks and hysterical raisins

What’s not so good?

• Limited abstractions
We’re building larger systems in FXL now

• Design quirks and hysterical raisins

Static typing is limited
• Only a few types: int, double, string, vector, map, JSON

• No user-defined types

• Type system doesn’t catch as many errors as it could

What’s not so good?

• Limited abstractions
We’re building larger systems in FXL now

• Design quirks and hysterical raisins

Static typing is limited
• Only a few types: int, double, string, vector, map, JSON

• No user-defined types

• Type system doesn’t catch as many errors as it could

• Slow (it’s an interpreter)

Why are we switching to Haskell?

• Expressivity

• Learning resources available

• Lots of libraries

• Faster (it’s compiled)

• Better implementation (error messages etc.)

• Chance to redesign the whole system
• guaranteed replayability

Technical challenges

1. Implicit concurrency

2. Implement all the FXL functionality in Haskell

3. Translate all the FXL code

4. Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

• Status summary: we’re mostly done with 1,2,3 and
experimenting with a solution for 4.

• Now: testing, bug fixing and optimisation.

Implicit concurrency

• In FXL you can write this:

• And Sigma automatically batches the two requests
together.

• With existing languages & frameworks you have to
specify the concurrency explicitly...

NumCommonFriends(x, y) =
Length(Intersect(FriendsOf(x), FriendsOf(y)));

• e.g using Haskell asyncs:

• Too verbose

• Prone to false dependencies

do
ax <- async (friendsOf x)
ay <- async (friendsOf y)
fx <- wait ax
fy <- wait ay
return (length (intersect fx fy))

Larger example: a blog server

Post 1

Post 2

Post 3

• Post 2
• Post 1
• Post 3

• Topic A
• Post 3

• Topic B
• Post 2

• Topic C
• Post 1

Popular posts

Categories

My Blog

Another example: a blog server

Another example: a blog server

We want modular code –
code each pane
independently

Another example: a blog server

We want modular code –
code each pane
independently

We want it to execute
efficiently.
• Concurrent data fetches
• No repeated data fetches

data PostId -- identifies a post
data Date -- a calendar date
data PostContent -- the content of a post

data PostInfo = PostInfo
{ postId :: PostId
, postDate :: Date
, postTopic :: String
}

-- data-fetching operations
getPostIds :: Haxl [PostId]
getPostInfo :: PostId -> Haxl PostInfo
getPostContent :: PostId -> Haxl PostContent
getPostViews :: PostId -> Haxl Int

-- rendering functions
renderPosts :: [(PostInfo,PostContent)] -> Html
renderPage :: Html -> Html -> Html
...

blog :: Haxl Html
blog = renderPage <$> leftPane <*> mainPane

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = mapM getPostInfo =<< getPostIds

mainPane :: Haxl Html
mainPane = do
posts <- getAllPostsInfo
let ordered =

take 5 $
sortBy (flip (comparing postDate)) posts

content <- mapM (getPostContent . postId) ordered
return $ renderPosts (zip ordered content)

leftPane :: Haxl Html
leftPane = renderSidePane <$> popularPosts <*> topics

getPostDetails :: PostId -> Haxl (PostInfo, PostContent)
getPostDetails pid =
(,) <$> getPostInfo pid <*> getPostContent pid

popularPosts :: Haxl Html
popularPosts = do
pids <- getPostIds
views <- mapM getPostViews pids
let ordered =

take 5 $ map fst $
sortBy (flip (comparing snd)) (zip pids views)

content <- mapM getPostDetails ordered
return $ renderPostList content

topics :: Haxl Html
topics = do
posts <- getAllPostsInfo
let topiccounts =

Map.fromListWith (+) [(postTopic p, 1) | p <- posts]
return $ renderTopics topiccounts

So how did we do?

So how did we do?

Code is clean and modular

So how did we do?

Code is clean and modular But does it execute efficiently?

Demo

Implementation

• Start with a concurrency monad

data Result a

-- we’re finished, here’s the result
= Done a

-- the computation blocked...
| Blocked

(Seq BlockedRequest) –- requests to perform
(Haxl a) -- continuation

Start with a concurrency monad

data Result a
= Done a
| Blocked (Seq BlockedRequest) (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r <- m
case r of

Done a -> unHaxl (k a)
Blocked br c -> return (Blocked br (c >>= k))

Add an Applicative instance

instance Applicative Haxl where
pure = return

Haxl f <*> Haxl x = Haxl $ do
f' <- f
x' <- x
case (f',x') of
(Done g, Done y) -> return (Done (g y))
(Done g, Blocked br c) -> return (Blocked br (g <$> c))
(Blocked br c, Done y) -> return (Blocked br (c <*> return y))
(Blocked br1 c, Blocked br2 d) -> return (Blocked (br1 <> br2) (c <*> d))

