Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: r37a3
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 430 lines (377 sloc) 12.521 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */

#ifndef jsnum_h___
#define jsnum_h___

#include <math.h>
#if defined(XP_WIN) || defined(XP_OS2)
#include <float.h>
#endif
#ifdef SOLARIS
#include <ieeefp.h>
#endif

/*
* JS number (IEEE double) interface.
*
* JS numbers are optimistically stored in the top 31 bits of 32-bit integers,
* but floating point literals, results that overflow 31 bits, and division and
* modulus operands and results require a 64-bit IEEE double. These are GC'ed
* and pointed to by 32-bit jsvals on the stack and in object properties.
*/

JS_BEGIN_EXTERN_C

/*
* The ARM architecture supports two floating point models: VFP and FPA. When
* targetting FPA, doubles are mixed-endian on little endian ARMs (meaning that
* the high and low words are in big endian order).
*/
#if defined(__arm) || defined(__arm32__) || defined(__arm26__) || defined(__arm__)
#if !defined(__VFP_FP__)
#define FPU_IS_ARM_FPA
#endif
#endif

typedef union jsdpun {
    struct {
#if defined(IS_LITTLE_ENDIAN) && !defined(FPU_IS_ARM_FPA)
        uint32 lo, hi;
#else
        uint32 hi, lo;
#endif
    } s;
    uint64 u64;
    jsdouble d;
} jsdpun;

static inline int
JSDOUBLE_IS_NaN(jsdouble d)
{
#ifdef WIN32
    return _isnan(d);
#else
    return isnan(d);
#endif
}

static inline int
JSDOUBLE_IS_FINITE(jsdouble d)
{
#ifdef WIN32
    return _finite(d);
#else
    return finite(d);
#endif
}

static inline int
JSDOUBLE_IS_INFINITE(jsdouble d)
{
#ifdef WIN32
    int c = _fpclass(d);
    return c == _FPCLASS_NINF || c == _FPCLASS_PINF;
#elif defined(SOLARIS)
    return !finite(d) && !isnan(d);
#else
    return isinf(d);
#endif
}

static inline int
JSDOUBLE_IS_NEGZERO(jsdouble d)
{
#ifdef WIN32
    return (d == 0 && (_fpclass(d) & _FPCLASS_NZ));
#elif defined(SOLARIS)
    return (d == 0 && copysign(1, d) < 0);
#else
    return (d == 0 && signbit(d));
#endif
}

#define JSDOUBLE_HI32_SIGNBIT 0x80000000
#define JSDOUBLE_HI32_EXPMASK 0x7ff00000
#define JSDOUBLE_HI32_MANTMASK 0x000fffff

static inline int
JSDOUBLE_IS_INT(jsdouble d, jsint& i)
{
    if (JSDOUBLE_IS_NEGZERO(d))
        return false;
    return d == (i = jsint(d));
}

static inline int
JSDOUBLE_IS_NEG(jsdouble d)
{
#ifdef WIN32
    return JSDOUBLE_IS_NEGZERO(d) || d < 0;
#elif defined(SOLARIS)
    return copysign(1, d) < 0;
#else
    return signbit(d);
#endif
}

static inline uint32
JS_HASH_DOUBLE(jsdouble d)
{
    jsdpun u;
    u.d = d;
    return u.s.lo ^ u.s.hi;
}

#if defined(XP_WIN)
#define JSDOUBLE_COMPARE(LVAL, OP, RVAL, IFNAN) \
((JSDOUBLE_IS_NaN(LVAL) || JSDOUBLE_IS_NaN(RVAL)) \
? (IFNAN) \
: (LVAL) OP (RVAL))
#else
#define JSDOUBLE_COMPARE(LVAL, OP, RVAL, IFNAN) ((LVAL) OP (RVAL))
#endif

extern jsdouble js_NaN;
extern jsdouble js_PositiveInfinity;
extern jsdouble js_NegativeInfinity;

/* Initialize number constants and runtime state for the first context. */
extern JSBool
js_InitRuntimeNumberState(JSContext *cx);

extern void
js_TraceRuntimeNumberState(JSTracer *trc);

extern void
js_FinishRuntimeNumberState(JSContext *cx);

/* Initialize the Number class, returning its prototype object. */
extern JSClass js_NumberClass;

extern JSObject *
js_InitNumberClass(JSContext *cx, JSObject *obj);

