Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Branch: r37a3
Fetching contributors…

Cannot retrieve contributors at this time

5897 lines (5388 sloc) 201.124 kB
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set sw=4 ts=8 et tw=78:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS regular expressions, after Perl.
*/
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jsarena.h" /* Added by JSIFY */
#include "jsutil.h" /* Added by JSIFY */
#include "jsapi.h"
#include "jsarray.h"
#include "jsatom.h"
#include "jsbuiltins.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jsfun.h"
#include "jsgc.h"
#include "jsinterp.h"
#include "jslock.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jsregexp.h"
#include "jsscan.h"
#include "jsscope.h"
#include "jsstaticcheck.h"
#include "jsstr.h"
#include "jsvector.h"
#ifdef JS_TRACER
#include "jstracer.h"
using namespace avmplus;
using namespace nanojit;
#endif
using namespace js;
typedef enum REOp {
#define REOP_DEF(opcode, name) opcode,
#include "jsreops.tbl"
#undef REOP_DEF
REOP_LIMIT /* META: no operator >= to this */
} REOp;
#define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
#ifdef REGEXP_DEBUG
const char *reop_names[] = {
#define REOP_DEF(opcode, name) name,
#include "jsreops.tbl"
#undef REOP_DEF
NULL
};
#endif
#ifdef __GNUC__
static int
re_debug(const char *fmt, ...) __attribute__ ((format(printf, 1, 2)));
#endif
#ifdef REGEXP_DEBUG
static int
re_debug(const char *fmt, ...)
{
va_list ap;
int retval;
va_start(ap, fmt);
retval = vprintf(fmt, ap);
va_end(ap);
return retval;
}
static void
re_debug_chars(const jschar *chrs, size_t length)
{
int i = 0;
printf(" \"");
while (*chrs && i++ < length) {
putchar((char)*chrs++);
}
printf("\"");
}
#else /* !REGEXP_DEBUG */
/* This should be optimized to a no-op by our tier-1 compilers. */
static int
re_debug(const char *fmt, ...)
{
return 0;
}
static void
re_debug_chars(const jschar *chrs, size_t length)
{
}
#endif /* !REGEXP_DEBUG */
struct RENode {
REOp op; /* r.e. op bytecode */
RENode *next; /* next in concatenation order */
void *kid; /* first operand */
union {
void *kid2; /* second operand */
jsint num; /* could be a number */
size_t parenIndex; /* or a parenthesis index */
struct { /* or a quantifier range */
uintN min;
uintN max;
JSPackedBool greedy;
} range;
struct { /* or a character class */
size_t startIndex;
size_t kidlen; /* length of string at kid, in jschars */
size_t index; /* index into class list */
uint16 bmsize; /* bitmap size, based on max char code */
JSPackedBool sense;
} ucclass;
struct { /* or a literal sequence */
jschar chr; /* of one character */
size_t length; /* or many (via the kid) */
} flat;
struct {
RENode *kid2; /* second operand from ALT */
jschar ch1; /* match char for ALTPREREQ */
jschar ch2; /* ditto, or class index for ALTPREREQ2 */
} altprereq;
} u;
};
#define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
((c >= 'a') && (c <= 'z')) )
#define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
(c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
#define CLASS_CACHE_SIZE 4
typedef struct CompilerState {
JSContext *context;
JSTokenStream *tokenStream; /* For reporting errors */
const jschar *cpbegin;
const jschar *cpend;
const jschar *cp;
size_t parenCount;
size_t classCount; /* number of [] encountered */
size_t treeDepth; /* maximum depth of parse tree */
size_t progLength; /* estimated bytecode length */
RENode *result;
size_t classBitmapsMem; /* memory to hold all class bitmaps */
struct {
const jschar *start; /* small cache of class strings */
size_t length; /* since they're often the same */
size_t index;
} classCache[CLASS_CACHE_SIZE];
uint16 flags;
} CompilerState;
typedef struct EmitStateStackEntry {
jsbytecode *altHead; /* start of REOP_ALT* opcode */
jsbytecode *nextAltFixup; /* fixup pointer to next-alt offset */
jsbytecode *nextTermFixup; /* fixup ptr. to REOP_JUMP offset */
jsbytecode *endTermFixup; /* fixup ptr. to REOPT_ALTPREREQ* offset */
RENode *continueNode; /* original REOP_ALT* node being stacked */
jsbytecode continueOp; /* REOP_JUMP or REOP_ENDALT continuation */
JSPackedBool jumpToJumpFlag; /* true if we've patched jump-to-jump to
avoid 16-bit unsigned offset overflow */
} EmitStateStackEntry;
/*
* Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
* the getters and setters take the pc of the offset, not of the opcode before
* the offset.
*/
#define ARG_LEN 2
#define GET_ARG(pc) ((uint16)(((pc)[0] << 8) | (pc)[1]))
#define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
(pc)[1] = (jsbytecode) (arg))
#define OFFSET_LEN ARG_LEN
#define OFFSET_MAX (JS_BIT(ARG_LEN * 8) - 1)
#define GET_OFFSET(pc) GET_ARG(pc)
/*
* Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
* For sanity, we limit it to 2^24 bytes.
*/
#define TREE_DEPTH_MAX (JS_BIT(24) / sizeof(EmitStateStackEntry))
/*
* The maximum memory that can be allocated for class bitmaps.
* For sanity, we limit it to 2^24 bytes.
*/
#define CLASS_BITMAPS_MEM_LIMIT JS_BIT(24)
/*
* Functions to get size and write/read bytecode that represent small indexes
* compactly.
* Each byte in the code represent 7-bit chunk of the index. 8th bit when set
* indicates that the following byte brings more bits to the index. Otherwise
* this is the last byte in the index bytecode representing highest index bits.
*/
static size_t
GetCompactIndexWidth(size_t index)
{
size_t width;
for (width = 1; (index >>= 7) != 0; ++width) { }
return width;
}
static JS_ALWAYS_INLINE jsbytecode *
WriteCompactIndex(jsbytecode *pc, size_t index)
{
size_t next;
while ((next = index >> 7) != 0) {
*pc++ = (jsbytecode)(index | 0x80);
index = next;
}
*pc++ = (jsbytecode)index;
return pc;
}
static JS_ALWAYS_INLINE jsbytecode *
ReadCompactIndex(jsbytecode *pc, size_t *result)
{
size_t nextByte;
nextByte = *pc++;
if ((nextByte & 0x80) == 0) {
/*
* Short-circuit the most common case when compact index <= 127.
*/
*result = nextByte;
} else {
size_t shift = 7;
*result = 0x7F & nextByte;
do {
nextByte = *pc++;
*result |= (nextByte & 0x7F) << shift;
shift += 7;
} while ((nextByte & 0x80) != 0);
}
return pc;
}
typedef struct RECapture {
ptrdiff_t index; /* start of contents, -1 for empty */
size_t length; /* length of capture */
} RECapture;
typedef struct REMatchState {
const jschar *cp;
RECapture parens[1]; /* first of 're->parenCount' captures,
allocated at end of this struct */
} REMatchState;
struct REBackTrackData;
typedef struct REProgState {
jsbytecode *continue_pc; /* current continuation data */
jsbytecode continue_op;
ptrdiff_t index; /* progress in text */
size_t parenSoFar; /* highest indexed paren started */
union {
struct {
uintN min; /* current quantifier limits */
uintN max;
} quantifier;
struct {
size_t top; /* backtrack stack state */
size_t sz;
} assertion;
} u;
} REProgState;
typedef struct REBackTrackData {
size_t sz; /* size of previous stack entry */
jsbytecode *backtrack_pc; /* where to backtrack to */
jsbytecode backtrack_op;
const jschar *cp; /* index in text of match at backtrack */
size_t parenIndex; /* start index of saved paren contents */
size_t parenCount; /* # of saved paren contents */
size_t saveStateStackTop; /* number of parent states */
/* saved parent states follow */
/* saved paren contents follow */
} REBackTrackData;
#define INITIAL_STATESTACK 100
#define INITIAL_BACKTRACK 8000
typedef struct REGlobalData {
JSContext *cx;
JSRegExp *regexp; /* the RE in execution */
JSBool ok; /* runtime error (out_of_memory only?) */
size_t start; /* offset to start at */
ptrdiff_t skipped; /* chars skipped anchoring this r.e. */
const jschar *cpbegin; /* text base address */
const jschar *cpend; /* text limit address */
REProgState *stateStack; /* stack of state of current parents */
size_t stateStackTop;
size_t stateStackLimit;
REBackTrackData *backTrackStack;/* stack of matched-so-far positions */
REBackTrackData *backTrackSP;
size_t backTrackStackSize;
size_t cursz; /* size of current stack entry */
size_t backTrackCount; /* how many times we've backtracked */
size_t backTrackLimit; /* upper limit on backtrack states */
} REGlobalData;
/*
* 1. If IgnoreCase is false, return ch.
* 2. Let u be ch converted to upper case as if by calling
* String.prototype.toUpperCase on the one-character string ch.