Fetching Data

dataFetch :: Request a -> Haxl a

GADT
Type parameter is
the result type of

the request

Fetching Data

dataFetch :: Request a -> Haxl a

data Request a where
FetchPosts :: Request [PostId]
FetchPostInfo :: PostId -> Request PostInfo
FetchPostContent :: PostId -> Request PostContent
FetchPostViews :: PostId -> Request Int

GADT
Type parameter is
the result type of

the request

Fetching Data

dataFetch :: Request a -> Haxl a

data FetchStatus a = NotFetched | FetchSuccess a

data BlockedRequest =
forall a . BlockedRequest (Request a) (IORef (FetchStatus a))

data Request a where
FetchPosts :: Request [PostId]
FetchPostInfo :: PostId -> Request PostInfo
FetchPostContent :: PostId -> Request PostContent
FetchPostViews :: PostId -> Request Int

GADT
Type parameter is
the result type of

the request

• We can implement dataFetch:

dataFetch :: Request a -> Haxl a
dataFetch request = Haxl $ do
box <- newIORef NotFetched
let br = BlockedRequest request box
let cont = Haxl $ do

FetchSuccess a <- readIORef box
return (Done a)

return (Blocked (singleton br) cont)

• To fetch data, we need

fetch :: [BlockedRequest] -> IO ()

Application-specific data-
fetching function.

Batches multiple requests,
uses concurrency, etc.

• To run a computation to completion, we need a
loop:

• Done!

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do
r <- h
case r of
Done a -> return a
Blocked br cont -> do
fetch (toList br)
runFetch cont

We also want caching

• Reader monad passes an IORef DataCache around

• Complication:
• cache maps Request a to a

• can’t do this with Data.Map alone

newtype DataCache =
DataCache (forall a . Map (Request a) (IORef (FetchStatus a)))

ICFP’14

But...

• The Request type was wired into the monad

• How can we make the monad independent of the data
source(s)?

• Core code includes the monad, caching support etc.

• Core is generic: no data sources built-in

Core

TAO

Memcache

other
service...

Data sources

dataFetch :: Request a -> Haxl a

dataFetch :: Request a -> Haxl a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

DataSource
class: every data

source
implements this

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

DataSource
class: every data

source
implements this Request class:

just Eq,
Hashable,

Typeable, Show

dataFetch :: (DataSource u req, Request req a)
=> req a
-> GenHaxl u a

User state –
passed around,
can be accessed
by data sources

DataSource
class: every data

source
implements this Request class:

just Eq,
Hashable,

Typeable, Show

DataSource walk-through

• We’ll walk through constructing a complete data
source

• We’ll make a data source for the Facebook Graph
API
• web API for querying the Facebook Graph

• using Felipe Lessa’s fb package to do the real work

• our data source will perform requests concurrently up to
a maximum number of threads

• Start with the request type:

• We also need some boilerplate:

data FacebookReq a where
GetObject :: Id -> FacebookReq Object
GetUser :: UserId -> FacebookReq User
GetUserFriends :: UserId -> FacebookReq [Friend]
deriving Typeable

GADT, as before

deriving instance Eq (FacebookReq a)
deriving instance Show (FacebookReq a)

instance Show1 FacebookReq where show1 = show

instance Hashable (FacebookReq a) where ...

• A data source has some state:

instance StateKey FacebookReq where
data State FacebookReq =
FacebookState

{ credentials :: Credentials
, userAccessToken :: UserAccessToken
, manager :: Manager
, numThreads :: Int
}

API keys

HTTP connection
manager

Concurrency
control

• Initialise the state:

• nothing surprising there.

initGlobalState
:: Int
-> Credentials
-> UserAccessToken
-> IO (State FacebookReq)

initGlobalState threads creds token = do
manager <- newManager tlsManagerSettings
return FacebookState
{ credentials = creds
, manager = manager
, userAccessToken = token
, numThreads = threads
}

• Make an instance of DataSource

class DataSourceName req where
dataSourceName :: req a -> Text

class (DataSourceName req, StateKey req, Show1 req)
=> DataSource u req where

fetch
:: State req
-> Flags
-> u
-> [BlockedFetch req]
-> PerformFetch

instance DataSourceName FacebookReq where
dataSourceName _ = "Facebook“

instance DataSource u FacebookReq where
fetch = facebookFetch

• Implement fetch

facebookFetch
:: State FacebookReq
-> Flags
-> ()
-> [BlockedFetch FacebookReq]
-> PerformFetch

facebookFetch FacebookState{..} _flags _user bfs =
AsyncFetch $ \inner -> do
sem <- newQSem numThreads
asyncs <- mapM (async . fetchAsync credentials manager

userAccessToken sem) bfs
inner
mapM_ wait asyncs

data PerformFetch
= SyncFetch (IO ())
| AsyncFetch (IO () -> IO ())