/*
* String constants for global function names, used in jsapi.c and jsnum.c.
*/
extern const char js_Infinity_str[];
extern const char js_NaN_str[];
extern const char js_isNaN_str[];
extern const char js_isFinite_str[];
extern const char js_parseFloat_str[];
extern const char js_parseInt_str[];

/*
* vp must be a root.
*/
extern JSBool
js_NewNumberInRootedValue(JSContext *cx, jsdouble d, jsval *vp);

/*
* Create a weakly rooted integer or double jsval as appropriate for the given
* jsdouble.
*/
extern JSBool
js_NewWeaklyRootedNumber(JSContext *cx, jsdouble d, jsval *vp);

/* Convert a number to a GC'ed string. */
extern JSString * JS_FASTCALL
js_NumberToString(JSContext *cx, jsdouble d);

/*
* Convert an integer or double (contained in the given jsval) to a string and
* append to the given buffer.
*/
extern JSBool JS_FASTCALL
js_NumberValueToCharBuffer(JSContext *cx, jsval v, JSCharBuffer &cb);

/*
* Convert a value to a number. On exit JSVAL_IS_NULL(*vp) iff there was an
* error. If on exit JSVAL_IS_NUMBER(*vp), then *vp holds the jsval that
* matches the result. Otherwise *vp is JSVAL_TRUE indicating that the jsval
* for result has to be created explicitly using, for example, the
* js_NewNumberInRootedValue function.
*/
extern jsdouble
js_ValueToNumber(JSContext *cx, jsval* vp);

/*
* Convert a value to an int32 or uint32, according to the ECMA rules for
* ToInt32 and ToUint32. On exit JSVAL_IS_NULL(*vp) iff there was an error. If
* on exit JSVAL_IS_INT(*vp), then *vp holds the jsval matching the result.
* Otherwise *vp is JSVAL_TRUE indicating that the jsval for result has to be
* created explicitly using, for example, the js_NewNumberInRootedValue
* function.
*/
extern int32
js_ValueToECMAInt32(JSContext *cx, jsval *vp);

extern uint32
js_ValueToECMAUint32(JSContext *cx, jsval *vp);

/*
* Specialized ToInt32 and ToUint32 converters for doubles.
*/
/*
* From the ES3 spec, 9.5
* 2. If Result(1) is NaN, +0, -0, +Inf, or -Inf, return +0.
* 3. Compute sign(Result(1)) * floor(abs(Result(1))).
* 4. Compute Result(3) modulo 2^32; that is, a finite integer value k of Number
* type with positive sign and less than 2^32 in magnitude such the mathematical
* difference of Result(3) and k is mathematically an integer multiple of 2^32.
* 5. If Result(4) is greater than or equal to 2^31, return Result(4)- 2^32,
* otherwise return Result(4).
*/
static inline int32
js_DoubleToECMAInt32(jsdouble d)
{
#ifdef __i386__
    jsdpun du, duh, two32;
    uint32 di_h, u_tmp, expon, shift_amount;
    int32 mask32;

    /*
* Algorithm Outline
* Step 1. If d is NaN, +/-Inf or |d|>=2^84 or |d|<1, then return 0
* All of this is implemented based on an exponent comparison.
* Step 2. If |d|<2^31, then return (int)d
* The cast to integer (conversion in RZ mode) returns the correct result.
* Step 3. If |d|>=2^32, d:=fmod(d, 2^32) is taken -- but without a call
* Step 4. If |d|>=2^31, then the fractional bits are cleared before
* applying the correction by 2^32: d - sign(d)*2^32
* Step 5. Return (int)d
*/

    du.d = d;
    di_h = du.s.hi;

    u_tmp = (di_h & 0x7ff00000) - 0x3ff00000;
    if (u_tmp >= (0x45300000-0x3ff00000)) {
        // d is Nan, +/-Inf or +/-0, or |d|>=2^(32+52) or |d|<1, in which case result=0
        return 0;
    }

    if (u_tmp < 0x01f00000) {
        // |d|<2^31
        return int32_t(d);
    }

    if (u_tmp > 0x01f00000) {
        // |d|>=2^32
        expon = u_tmp >> 20;
        shift_amount = expon - 21;
        duh.u64 = du.u64;
        mask32 = 0x80000000;
        if (shift_amount < 32) {
            mask32 >>= shift_amount;
            duh.s.hi = du.s.hi & mask32;
            duh.s.lo = 0;
        } else {
            mask32 >>= (shift_amount-32);
            duh.s.hi = du.s.hi;
            duh.s.lo = du.s.lo & mask32;
        }
        du.d -= duh.d;
    }

    di_h = du.s.hi;