* 3. If u does not consist of a single character, return ch.
* 4. Let cu be u's character.
* 5. If ch's code point value is greater than or equal to decimal 128 and cu's
* code point value is less than decimal 128, then return ch.
* 6. Return cu.
*/
static JS_ALWAYS_INLINE uintN
upcase(uintN ch)
{
uintN cu;
JS_ASSERT((uintN) (jschar) ch == ch);
if (ch < 128) {
if (ch - (uintN) 'a' <= (uintN) ('z' - 'a'))
ch -= (uintN) ('a' - 'A');
return ch;
}
cu = JS_TOUPPER(ch);
return (cu < 128) ? ch : cu;
}
/*
* Return the 'canonical' inverse upcase of |ch|. That is the character
* |lch| such that |upcase(lch) == ch| and (|lch| is the lower-case form
* of |ch| or is |ch|).
*/
static inline jschar inverse_upcase(jschar ch)
{
jschar lch = JS_TOLOWER(ch);
return (upcase(lch) == ch) ? lch : ch;
}
/* Construct and initialize an RENode, returning NULL for out-of-memory */
static RENode *
NewRENode(CompilerState *state, REOp op)
{
JSContext *cx;
RENode *ren;
cx = state->context;
JS_ARENA_ALLOCATE_CAST(ren, RENode *, &cx->tempPool, sizeof *ren);
if (!ren) {
js_ReportOutOfScriptQuota(cx);
return NULL;
}
ren->op = op;
ren->next = NULL;
ren->kid = NULL;
return ren;
}
/*
* Validates and converts hex ascii value.
*/
static JSBool
isASCIIHexDigit(jschar c, uintN *digit)
{
uintN cv = c;
if (cv < '0')
return JS_FALSE;
if (cv <= '9') {
*digit = cv - '0';
return JS_TRUE;
}
cv |= 0x20;
if (cv >= 'a' && cv <= 'f') {
*digit = cv - 'a' + 10;
return JS_TRUE;
}
return JS_FALSE;
}
typedef struct {
REOp op;
const jschar *errPos;
size_t parenIndex;
} REOpData;
static JSBool
ReportRegExpErrorHelper(CompilerState *state, uintN flags, uintN errorNumber,
const jschar *arg)
{
if (state->tokenStream) {
return js_ReportCompileErrorNumber(state->context, state->tokenStream,
NULL, JSREPORT_UC | flags,
errorNumber, arg);
}
return JS_ReportErrorFlagsAndNumberUC(state->context, flags,
js_GetErrorMessage, NULL,
errorNumber, arg);
}
static JSBool
ReportRegExpError(CompilerState *state, uintN flags, uintN errorNumber)
{
return ReportRegExpErrorHelper(state, flags, errorNumber, NULL);
}
/*
* Process the op against the two top operands, reducing them to a single
* operand in the penultimate slot. Update progLength and treeDepth.
*/
static JSBool
ProcessOp(CompilerState *state, REOpData *opData, RENode **operandStack,
intN operandSP)
{
RENode *result;
switch (opData->op) {
case REOP_ALT:
result = NewRENode(state, REOP_ALT);
if (!result)
return JS_FALSE;
result->kid = operandStack[operandSP - 2];
result->u.kid2 = operandStack[operandSP - 1];
operandStack[operandSP - 2] = result;
if (state->treeDepth == TREE_DEPTH_MAX) {
ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
return JS_FALSE;
}
++state->treeDepth;
/*
* Look at both alternates to see if there's a FLAT or a CLASS at
* the start of each. If so, use a prerequisite match.
*/
if (((RENode *) result->kid)->op == REOP_FLAT &&
((RENode *) result->u.kid2)->op == REOP_FLAT &&
(state->flags & JSREG_FOLD) == 0) {
result->op = REOP_ALTPREREQ;
result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.flat.chr;
/* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
JUMP, <end> ... ENDALT */
state->progLength += 13;
}
else
if (((RENode *) result->kid)->op == REOP_CLASS &&
((RENode *) result->kid)->u.ucclass.index < 256 &&
((RENode *) result->u.kid2)->op == REOP_FLAT &&
(state->flags & JSREG_FOLD) == 0) {
result->op = REOP_ALTPREREQ2;
result->u.altprereq.ch1 = ((RENode *) result->u.kid2)->u.flat.chr;
result->u.altprereq.ch2 = ((RENode *) result->kid)->u.ucclass.index;
/* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
JUMP, <end> ... ENDALT */
state->progLength += 13;
}
else
if (((RENode *) result->kid)->op == REOP_FLAT &&
((RENode *) result->u.kid2)->op == REOP_CLASS &&
((RENode *) result->u.kid2)->u.ucclass.index < 256 &&
(state->flags & JSREG_FOLD) == 0) {
result->op = REOP_ALTPREREQ2;
result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
result->u.altprereq.ch2 =
((RENode *) result->u.kid2)->u.ucclass.index;
/* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
JUMP, <end> ... ENDALT */
state->progLength += 13;
}
else {
/* ALT, <next>, ..., JUMP, <end> ... ENDALT */
state->progLength += 7;
}
break;
case REOP_CONCAT:
result = operandStack[operandSP - 2];
while (result->next)
result = result->next;
result->next = operandStack[operandSP - 1];
break;
case REOP_ASSERT:
case REOP_ASSERT_NOT:
case REOP_LPARENNON:
case REOP_LPAREN:
/* These should have been processed by a close paren. */
ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_MISSING_PAREN,
opData->errPos);
return JS_FALSE;
default:;
}
return JS_TRUE;
}
/*
* Parser forward declarations.
*/
static JSBool ParseTerm(CompilerState *state);
static JSBool ParseQuantifier(CompilerState *state);
static intN ParseMinMaxQuantifier(CompilerState *state, JSBool ignoreValues);
/*
* Top-down regular expression grammar, based closely on Perl4.
*
* regexp: altern A regular expression is one or more
* altern '|' regexp alternatives separated by vertical bar.
*/
#define INITIAL_STACK_SIZE 128
static JSBool
ParseRegExp(CompilerState *state)
{
size_t parenIndex;
RENode *operand;
REOpData *operatorStack;
RENode **operandStack;
REOp op;
intN i;
JSBool result = JS_FALSE;
intN operatorSP = 0, operatorStackSize = INITIAL_STACK_SIZE;
intN operandSP = 0, operandStackSize = INITIAL_STACK_SIZE;
/* Watch out for empty regexp */
if (state->cp == state->cpend) {
state->result = NewRENode(state, REOP_EMPTY);
return (state->result != NULL);
}
operatorStack = (REOpData *)
state->context->malloc(sizeof(REOpData) * operatorStackSize);
if (!operatorStack)
return JS_FALSE;
operandStack = (RENode **)
state->context->malloc(sizeof(RENode *) * operandStackSize);
if (!operandStack)
goto out;
for (;;) {
parenIndex = state->parenCount;
if (state->cp == state->cpend) {
/*
* If we are at the end of the regexp and we're short one or more
* operands, the regexp must have the form /x|/ or some such, with
* left parentheses making us short more than one operand.
*/
if (operatorSP >= operandSP) {
operand = NewRENode(state, REOP_EMPTY);
if (!operand)
goto out;
goto pushOperand;
}
} else {
switch (*state->cp) {
case '(':
++state->cp;
if (state->cp + 1 < state->cpend &&
*state->cp == '?' &&
(state->cp[1] == '=' ||
state->cp[1] == '!' ||
state->cp[1] == ':')) {
switch (state->cp[1]) {
case '=':
op = REOP_ASSERT;
/* ASSERT, <next>, ... ASSERTTEST */
state->progLength += 4;
break;
case '!':
op = REOP_ASSERT_NOT;
/* ASSERTNOT, <next>, ... ASSERTNOTTEST */
state->progLength += 4;
break;
default:
op = REOP_LPARENNON;
break;
}
state->cp += 2;
} else {
op = REOP_LPAREN;
/* LPAREN, <index>, ... RPAREN, <index> */
state->progLength
+= 2 * (1 + GetCompactIndexWidth(parenIndex));
state->parenCount++;
if (state->parenCount == 65535) {
ReportRegExpError(state, JSREPORT_ERROR,
JSMSG_TOO_MANY_PARENS);
goto out;
}
}
goto pushOperator;
case ')':
/*
* If there's no stacked open parenthesis, throw syntax error.