IO to do while
the requests

are in progress

• Implement fetchAsync

fetchAsync
:: Credentials -> Manager -> UserAccessToken -> QSem
-> BlockedFetch FacebookReq
-> IO ()

fetchAsync creds manager tok sem (BlockedFetch req rvar) =
bracket_ (waitQSem sem) (signalQSem sem) $ do

e <- Control.Exception.try $
runResourceT $
runFacebookT creds manager $
fetchReq tok req

case e of
Left ex -> putFailure rvar (ex :: SomeException)
Right a -> putSuccess rvar a

• fetchReq maps FacebookReq to FacebookT
computations

fetchReq
:: UserAccessToken
-> FacebookReq a
-> FacebookT Auth (ResourceT IO) a

fetchReq tok (GetObject (Id id)) =
getObject ("/" <> id) [] (Just tok)

fetchReq _tok (GetUser id) =
getUser id [] Nothing

fetchReq tok (GetUserFriends id) = do
f <- getUserFriends id [] tok
source <- fetchAllNextPages f
source $$ consume

• Example

main :: IO ()
main = do
(creds, access_token) <- getCredentials
facebookState <- initGlobalState 10 creds access_token
env <- initEnv (stateSet facebookState stateEmpty) ()
r <- runHaxl env $ do
likes <- getObject "me/likes"
mapM getObject (likeIds likes)

print r

Many requests,
performed

concurrently.

Back to our Haxl project...

• But do people have to learn <$>, <*>, etc?

• No, because this

• can be silently translated to the Applicative form in
the compiler
• (not implemented yet)

numCommonFriends x y =
length <$> (intersect <$> friendsOf x <*> friendsOf y)

numCommonFriends x y = do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))

• Going further, we could write a pre-processor from
this:

• To this:

• straightforward with haskell-src-exts

numCommonFriends :: Haxl Int
numCommonFriends
= length <$>

(intersect <$>
(join (friendsOf <$> sourceId)) <*>
(join (friendsOf <$> targetId)))

numCommonFriends :: Haxl Int
numCommonFriends =
length (intersect (friendsOf sourceId) (friendsOf targetId))

Dilemna: monads or no monads?

• Using a preprocessor
• Advantages

• Everything is monadic, but looks pure to the programmer

• Easier to understand

• Disadvantages
• Can’t write pure code

• Hard to interpret error messages

• Two languages adds complexity

• We decided not to go this route (for now)

Technical challenges

1. Implicit concurrency

2. Implement all the FXL functionality in Haskell

3. Translate all the FXL code

4. Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

Implement all the FXL functionality in Haskell

• several data sources

• Each needs a Haskell/C++ FFI layer

• ~450 built-in functions
• Ranging from easy (StrCmp) to really annoying

(ParseActivityLog)

• We created lots of tasks
• some done by the team

• (we’re working on our 4th iteration of the TAO layer)

• others grabbed by interested people around Facebook:
hack-a-month projects and bootcamp

• As of two weeks ago, we have everything
implemented!

Technical challenges

1. Implicit concurrency

2. Implement all the FXL functionality in Haskell

3. Translate all the FXL code

4. Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

Translate all the FXL code

• We have a lot of FXL code
• impractical to translate it all by hand

• Wrote a translation tool
• tricky bit is converting to do-syntax or Applicative where

necessary, while keeping as much code as possible pure

• Auto-translated code will become the source
• Try to produce readable code

Technical challenges

1. Implicit concurrency

2. Implement all the FXL functionality in Haskell

3. Translate all the FXL code

4. Figure out how to compile+push all the Haskell
code to all of the machines in a few minutes

Compile time

• At first, compiling the whole
translated codebase took
~30 mins

• (FXL push currently takes ~2
mins)

Reducing compile time

• Long laborious process to impose a sensible
module structure
• FXL source files now form a DAG

• Compilation has some parallelism now

• We have full compile down to ~5 mins
• incremental compile usually much faster (~2 mins)

How to push to Sigma machines?

• We’re experimenting with GlusterFS for
distribution.
• seems good: all machines get a new object in <1 min

Gluster
server

Gluster
server

Gluster
server

NFS

Sigma
Sigma

Sigma
Sigma

Sigma
Sigma

Sigma

Hot code swapping

server code (C++)

libraries (Haskell)

data sources (C++)

business logic (Haxl) new business logic (

Hot code swapping

server code (C++)

libraries (Haskell)

data sources (C++)

business logic (Haxl) new business logic (Haxl)

Hot code swapping

• Keep serving requests while we load new code

• Use GHC’s built-in linker
• Had to modify it to unload code (shipped in GHC 7.8)

• GC detects when it is safe to release old code

• We can have multiple copies of the code running while
existing requests drain

Status

• Call graph complete

• Full FXL codebase translated

• Next goals:
• achieve 99% correctness (100% hard due to random

effects)

• get performance up par with FXL

• experiment with running production traffic

• open source...

Open Source! (coming next week)

Haxl:
Haskell at Facebook

Simon Marlow
Jon Coens

Louis Brandy
Bartosz Nitka

Jon Purdy
Aaron Roth

& others
<your name here>

Questions?