    // eliminate fractional bits
    u_tmp = (di_h & 0x7ff00000);
    if (u_tmp >= 0x41e00000) {
        // |d|>=2^31
        expon = u_tmp >> 20;
        shift_amount = expon - (0x3ff - 11);
        mask32 = 0x80000000;
        if (shift_amount < 32) {
            mask32 >>= shift_amount;
            du.s.hi &= mask32;
            du.s.lo = 0;
        } else {
            mask32 >>= (shift_amount-32);
            du.s.lo &= mask32;
        }
        two32.s.hi = 0x41f00000 ^ (du.s.hi & 0x80000000);
        two32.s.lo = 0;
        du.d -= two32.d;
    }

    return int32(du.d);
#else
    int32 i;
    jsdouble two32, two31;

    if (!JSDOUBLE_IS_FINITE(d))
        return 0;

    i = (int32) d;
    if ((jsdouble) i == d)
        return i;

    two32 = 4294967296.0;
    two31 = 2147483648.0;
    d = fmod(d, two32);
    d = (d >= 0) ? floor(d) : ceil(d) + two32;
    return (int32) (d >= two31 ? d - two32 : d);
#endif
}

extern uint32
js_DoubleToECMAUint32(jsdouble d);

/*
* Convert a value to a number, then to an int32 if it fits by rounding to
* nearest; but failing with an error report if the double is out of range
* or unordered. On exit JSVAL_IS_NULL(*vp) iff there was an error. If on exit
* JSVAL_IS_INT(*vp), then *vp holds the jsval matching the result. Otherwise
* *vp is JSVAL_TRUE indicating that the jsval for result has to be created
* explicitly using, for example, the js_NewNumberInRootedValue function.
*/
extern int32
js_ValueToInt32(JSContext *cx, jsval *vp);

/*
* Convert a value to a number, then to a uint16 according to the ECMA rules
* for ToUint16. On exit JSVAL_IS_NULL(*vp) iff there was an error, otherwise
* vp is jsval matching the result.
*/
extern uint16
js_ValueToUint16(JSContext *cx, jsval *vp);

/*
* Convert a jsdouble to an integral number, stored in a jsdouble.
* If d is NaN, return 0. If d is an infinity, return it without conversion.
*/
static inline jsdouble
js_DoubleToInteger(jsdouble d)
{
    if (d == 0)
        return d;

    if (!JSDOUBLE_IS_FINITE(d)) {
        if (JSDOUBLE_IS_NaN(d))
            return 0;
        return d;
    }

    JSBool neg = (d < 0);
    d = floor(neg ? -d : d);

    return neg ? -d : d;
}

/*
* Similar to strtod except that it replaces overflows with infinities of the
* correct sign, and underflows with zeros of the correct sign. Guaranteed to
* return the closest double number to the given input in dp.
*
* Also allows inputs of the form [+|-]Infinity, which produce an infinity of
* the appropriate sign. The case of the "Infinity" string must match exactly.
* If the string does not contain a number, set *ep to s and return 0.0 in dp.
* Return false if out of memory.
*/
extern JSBool
js_strtod(JSContext *cx, const jschar *s, const jschar *send,
          const jschar **ep, jsdouble *dp);

/*
* Similar to strtol except that it handles integers of arbitrary size.
* Guaranteed to return the closest double number to the given input when radix
* is 10 or a power of 2. Callers may see round-off errors for very large
* numbers of a different radix than 10 or a power of 2.
*
* If the string does not contain a number, set *ep to s and return 0.0 in dp.
* Return false if out of memory.
*/
extern JSBool
js_strtointeger(JSContext *cx, const jschar *s, const jschar *send,
                const jschar **ep, jsint radix, jsdouble *dp);

JS_END_EXTERN_C

#endif /* jsnum_h___ */
Something went wrong with that request. Please try again.