*/
for (i = operatorSP - 1; ; i--) {
if (i < 0) {
ReportRegExpError(state, JSREPORT_ERROR,
JSMSG_UNMATCHED_RIGHT_PAREN);
goto out;
}
if (operatorStack[i].op == REOP_ASSERT ||
operatorStack[i].op == REOP_ASSERT_NOT ||
operatorStack[i].op == REOP_LPARENNON ||
operatorStack[i].op == REOP_LPAREN) {
break;
}
}
/* FALL THROUGH */
case '|':
/* Expected an operand before these, so make an empty one */
operand = NewRENode(state, REOP_EMPTY);
if (!operand)
goto out;
goto pushOperand;
default:
if (!ParseTerm(state))
goto out;
operand = state->result;
pushOperand:
if (operandSP == operandStackSize) {
RENode **tmp;
operandStackSize += operandStackSize;
tmp = (RENode **)
state->context->realloc(operandStack,
sizeof(RENode *) * operandStackSize);
if (!tmp)
goto out;
operandStack = tmp;
}
operandStack[operandSP++] = operand;
break;
}
}
/* At the end; process remaining operators. */
restartOperator:
if (state->cp == state->cpend) {
while (operatorSP) {
--operatorSP;
if (!ProcessOp(state, &operatorStack[operatorSP],
operandStack, operandSP))
goto out;
--operandSP;
}
JS_ASSERT(operandSP == 1);
state->result = operandStack[0];
result = JS_TRUE;
goto out;
}
switch (*state->cp) {
case '|':
/* Process any stacked 'concat' operators */
++state->cp;
while (operatorSP &&
operatorStack[operatorSP - 1].op == REOP_CONCAT) {
--operatorSP;
if (!ProcessOp(state, &operatorStack[operatorSP],
operandStack, operandSP)) {
goto out;
}
--operandSP;
}
op = REOP_ALT;
goto pushOperator;
case ')':
/*
* If there's no stacked open parenthesis, throw syntax error.
*/
for (i = operatorSP - 1; ; i--) {
if (i < 0) {
ReportRegExpError(state, JSREPORT_ERROR,
JSMSG_UNMATCHED_RIGHT_PAREN);
goto out;
}
if (operatorStack[i].op == REOP_ASSERT ||
operatorStack[i].op == REOP_ASSERT_NOT ||
operatorStack[i].op == REOP_LPARENNON ||
operatorStack[i].op == REOP_LPAREN) {
break;
}
}
++state->cp;
/* Process everything on the stack until the open parenthesis. */
for (;;) {
JS_ASSERT(operatorSP);
--operatorSP;
switch (operatorStack[operatorSP].op) {
case REOP_ASSERT:
case REOP_ASSERT_NOT:
case REOP_LPAREN:
operand = NewRENode(state, operatorStack[operatorSP].op);
if (!operand)
goto out;
operand->u.parenIndex =
operatorStack[operatorSP].parenIndex;
JS_ASSERT(operandSP);
operand->kid = operandStack[operandSP - 1];
operandStack[operandSP - 1] = operand;
if (state->treeDepth == TREE_DEPTH_MAX) {
ReportRegExpError(state, JSREPORT_ERROR,
JSMSG_REGEXP_TOO_COMPLEX);
goto out;
}
++state->treeDepth;
/* FALL THROUGH */
case REOP_LPARENNON:
state->result = operandStack[operandSP - 1];
if (!ParseQuantifier(state))
goto out;
operandStack[operandSP - 1] = state->result;
goto restartOperator;
default:
if (!ProcessOp(state, &operatorStack[operatorSP],
operandStack, operandSP))
goto out;
--operandSP;
break;
}
}
break;
case '{':
{
const jschar *errp = state->cp;
if (ParseMinMaxQuantifier(state, JS_TRUE) < 0) {
/*
* This didn't even scan correctly as a quantifier, so we should
* treat it as flat.
*/
op = REOP_CONCAT;
goto pushOperator;
}
state->cp = errp;
/* FALL THROUGH */
}
case '+':
case '*':
case '?':
ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER,
state->cp);
result = JS_FALSE;
goto out;
default:
/* Anything else is the start of the next term. */
op = REOP_CONCAT;
pushOperator:
if (operatorSP == operatorStackSize) {
REOpData *tmp;
operatorStackSize += operatorStackSize;
tmp = (REOpData *)
state->context->realloc(operatorStack,
sizeof(REOpData) * operatorStackSize);
if (!tmp)
goto out;
operatorStack = tmp;
}
operatorStack[operatorSP].op = op;
operatorStack[operatorSP].errPos = state->cp;
operatorStack[operatorSP++].parenIndex = parenIndex;
break;
}
}
out:
if (operatorStack)
state->context->free(operatorStack);
if (operandStack)
state->context->free(operandStack);
return result;
}
/*
* Hack two bits in CompilerState.flags, for use within FindParenCount to flag
* its being on the stack, and to propagate errors to its callers.
*/
#define JSREG_FIND_PAREN_COUNT 0x8000
#define JSREG_FIND_PAREN_ERROR 0x4000
/*
* Magic return value from FindParenCount and GetDecimalValue, to indicate
* overflow beyond GetDecimalValue's max parameter, or a computed maximum if
* its findMax parameter is non-null.
*/
#define OVERFLOW_VALUE ((uintN)-1)
static uintN
FindParenCount(CompilerState *state)
{
CompilerState temp;
int i;
if (state->flags & JSREG_FIND_PAREN_COUNT)
return OVERFLOW_VALUE;
/*
* Copy state into temp, flag it so we never report an invalid backref,
* and reset its members to parse the entire regexp. This is obviously
* suboptimal, but GetDecimalValue calls us only if a backref appears to
* refer to a forward parenthetical, which is rare.
*/
temp = *state;
temp.flags |= JSREG_FIND_PAREN_COUNT;
temp.cp = temp.cpbegin;
temp.parenCount = 0;
temp.classCount = 0;
temp.progLength = 0;
temp.treeDepth = 0;
temp.classBitmapsMem = 0;
for (i = 0; i < CLASS_CACHE_SIZE; i++)
temp.classCache[i].start = NULL;
if (!ParseRegExp(&temp)) {
state->flags |= JSREG_FIND_PAREN_ERROR;
return OVERFLOW_VALUE;
}
return temp.parenCount;
}
/*
* Extract and return a decimal value at state->cp. The initial character c
* has already been read. Return OVERFLOW_VALUE if the result exceeds max.
* Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
* state->flags to discover whether an error occurred under findMax.
*/
static uintN
GetDecimalValue(jschar c, uintN max, uintN (*findMax)(CompilerState *state),
CompilerState *state)
{
uintN value = JS7_UNDEC(c);
JSBool overflow = (value > max && (!findMax || value > findMax(state)));
/* The following restriction allows simpler overflow checks. */
JS_ASSERT(max <= ((uintN)-1 - 9) / 10);
while (state->cp < state->cpend) {
c = *state->cp;
if (!JS7_ISDEC(c))
break;
value = 10 * value + JS7_UNDEC(c);
if (!overflow && value > max && (!findMax || value > findMax(state)))
overflow = JS_TRUE;
++state->cp;
}
return overflow ? OVERFLOW_VALUE : value;
}
/*
* Calculate the total size of the bitmap required for a class expression.
*/
static JSBool
CalculateBitmapSize(CompilerState *state, RENode *target, const jschar *src,
const jschar *end)
{
uintN max = 0;
JSBool inRange = JS_FALSE;
jschar c, rangeStart = 0;
uintN n, digit, nDigits, i;
target->u.ucclass.bmsize = 0;
target->u.ucclass.sense = JS_TRUE;
if (src == end)
return JS_TRUE;
if (*src == '^') {
++src;
target->u.ucclass.sense = JS_FALSE;
}
while (src != end) {
JSBool canStartRange = JS_TRUE;
uintN localMax = 0;
switch (*src) {
case '\\':
++src;
c = *src++;
switch (c) {
case 'b':
localMax = 0x8;
break;
case 'f':
localMax = 0xC;
break;
case 'n':
localMax = 0xA;
break;
case 'r':
localMax = 0xD;
break;
case 't':
localMax = 0x9;
break;
case 'v':
localMax = 0xB;
break;
case 'c':
if (src < end && RE_IS_LETTER(*src)) {
localMax = (uintN) (*src++) & 0x1F;
} else {
--src;
localMax = '\\';
}
break;
case 'x':
nDigits = 2;
goto lexHex;
case 'u':
nDigits = 4;
lexHex:
n = 0;
for (i = 0; (i < nDigits) && (src < end); i++) {
c = *src++;
if (!isASCIIHexDigit(c, &digit)) {
/*
* Back off to accepting the original
*'\' as a literal.
*/
src -= i + 1;
n = '\\';
break;
}
n = (n << 4) | digit;
}
localMax = n;
break;
case 'd':
canStartRange = JS_FALSE;
if (inRange) {
JS_ReportErrorNumber(state->context,
js_GetErrorMessage, NULL,
JSMSG_BAD_CLASS_RANGE);
return JS_FALSE;
}
localMax = '9';
break;
case 'D':
case 's':
case 'S':
case 'w':
case 'W':
canStartRange = JS_FALSE;
if (inRange) {
JS_ReportErrorNumber(state->context,
js_GetErrorMessage, NULL,
JSMSG_BAD_CLASS_RANGE);
return JS_FALSE;
}
max = 65535;
/*
* If this is the start of a range, ensure that it's less than
* the end.
