3D hand pose estimation via dense regression
Clone or download
Latest commit 6a561bc Apr 30, 2018
Type Name Latest commit message Commit time
Failed to load latest commit information.
data fix bugs on camera_view / frame loop Apr 30, 2018
exp replace wrong file Nov 23, 2017
model pretrained model Nov 23, 2017
network remove cache files Nov 27, 2017
gpu_config.py first commit Nov 22, 2017
readme.md Update readme.md Apr 19, 2018


Dense 3D Regression for Hand Pose Estimation

This respository contains tensorflow implementation of the paper. It is developped and tested on Debian GNU/Linux 8 64-bit.


  • python 2.7
  • tensorflow == 1.3
  • tfplot (for visualization on tf summary files)
  • matplotlib >= 2.0.2
  • numpy
  • opencv >= 2.4 (optional, for cpu visualization)

Data Preparations:

Download the datasets, create soft links for them to exp/data and run python data/${dataset}.py to create the TFRecord files. Details are here.


Both training and testing functions are provided by model/hourglass_um_crop_tiny.py. Here is an example:

python model/hourglass_um_crop_tiny.py --dataset 'icvl' --batch_size 40 --num_stack 2 --fea_num 128 --debug_level 2 --is_train True

where the hyper parameter configuration is explained in the source python files.


We provide the estimation results by the proposed method for ICVL, NYU, MSRA15. They are xyz coordinates in mm, the 2D projection method is in the function xyz2uvd from here. Check here for comparison to other methods. Thanks @xinghaochen for providing the comparison.

Pretrained Models:

Run the script to download and install the corresponding trained model of datasets. $ROOT denote the root path of this project.

cd $ROOT

To perform testing, simply run

python model/hourglass_um_crop_tiny.py --dataset 'icvl' --batch_size 3 --num_stack 2 --num_fea 128 --debug_level 2 --is_train False
python model/hourglass_um_crop_tiny.py --dataset 'nyu' --batch_size 3 --num_stack 2 --num_fea 128 --debug_level 2 --is_train False
python model/hourglass_um_crop_tiny.py --dataset 'msra' --pid 0 --batch_size 3 --num_stack 2 --num_fea 128 --debug_level 2 --is_train False

in which msra dataset should use pid to indicate which person to test on. In the testing function, the third augument is used to indicate which model with corresponding training step will be restored. We use step of -1 to indicate our pre-trained model.