*/
localMax = 0;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
/*
* This is a non-ECMA extension - decimal escapes (in this
* case, octal!) are supposed to be an error inside class
* ranges, but supported here for backwards compatibility.
*
*/
n = JS7_UNDEC(c);
c = *src;
if ('0' <= c && c <= '7') {
src++;
n = 8 * n + JS7_UNDEC(c);
c = *src;
if ('0' <= c && c <= '7') {
src++;
i = 8 * n + JS7_UNDEC(c);
if (i <= 0377)
n = i;
else
src--;
}
}
localMax = n;
break;
default:
localMax = c;
break;
}
break;
default:
localMax = *src++;
break;
}
if (inRange) {
/* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
if (rangeStart > localMax) {
JS_ReportErrorNumber(state->context,
js_GetErrorMessage, NULL,
JSMSG_BAD_CLASS_RANGE);
return JS_FALSE;
}
inRange = JS_FALSE;
} else {
if (canStartRange && src < end - 1) {
if (*src == '-') {
++src;
inRange = JS_TRUE;
rangeStart = (jschar)localMax;
continue;
}
}
if (state->flags & JSREG_FOLD)
rangeStart = localMax; /* one run of the uc/dc loop below */
}
if (state->flags & JSREG_FOLD) {
jschar maxch = localMax;
for (i = rangeStart; i <= localMax; i++) {
jschar uch, dch;
uch = upcase(i);
dch = inverse_upcase(i);
maxch = JS_MAX(maxch, uch);
maxch = JS_MAX(maxch, dch);
}
localMax = maxch;
}
if (localMax > max)
max = localMax;
}
target->u.ucclass.bmsize = max;
return JS_TRUE;
}
/*
* item: assertion An item is either an assertion or
* quantatom a quantified atom.
*
* assertion: '^' Assertions match beginning of string
* (or line if the class static property
* RegExp.multiline is true).
* '$' End of string (or line if the class
* static property RegExp.multiline is
* true).
* '\b' Word boundary (between \w and \W).
* '\B' Word non-boundary.
*
* quantatom: atom An unquantified atom.
* quantatom '{' n ',' m '}'
* Atom must occur between n and m times.
* quantatom '{' n ',' '}' Atom must occur at least n times.
* quantatom '{' n '}' Atom must occur exactly n times.
* quantatom '*' Zero or more times (same as {0,}).
* quantatom '+' One or more times (same as {1,}).
* quantatom '?' Zero or one time (same as {0,1}).
*
* any of which can be optionally followed by '?' for ungreedy
*
* atom: '(' regexp ')' A parenthesized regexp (what matched
* can be addressed using a backreference,
* see '\' n below).
* '.' Matches any char except '\n'.
* '[' classlist ']' A character class.
* '[' '^' classlist ']' A negated character class.
* '\f' Form Feed.
* '\n' Newline (Line Feed).
* '\r' Carriage Return.
* '\t' Horizontal Tab.
* '\v' Vertical Tab.
* '\d' A digit (same as [0-9]).
* '\D' A non-digit.
* '\w' A word character, [0-9a-z_A-Z].
* '\W' A non-word character.
* '\s' A whitespace character, [ \b\f\n\r\t\v].
* '\S' A non-whitespace character.
* '\' n A backreference to the nth (n decimal
* and positive) parenthesized expression.
* '\' octal An octal escape sequence (octal must be
* two or three digits long, unless it is
* 0 for the null character).
* '\x' hex A hex escape (hex must be two digits).
* '\u' unicode A unicode escape (must be four digits).
* '\c' ctrl A control character, ctrl is a letter.
* '\' literalatomchar Any character except one of the above
* that follow '\' in an atom.
* otheratomchar Any character not first among the other
* atom right-hand sides.
*/
static JSBool
ParseTerm(CompilerState *state)
{
jschar c = *state->cp++;
uintN nDigits;
uintN num, tmp, n, i;
const jschar *termStart;
switch (c) {
/* assertions and atoms */
case '^':
state->result = NewRENode(state, REOP_BOL);
if (!state->result)
return JS_FALSE;
state->progLength++;
return JS_TRUE;
case '$':
state->result = NewRENode(state, REOP_EOL);
if (!state->result)
return JS_FALSE;
state->progLength++;
return JS_TRUE;
case '\\':
if (state->cp >= state->cpend) {
/* a trailing '\' is an error */
ReportRegExpError(state, JSREPORT_ERROR, JSMSG_TRAILING_SLASH);
return JS_FALSE;
}
c = *state->cp++;
switch (c) {
/* assertion escapes */
case 'b' :
state->result = NewRENode(state, REOP_WBDRY);
if (!state->result)
return JS_FALSE;
state->progLength++;
return JS_TRUE;
case 'B':
state->result = NewRENode(state, REOP_WNONBDRY);
if (!state->result)
return JS_FALSE;
state->progLength++;
return JS_TRUE;
/* Decimal escape */
case '0':
/* Give a strict warning. See also the note below. */
if (!ReportRegExpError(state, JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_INVALID_BACKREF)) {
return JS_FALSE;
}
doOctal:
num = 0;
while (state->cp < state->cpend) {
c = *state->cp;
if (c < '0' || '7' < c)
break;
state->cp++;
tmp = 8 * num + (uintN)JS7_UNDEC(c);
if (tmp > 0377)
break;
num = tmp;
}
c = (jschar)num;
doFlat:
state->result = NewRENode(state, REOP_FLAT);
if (!state->result)
return JS_FALSE;
state->result->u.flat.chr = c;
state->result->u.flat.length = 1;
state->progLength += 3;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
termStart = state->cp - 1;
num = GetDecimalValue(c, state->parenCount, FindParenCount, state);
if (state->flags & JSREG_FIND_PAREN_ERROR)
return JS_FALSE;
if (num == OVERFLOW_VALUE) {
/* Give a strict mode warning. */
if (!ReportRegExpError(state,
JSREPORT_WARNING | JSREPORT_STRICT,
(c >= '8')
? JSMSG_INVALID_BACKREF
: JSMSG_BAD_BACKREF)) {
return JS_FALSE;
}
/*
* Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
* error here. However, for compatibility with IE, we treat the
* whole backref as flat if the first character in it is not a
* valid octal character, and as an octal escape otherwise.
*/
state->cp = termStart;
if (c >= '8') {
/* Treat this as flat. termStart - 1 is the \. */
c = '\\';
goto asFlat;
}
/* Treat this as an octal escape. */
goto doOctal;
}
/*
* When FindParenCount calls the regex parser recursively (to find
* the number of backrefs) num can be arbitrary and the maximum
* supported number of backrefs does not bound it.
*/
JS_ASSERT_IF(!(state->flags & JSREG_FIND_PAREN_COUNT),
1 <= num && num <= 0x10000);
state->result = NewRENode(state, REOP_BACKREF);
if (!state->result)
return JS_FALSE;
state->result->u.parenIndex = num - 1;
state->progLength
+= 1 + GetCompactIndexWidth(state->result->u.parenIndex);
break;
/* Control escape */
case 'f':
c = 0xC;
goto doFlat;
case 'n':
c = 0xA;
goto doFlat;
case 'r':
c = 0xD;
goto doFlat;
case 't':
c = 0x9;
goto doFlat;
case 'v':
c = 0xB;
goto doFlat;
/* Control letter */
case 'c':
if (state->cp < state->cpend && RE_IS_LETTER(*state->cp)) {
c = (jschar) (*state->cp++ & 0x1F);
} else {
/* back off to accepting the original '\' as a literal */
--state->cp;
c = '\\';
}
goto doFlat;
/* HexEscapeSequence */
case 'x':
nDigits = 2;
goto lexHex;
/* UnicodeEscapeSequence */
case 'u':
nDigits = 4;
lexHex:
n = 0;
for (i = 0; i < nDigits && state->cp < state->cpend; i++) {
uintN digit;
c = *state->cp++;
if (!isASCIIHexDigit(c, &digit)) {
/*
* Back off to accepting the original 'u' or 'x' as a
* literal.
*/
state->cp -= i + 2;
n = *state->cp++;
break;
}
n = (n << 4) | digit;
}
c = (jschar) n;
goto doFlat;
/* Character class escapes */
case 'd':
state->result = NewRENode(state, REOP_DIGIT);
doSimple:
if (!state->result)
return JS_FALSE;
state->progLength++;
break;
case 'D':
state->result = NewRENode(state, REOP_NONDIGIT);
goto doSimple;
case 's':
state->result = NewRENode(state, REOP_SPACE);
goto doSimple;
case 'S':
state->result = NewRENode(state, REOP_NONSPACE);
goto doSimple;
case 'w':
state->result = NewRENode(state, REOP_ALNUM);
goto doSimple;
case 'W':
state->result = NewRENode(state, REOP_NONALNUM);
goto doSimple;
/* IdentityEscape */
default:
state->result = NewRENode(state, REOP_FLAT);
if (!state->result)
return JS_FALSE;
state->result->u.flat.chr = c;
state->result->u.flat.length = 1;
state->result->kid = (void *) (state->cp - 1);
state->progLength += 3;
break;
}
break;
case '[':
state->result = NewRENode(state, REOP_CLASS);
if (!state->result)
return JS_FALSE;
termStart = state->cp;
state->result->u.ucclass.startIndex = termStart - state->cpbegin;
for (;;) {
if (state->cp == state->cpend) {
ReportRegExpErrorHelper(state, JSREPORT_ERROR,
JSMSG_UNTERM_CLASS, termStart);
return JS_FALSE;
}
if (*state->cp == '\\') {
state->cp++;
if (state->cp != state->cpend)
state->cp++;
continue;
}
if (*state->cp == ']') {
state->result->u.ucclass.kidlen = state->cp - termStart;
break;
}
state->cp++;
}
for (i = 0; i < CLASS_CACHE_SIZE; i++) {
if (!state->classCache[i].start) {
state->classCache[i].start = termStart;
state->classCache[i].length = state->result->u.ucclass.kidlen;
state->classCache[i].index = state->classCount;
break;
}
if (state->classCache[i].length ==
state->result->u.ucclass.kidlen) {
for (n = 0; ; n++) {
if (n == state->classCache[i].length) {
state->result->u.ucclass.index
= state->classCache[i].index;
goto claim;
}
if (state->classCache[i].start[n] != termStart[n])
break;
}
}
}
state->result->u.ucclass.index = state->classCount++;
claim:
/*
* Call CalculateBitmapSize now as we want any errors it finds
* to be reported during the parse phase, not at execution.
*/
if (!CalculateBitmapSize(state, state->result, termStart, state->cp++))
return JS_FALSE;
/*
* Update classBitmapsMem with number of bytes to hold bmsize bits,
* which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
* or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
*/
n = (state->result->u.ucclass.bmsize >> 3) + 1;
if (n > CLASS_BITMAPS_MEM_LIMIT - state->classBitmapsMem) {
ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
return JS_FALSE;
}
state->classBitmapsMem += n;
/* CLASS, <index> */
state->progLength
+= 1 + GetCompactIndexWidth(state->result->u.ucclass.index);
break;
case '.':
state->result = NewRENode(state, REOP_DOT);
goto doSimple;
case '{':
{
const jschar *errp = state->cp--;
intN err;
err = ParseMinMaxQuantifier(state, JS_TRUE);
state->cp = errp;
if (err < 0)
goto asFlat;
/* FALL THROUGH */
}
case '*':
case '+':
case '?':
ReportRegExpErrorHelper(state, JSREPORT_ERROR,
JSMSG_BAD_QUANTIFIER, state->cp - 1);
return JS_FALSE;
default:
asFlat:
state->result = NewRENode(state, REOP_FLAT);
if (!state->result)
return JS_FALSE;
state->result->u.flat.chr = c;
state->result->u.flat.length = 1;
state->result->kid = (void *) (state->cp - 1);
state->progLength += 3;
break;
}
return ParseQuantifier(state);
}
static JSBool
ParseQuantifier(CompilerState *state)
{
RENode *term;
term = state->result;
if (state->cp < state->cpend) {
switch (*state->cp) {
case '+':
state->result = NewRENode(state, REOP_QUANT);
if (!state->result)
return JS_FALSE;
state->result->u.range.min = 1;
state->result->u.range.max = (uintN)-1;
/* <PLUS>, <next> ... <ENDCHILD> */
state->progLength += 4;
goto quantifier;
case '*':
state->result = NewRENode(state, REOP_QUANT);
if (!state->result)
return JS_FALSE;
state->result->u.range.min = 0;
state->result->u.range.max = (uintN)-1;
/* <STAR>, <next> ... <ENDCHILD> */
state->progLength += 4;
goto quantifier;
case '?':
state->result = NewRENode(state, REOP_QUANT);
if (!state->result)
return JS_FALSE;
state->result->u.range.min = 0;
state->result->u.range.max = 1;
/* <OPT>, <next> ... <ENDCHILD> */
state->progLength += 4;
goto quantifier;
case '{': /* balance '}' */
{
intN err;
const jschar *errp = state->cp;
err = ParseMinMaxQuantifier(state, JS_FALSE);
if (err == 0)
goto quantifier;
if (err == -1)
return JS_TRUE;
ReportRegExpErrorHelper(state, JSREPORT_ERROR, err, errp);
return JS_FALSE;
}
default:;
}
}
return JS_TRUE;
quantifier:
if (state->treeDepth == TREE_DEPTH_MAX) {
ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
return JS_FALSE;
}
++state->treeDepth;
++state->cp;
state->result->kid = term;
if (state->cp < state->cpend && *state->cp == '?') {
++state->cp;
state->result->u.range.greedy = JS_FALSE;
} else {
state->result->u.range.greedy = JS_TRUE;
}
return JS_TRUE;
}
static intN
ParseMinMaxQuantifier(CompilerState *state, JSBool ignoreValues)
{
uintN min, max;
jschar c;
const jschar *errp = state->cp++;
c = *state->cp;
if (JS7_ISDEC(c)) {
++state->cp;
min = GetDecimalValue(c, 0xFFFF, NULL, state);
c = *state->cp;
if (!ignoreValues && min == OVERFLOW_VALUE)
return JSMSG_MIN_TOO_BIG;
if (c == ',') {
c = *++state->cp;
if (JS7_ISDEC(c)) {
++state->cp;
max = GetDecimalValue(c, 0xFFFF, NULL, state);
c = *state->cp;
if (!ignoreValues && max == OVERFLOW_VALUE)
return JSMSG_MAX_TOO_BIG;
if (!ignoreValues && min > max)
return JSMSG_OUT_OF_ORDER;
} else {
max = (uintN)-1;
}
} else {
max = min;
}
if (c == '}') {
state->result = NewRENode(state, REOP_QUANT);
if (!state->result)
return JSMSG_OUT_OF_MEMORY;
state->result->u.range.min = min;
state->result->u.range.max = max;
/*
* QUANT, <min>, <max>, <next> ... <ENDCHILD>
* where <max> is written as compact(max+1) to make
* (uintN)-1 sentinel to occupy 1 byte, not width_of(max)+1.
*/
state->progLength += (1 + GetCompactIndexWidth(min)
+ GetCompactIndexWidth(max + 1)
+3);
return 0;
}
}
state->cp = errp;
return -1;
}
static JSBool
SetForwardJumpOffset(jsbytecode *jump, jsbytecode *target)
{
ptrdiff_t offset = target - jump;
/* Check that target really points forward. */
JS_ASSERT(offset >= 2);
if ((size_t)offset > OFFSET_MAX)
return JS_FALSE;
jump[0] = JUMP_OFFSET_HI(offset);
jump[1] = JUMP_OFFSET_LO(offset);
return JS_TRUE;
}
/* Copy the charset data from a character class node to the charset list
* in the regexp object. */
static JS_ALWAYS_INLINE RECharSet *
InitNodeCharSet(JSRegExp *re, RENode *node)
{
RECharSet *charSet = &re->classList[node->u.ucclass.index];
charSet->converted = JS_FALSE;
charSet->length = node->u.ucclass.bmsize;
charSet->u.src.startIndex = node->u.ucclass.startIndex;
charSet->u.src.length = node->u.ucclass.kidlen;
charSet->sense = node->u.ucclass.sense;
return charSet;
}
/*
* Generate bytecode for the tree rooted at t using an explicit stack instead
* of recursion.
*/
static jsbytecode *
EmitREBytecode(CompilerState *state, JSRegExp *re, size_t treeDepth,
jsbytecode *pc, RENode *t)
{
EmitStateStackEntry *emitStateSP, *emitStateStack;
REOp op;
if (treeDepth == 0) {
emitStateStack = NULL;
} else {
emitStateStack =
(EmitStateStackEntry *)
state->context->malloc(sizeof(EmitStateStackEntry) * treeDepth);
if (!emitStateStack)
return NULL;
}
emitStateSP = emitStateStack;
op = t->op;
JS_ASSERT(op < REOP_LIMIT);
for (;;) {
*pc++ = op;
switch (op) {
case REOP_EMPTY:
--pc;
break;
case REOP_ALTPREREQ2:
case REOP_ALTPREREQ:
JS_ASSERT(emitStateSP);
emitStateSP->altHead = pc - 1;
emitStateSP->endTermFixup = pc;
pc += OFFSET_LEN;
SET_ARG(pc, t->u.altprereq.ch1);
pc += ARG_LEN;
SET_ARG(pc, t->u.altprereq.ch2);
pc += ARG_LEN;
emitStateSP->nextAltFixup = pc; /* offset to next alternate */
pc += OFFSET_LEN;
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_JUMP;
emitStateSP->jumpToJumpFlag = JS_FALSE;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
JS_ASSERT(op < REOP_LIMIT);
continue;
case REOP_JUMP:
emitStateSP->nextTermFixup = pc; /* offset to following term */
pc += OFFSET_LEN;
if (!SetForwardJumpOffset(emitStateSP->nextAltFixup, pc))
goto jump_too_big;
emitStateSP->continueOp = REOP_ENDALT;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->u.kid2;
op = t->op;
JS_ASSERT(op < REOP_LIMIT);
continue;
case REOP_ENDALT:
/*
* If we already patched emitStateSP->nextTermFixup to jump to
* a nearer jump, to avoid 16-bit immediate offset overflow, we
* are done here.
*/
if (emitStateSP->jumpToJumpFlag)
break;
/*
* Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
* REOP_ENDALT is executed only on successful match of the last
* alternate in a group.
*/
if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
goto jump_too_big;
if (t->op != REOP_ALT) {
if (!SetForwardJumpOffset(emitStateSP->endTermFixup, pc))
goto jump_too_big;
}
/*
* If the program is bigger than the REOP_JUMP offset range, then
* we must check for alternates before this one that are part of
* the same group, and fix up their jump offsets to target jumps
* close enough to fit in a 16-bit unsigned offset immediate.
*/
if ((size_t)(pc - re->program) > OFFSET_MAX &&
emitStateSP > emitStateStack) {
EmitStateStackEntry *esp, *esp2;
jsbytecode *alt, *jump;
ptrdiff_t span, header;
esp2 = emitStateSP;
alt = esp2->altHead;
for (esp = esp2 - 1; esp >= emitStateStack; --esp) {
if (esp->continueOp == REOP_ENDALT &&
!esp->jumpToJumpFlag &&
esp->nextTermFixup + OFFSET_LEN == alt &&
(size_t)(pc - ((esp->continueNode->op != REOP_ALT)
? esp->endTermFixup
: esp->nextTermFixup)) > OFFSET_MAX) {
alt = esp->altHead;
jump = esp->nextTermFixup;
/*
* The span must be 1 less than the distance from
* jump offset to jump offset, so we actually jump
* to a REOP_JUMP bytecode, not to its offset!
*/
for (;;) {
JS_ASSERT(jump < esp2->nextTermFixup);
span = esp2->nextTermFixup - jump - 1;
if ((size_t)span <= OFFSET_MAX)
break;
do {
if (--esp2 == esp)
goto jump_too_big;
} while (esp2->continueOp != REOP_ENDALT);
}
jump[0] = JUMP_OFFSET_HI(span);
jump[1] = JUMP_OFFSET_LO(span);
if (esp->continueNode->op != REOP_ALT) {
/*
* We must patch the offset at esp->endTermFixup
* as well, for the REOP_ALTPREREQ{,2} opcodes.
* If we're unlucky and endTermFixup is more than
* OFFSET_MAX bytes from its target, we cheat by
* jumping 6 bytes to the jump whose offset is at
* esp->nextTermFixup, which has the same target.
*/
jump = esp->endTermFixup;
header = esp->nextTermFixup - jump;
span += header;
if ((size_t)span > OFFSET_MAX)
span = header;
jump[0] = JUMP_OFFSET_HI(span);
jump[1] = JUMP_OFFSET_LO(span);
}
esp->jumpToJumpFlag = JS_TRUE;
}
}
}
break;
case REOP_ALT:
JS_ASSERT(emitStateSP);
emitStateSP->altHead = pc - 1;
emitStateSP->nextAltFixup = pc; /* offset to next alternate */
pc += OFFSET_LEN;
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_JUMP;
emitStateSP->jumpToJumpFlag = JS_FALSE;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
JS_ASSERT(op < REOP_LIMIT);
continue;
case REOP_FLAT:
/*
* Coalesce FLATs if possible and if it would not increase bytecode
* beyond preallocated limit. The latter happens only when bytecode
* size for coalesced string with offset p and length 2 exceeds 6
* bytes preallocated for 2 single char nodes, i.e. when
* 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
* GetCompactIndexWidth(p) > 4.
* Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
* nodes strictly decreases bytecode size, the check has to be
* done only for the first coalescing.
*/
if (t->kid &&
GetCompactIndexWidth((jschar *)t->kid - state->cpbegin) <= 4)
{
while (t->next &&
t->next->op == REOP_FLAT &&
(jschar*)t->kid + t->u.flat.length ==
(jschar*)t->next->kid) {
t->u.flat.length += t->next->u.flat.length;
t->next = t->next->next;
}
}
if (t->kid && t->u.flat.length > 1) {
pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLATi : REOP_FLAT;
pc = WriteCompactIndex(pc, (jschar *)t->kid - state->cpbegin);
pc = WriteCompactIndex(pc, t->u.flat.length);
} else if (t->u.flat.chr < 256) {
pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLAT1i : REOP_FLAT1;
*pc++ = (jsbytecode) t->u.flat.chr;
} else {
pc[-1] = (state->flags & JSREG_FOLD)
? REOP_UCFLAT1i
: REOP_UCFLAT1;
SET_ARG(pc, t->u.flat.chr);
pc += ARG_LEN;
}
break;
case REOP_LPAREN:
JS_ASSERT(emitStateSP);
pc = WriteCompactIndex(pc, t->u.parenIndex);
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_RPAREN;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
continue;
case REOP_RPAREN:
pc = WriteCompactIndex(pc, t->u.parenIndex);
break;
case REOP_BACKREF:
pc = WriteCompactIndex(pc, t->u.parenIndex);
break;
case REOP_ASSERT:
JS_ASSERT(emitStateSP);
emitStateSP->nextTermFixup = pc;
pc += OFFSET_LEN;
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_ASSERTTEST;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
continue;
case REOP_ASSERTTEST:
case REOP_ASSERTNOTTEST:
if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
goto jump_too_big;
break;
case REOP_ASSERT_NOT:
JS_ASSERT(emitStateSP);
emitStateSP->nextTermFixup = pc;
pc += OFFSET_LEN;
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_ASSERTNOTTEST;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
continue;
case REOP_QUANT:
JS_ASSERT(emitStateSP);
if (t->u.range.min == 0 && t->u.range.max == (uintN)-1) {
pc[-1] = (t->u.range.greedy) ? REOP_STAR : REOP_MINIMALSTAR;
} else if (t->u.range.min == 0 && t->u.range.max == 1) {
pc[-1] = (t->u.range.greedy) ? REOP_OPT : REOP_MINIMALOPT;
} else if (t->u.range.min == 1 && t->u.range.max == (uintN) -1) {
pc[-1] = (t->u.range.greedy) ? REOP_PLUS : REOP_MINIMALPLUS;
} else {
if (!t->u.range.greedy)
pc[-1] = REOP_MINIMALQUANT;
pc = WriteCompactIndex(pc, t->u.range.min);
/*
* Write max + 1 to avoid using size_t(max) + 1 bytes
* for (uintN)-1 sentinel.
*/
pc = WriteCompactIndex(pc, t->u.range.max + 1);
}
emitStateSP->nextTermFixup = pc;
pc += OFFSET_LEN;
emitStateSP->continueNode = t;
emitStateSP->continueOp = REOP_ENDCHILD;
++emitStateSP;
JS_ASSERT((size_t)(emitStateSP - emitStateStack) <= treeDepth);
t = (RENode *) t->kid;
op = t->op;
continue;
case REOP_ENDCHILD:
if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
goto jump_too_big;
break;
case REOP_CLASS:
if (!t->u.ucclass.sense)
pc[-1] = REOP_NCLASS;
pc = WriteCompactIndex(pc, t->u.ucclass.index);
InitNodeCharSet(re, t);
break;
default:
break;
}
t = t->next;
if (t) {
op = t->op;
} else {
if (emitStateSP == emitStateStack)
break;
--emitStateSP;
t = emitStateSP->continueNode;
op = (REOp) emitStateSP->continueOp;
}
}
cleanup:
if (emitStateStack)
state->context->free(emitStateStack);
return pc;
jump_too_big:
ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
pc = NULL;
goto cleanup;
}
static JSBool
CompileRegExpToAST(JSContext* cx, JSTokenStream* ts,
JSString* str, uintN flags, CompilerState& state)
{
uintN i;
size_t len;
len = str->length();
state.context = cx;
state.tokenStream = ts;
state.cp = js_UndependString(cx, str);
if (!state.cp)
return JS_FALSE;
state.cpbegin = state.cp;
state.cpend = state.cp + len;
state.flags = flags;
state.parenCount = 0;
state.classCount = 0;
state.progLength = 0;
state.treeDepth = 0;
state.classBitmapsMem = 0;
for (i = 0; i < CLASS_CACHE_SIZE; i++)
state.classCache[i].start = NULL;
if (len != 0 && (flags & JSREG_FLAT)) {
state.result = NewRENode(&state, REOP_FLAT);
if (!state.result)
return JS_FALSE;
state.result->u.flat.chr = *state.cpbegin;
state.result->u.flat.length = len;
state.result->kid = (void *) state.cpbegin;
/* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
state.progLength += 1 + GetCompactIndexWidth(0)
+ GetCompactIndexWidth(len);
return JS_TRUE;
}
return ParseRegExp(&state);
}
#ifdef JS_TRACER
typedef js::Vector<LIns *, 4, js::ContextAllocPolicy> LInsList;
namespace js {
struct REFragment : public nanojit::Fragment
{
REFragment(const void* _ip verbose_only(, uint32_t profFragID))
: nanojit::Fragment(ip verbose_only(, profFragID))
{}
};
} /* namespace js */
/* Return the cached fragment for the given regexp, or create one. */
static Fragment*
LookupNativeRegExp(JSContext* cx, uint16 re_flags,
const jschar* re_chars, size_t re_length)
{
TraceMonitor *tm = &JS_TRACE_MONITOR(cx);
VMAllocator &alloc = *tm->dataAlloc;
REHashMap &table = *tm->reFragments;
REHashKey k(re_length, re_flags, re_chars);
REFragment *frag = table.get(k);
if (!frag) {
verbose_only(
uint32_t profFragID = (LogController.lcbits & LC_FragProfile)
? (++(tm->lastFragID)) : 0;
)
frag = new (alloc) REFragment(0 verbose_only(, profFragID));
/*
* Copy the re_chars portion of the hash key into the Allocator, so
* its lifecycle is disconnected from the lifecycle of the
* underlying regexp.
*/
k.re_chars = (const jschar*) new (alloc) jschar[re_length];
memcpy((void*) k.re_chars, re_chars, re_length * sizeof(jschar));
table.put(k, frag);
}
return frag;
}
static JSBool
ProcessCharSet(JSContext *cx, JSRegExp *re, RECharSet *charSet);
/* Utilities for the RegExpNativeCompiler */
namespace {
/*
* An efficient way to simultaneously statically guard that the sizeof(bool) is a
* small power of 2 and take its log2.
*/
template <int> struct StaticLog2 {};
template <> struct StaticLog2<1> { static const int result = 0; };
template <> struct StaticLog2<2> { static const int result = 1; };
template <> struct StaticLog2<4> { static const int result = 2; };
template <> struct StaticLog2<8> { static const int result = 3; };
}
/*
* This table allows efficient testing for the ASCII portion of \s during a
* trace. ECMA-262 15.10.2.12 defines the following characters below 128 to be
* whitespace: 0x9 (0), 0xA (10), 0xB (11), 0xC (12), 0xD (13), 0x20 (32). The
* index must be <= 32.
*/
static const bool js_ws[] = {
/* 0 1 2 3 4 5 5 7 8 9 */
/* 0 */ false, false, false, false, false, false, false, false, false, true,
/* 1 */ true, true, true, true, false, false, false, false, false, false,
/* 2 */ false, false, false, false, false, false, false, false, false, false,
/* 3 */ false, false, true
};
/* Sets of characters are described in terms of individuals and classes. */
class CharSet {
public:
CharSet() : charEnd(charBuf), classes(0) {}
static const uintN sBufSize = 8;
bool full() { return charEnd == charBuf + sBufSize; }
/* Add a single char to the set. */
bool addChar(jschar c)
{
if (full())
return false;
*charEnd++ = c;
return true;
}
enum Class {
LineTerms = 1 << 0, /* Line Terminators (E262 7.3) */
OtherSpace = 1 << 1, /* \s (E262 15.10.2.12) - LineTerms */
Digit = 1 << 2, /* \d (E262 15.10.2.12) */
OtherAlnum = 1 << 3, /* \w (E262 15,10.2.12) - Digit */
Other = 1 << 4, /* all other characters */
All = LineTerms | OtherSpace | Digit | OtherAlnum | Other,
Space = LineTerms | OtherSpace,
AlNum = Digit | OtherAlnum,
Dot = All & ~LineTerms
};
/* Add a set of chars to the set. */
void addClass(Class c) { classes |= c; }
/* Return whether two sets of chars are disjoint. */
bool disjoint(const CharSet &) const;
private:
static bool disjoint(const jschar *beg, const jschar *end, uintN classes);
mutable jschar charBuf[sBufSize];
jschar *charEnd;
uintN classes;
};
/* Appease the type checker. */
static inline CharSet::Class
operator|(CharSet::Class c1, CharSet::Class c2) {
return (CharSet::Class)(((int)c1) | ((int)c2));
}
static inline CharSet::Class
operator~(CharSet::Class c) {
return (CharSet::Class)(~(int)c);
}
/*
* Return whether the characters in the range [beg, end) fall within any of the
* classes with a bit set in 'classes'.
*/
bool
CharSet::disjoint(const jschar *beg, const jschar *end, uintN classes)
{
for (const jschar *p = beg; p != end; ++p) {
if (JS7_ISDEC(*p)) {
if (classes & Digit)
return false;
} else if (JS_ISWORD(*p)) {
if (classes & OtherAlnum)
return false;
} else if (RE_IS_LINE_TERM(*p)) {
if (classes & LineTerms)
return false;
} else if (JS_ISSPACE(*p)) {
if (classes & OtherSpace)
return false;
} else {
if (classes & Other)
return false;
}
}
return true;
}
/*
* Predicate version of the STL's set_intersection. Assumes both ranges are
* sorted and thus runs in linear time.
*
* FIXME: This is a reusable algorithm, perhaps it should be put somewhere.
*/
template <class InputIterator1, class InputIterator2>
bool
set_disjoint(InputIterator1 p1, InputIterator1 end1,
InputIterator2 p2, InputIterator2 end2)
{
if (p1 == end1 || p2 == end2)
return true;
while (*p1 != *p2) {
if (*p1 < *p2) {
++p1;
if (p1 == end1)
return true;
} else if (*p2 < *p1) {
++p2;
if (p2 == end2)
return true;
}
}
return false;
}
static JSBool
CharCmp(void *arg, const void *a, const void *b, int *result)
{
jschar ca = *(jschar *)a, cb = *(jschar *)b;
*result = ca - cb;
return JS_TRUE;
}
bool
CharSet::disjoint(const CharSet &other) const
{
/* Check overlap between classes. */
if (classes & other.classes)
return false;
/*
* Check char-class overlap. Compare this->charBuf with other.classes and
* vice versa with a loop.
*/
if (!disjoint(this->charBuf, this->charEnd, other.classes) ||
!disjoint(other.charBuf, other.charEnd, this->classes))
return false;
/* Check char-char overlap. */
jschar tmp[CharSet::sBufSize];
js_MergeSort(charBuf, charEnd - charBuf, sizeof(jschar),
CharCmp, 0, tmp);
js_MergeSort(other.charBuf, other.charEnd - other.charBuf, sizeof(jschar),
CharCmp, 0, tmp);
return set_disjoint(charBuf, charEnd, other.charBuf, other.charEnd);
}
/*
* Return true if the given subexpression may match the empty string. The
* conservative answer is |true|. If |next| is true, then the subexpression is
* considered to be |node| followed by the rest of |node->next|. Otherwise, the
* subexpression is considered to be |node| by itself.
*/
static bool
mayMatchEmpty(RENode *node, bool next = true)
{
if (!node)
return true;
switch (node->op) {
case REOP_EMPTY: return true;
case REOP_FLAT: return false;
case REOP_CLASS: return false;
case REOP_ALNUM: return false;
case REOP_ALT: return (mayMatchEmpty((RENode *)node->kid) ||
mayMatchEmpty((RENode *)node->u.kid2)) &&
(!next || mayMatchEmpty(node->next));
case REOP_QUANT: return (node->u.range.min == 0 ||
mayMatchEmpty((RENode *)node->kid)) &&
(!next || mayMatchEmpty(node->next));
default: return true;
}
}
/*
* Enumerate the set of characters that may be consumed next by the given
* subexpression in isolation. Return whether the enumeration was successful.
*/
static bool
enumerateNextChars(JSContext *cx, RENode *node, CharSet &set)
{
JS_CHECK_RECURSION(cx, return JS_FALSE);
if (!node)
return true;
switch (node->op) {
/* Record as bitflags. */
case REOP_DOT: set.addClass(CharSet::Dot); return true;
case REOP_DIGIT: set.addClass(CharSet::Digit); return true;
case REOP_NONDIGIT: set.addClass(~CharSet::Digit); return true;
case REOP_ALNUM: set.addClass(CharSet::AlNum); return true;
case REOP_NONALNUM: set.addClass(~CharSet::AlNum); return true;
case REOP_SPACE: set.addClass(CharSet::Space); return true;
case REOP_NONSPACE: set.addClass(~CharSet::Space); return true;
/* Record as individual characters. */
case REOP_FLAT:
return set.addChar(node->u.flat.chr);
/* Control structures. */
case REOP_EMPTY:
return true;
case REOP_ALT:
case REOP_ALTPREREQ:
return enumerateNextChars(cx, (RENode *)node->kid, set) &&
enumerateNextChars(cx, (RENode *)node->u.kid2, set) &&
(!mayMatchEmpty(node, false) ||
enumerateNextChars(cx, (RENode *)node->next, set));
case REOP_QUANT:
return enumerateNextChars(cx, (RENode *)node->kid, set) &&
(!mayMatchEmpty(node, false) ||
enumerateNextChars(cx, (RENode *)node->next, set));
/* Arbitrary character classes and oddities. */
default:
return false;
}
}
class RegExpNativeCompiler {
private:
VMAllocator& tempAlloc;
JSContext* cx;
JSRegExp* re;
CompilerState* cs; /* RegExp to compile */
Fragment* fragment;
LirWriter* lir;
#ifdef DEBUG
LirWriter* validate_writer;
#endif
#ifdef NJ_VERBOSE
LirWriter* verbose_filter;
#endif
LirBufWriter* lirBufWriter; /* for skip */
LIns* state;
LIns* start;
LIns* cpend;
LirBuffer* const lirbuf;
bool outOfMemory() {
return tempAlloc.outOfMemory() || JS_TRACE_MONITOR(cx).dataAlloc->outOfMemory();
}
JSBool isCaseInsensitive() const { return (cs->flags & JSREG_FOLD) != 0; }
void targetCurrentPoint(LIns *ins)
{
ins->setTarget(lir->ins0(LIR_label));
}
void targetCurrentPoint(LInsList &fails)
{
LIns *fail = lir->ins0(LIR_label);
for (size_t i = 0; i < fails.length(); ++i) {
fails[i]->setTarget(fail);
}
fails.clear();
}
/*
* These functions return the new position after their match operation,
* or NULL if there was an error.
*/
LIns* compileEmpty(RENode* node, LIns* pos, LInsList& fails)
{
return pos;
}
#if defined(AVMPLUS_ARM) || defined(AVMPLUS_SPARC)
/* We can't do this on ARM or SPARC, since it relies on doing a 32-bit load from
* a pointer which is only 2-byte aligned.
*/
#undef USE_DOUBLE_CHAR_MATCH
#else
#define USE_DOUBLE_CHAR_MATCH
#endif
LIns* compileFlatSingleChar(jschar ch, LIns* pos, LInsList& fails)
{
LIns* to_fail = lir->insBranch(LIR_jf, lir->ins2(LIR_plt, pos, cpend), 0);
if (!fails.append(to_fail))
return NULL;
LIns* text_ch = lir->insLoad(LIR_ldcs, pos, 0);
// Extra characters that need to be compared against when doing folding.
struct extra {
jschar ch;
LIns *match;
};
extra extras[5];
int nextras = 0;
if (cs->flags & JSREG_FOLD) {
ch = JS_TOUPPER(ch);
jschar lch = inverse_upcase(ch);
if (ch != lch) {
if (L'A' <= ch && ch <= L'Z') {
// Fast conversion of text character to lower case by OR-ing with 32.
text_ch = lir->ins2(LIR_or, text_ch, lir->insImm(32));
// These ASCII letters have 2 lower-case forms. We put the ASCII one in
// |extras| so it is tested first, because we expect that to be the common
// case. Note that the code points of the non-ASCII forms both have the
// 32 bit set, so it is OK to compare against the OR-32-converted text char.
ch = lch;
if (ch == L'i') {
extras[nextras++].ch = ch;
ch = 0x131;
} else if (ch == L's') {
extras[nextras++].ch = ch;
ch = 0x17f;
}
goto gen;
} else if (0x01c4 <= ch && ch <= 0x1e60) {
// The following group of conditionals handles characters that have 1 or 2
// lower-case forms in addition to JS_TOLOWER(ch).
if (ch <= 0x1f1) { // DZ,LJ,NJ
if (ch == 0x01c4) {
extras[nextras++].ch = 0x01c5;
} else if (ch == 0x01c7) {
extras[nextras++].ch = 0x01c8;
} else if (ch == 0x01ca) {
extras[nextras++].ch = 0x01cb;
} else if (ch == 0x01f1) {
extras[nextras++].ch = 0x01f2;
}
} else if (ch < 0x0392) { // no extra lower-case forms in this range
} else if (ch <= 0x03a6) { // Greek
if (ch == 0x0392) {
extras[nextras++].ch = 0x03d0;
} else if (ch == 0x0395) {
extras[nextras++].ch = 0x03f5;
} else if (ch == 0x0398) {
extras[nextras++].ch = 0x03d1;
} else if (ch == 0x0399) {
extras[nextras++].ch = 0x0345;
extras[nextras++].ch = 0x1fbe;
} else if (ch == 0x039a) {
extras[nextras++].ch = 0x03f0;
} else if (ch == 0x039c) {
extras[nextras++].ch = 0xb5;
} else if (ch == 0x03a0) {
extras[nextras++].ch = 0x03d6;
} else if (ch == 0x03a1) {
extras[nextras++].ch = 0x03f1;
} else if (ch == 0x03a3) {
extras[nextras++].ch = 0x03c2;
} else if (ch == 0x03a6) {
extras[nextras++].ch = 0x03d5;
}
} else if (ch == 0x1e60) { // S with dot above
extras[nextras++].ch = 0x1e9b;
}
}
extras[nextras++].ch = lch;
}
}
gen:
for (int i = 0; i < nextras; ++i) {
LIns *test = lir->ins2(LIR_eq, text_ch, lir->insImm(extras[i].ch));
LIns *branch = lir->insBranch(LIR_jt, test, 0);
extras[i].match = branch;
}
if (!fails.append(lir->insBranch(LIR_jf, lir->ins2(LIR_eq, text_ch, lir->insImm(ch)), 0)))
return NULL;
for (int i = 0; i < nextras; ++i)
targetCurrentPoint(extras[i].match);
return lir->ins2(LIR_piadd, pos, lir->insImmWord(2));
}
JS_INLINE bool hasCases(jschar ch)
{
return JS_TOLOWER(ch) != JS_TOUPPER(ch);
}
LIns* compileFlatDoubleChar(jschar ch1, jschar ch2, LIns* pos, LInsList& fails)
{
#ifdef IS_BIG_ENDIAN
uint32 word = (ch1 << 16) | ch2;
#else
uint32 word = (ch2 << 16) | ch1;
#endif
/*
* Fast case-insensitive test for ASCII letters: convert text
* char to lower case by bit-or-ing in 32 and compare.
*/
JSBool useFastCI = JS_FALSE;
union { jschar c[2]; uint32 i; } mask;
if (cs->flags & JSREG_FOLD) {
jschar uch1 = JS_TOUPPER(ch1);
jschar uch2 = JS_TOUPPER(ch2);
JSBool mask1 = (L'A' <= uch1 && uch1 <= L'Z' && uch1 != L'I' && uch1 != L'S');
JSBool mask2 = (L'A' <= uch2 && uch2 <= L'Z' && uch2 != L'I' && uch2 != L'S');
if ((!mask1 && hasCases(ch1)) || (!mask2 && hasCases(ch2))) {
pos = compileFlatSingleChar(ch1, pos, fails);
if (!pos) return NULL;
return compileFlatSingleChar(ch2, pos, fails);
}
mask.c[0] = mask1 ? 0x0020 : 0x0;
mask.c[1] = mask2 ? 0x0020 : 0x0;
if (mask.i) {
word |= mask.i;
useFastCI = JS_TRUE;
}
}
LIns* to_fail = lir->insBranch(LIR_jf,
lir->ins2(LIR_plt,
pos,
lir->ins2(LIR_piadd,
cpend,
lir->insImmWord(-2))),
0);
if (!fails.append(to_fail))
return NULL;
LIns* text_word = lir->insLoad(LIR_ld, pos, 0);
LIns* comp_word = useFastCI ?
lir->ins2(LIR_or, text_word, lir->insImm(mask.i)) :
text_word;
if (!fails.append(lir->insBranch(LIR_jf, lir->ins2(LIR_eq, comp_word, lir->insImm(word)), 0)))
return NULL;
return lir->ins2(LIR_piadd, pos, lir->insImmWord(4));
}
LIns* compileFlat(RENode *&node, LIns* pos, LInsList& fails)
{
#ifdef USE_DOUBLE_CHAR_MATCH
if (node->u.flat.length == 1) {
if (node->next && node->next->op == REOP_FLAT &&
node->next->u.flat.length == 1) {
pos = compileFlatDoubleChar(node->u.flat.chr,
node->next->u.flat.chr,
pos, fails);
node = node->next;
} else {
pos = compileFlatSingleChar(node->u.flat.chr, pos, fails);
}
return pos;
} else {
size_t i;
for (i = 0; i < node->u.flat.length - 1; i += 2) {
if (outOfMemory())
return 0;
pos = compileFlatDoubleChar(((jschar*) node->kid)[i],
((jschar*) node->kid)[i+1],
pos, fails);
if (!pos)
return 0;
}
JS_ASSERT(pos != 0);
if (i == node->u.flat.length - 1)
pos = compileFlatSingleChar(((jschar*) node->kid)[i], pos, fails);
return pos;
}
#else
if (node->u.flat.length == 1) {
return compileFlatSingleChar(node->u.flat.chr, pos, fails);
} else {
for (size_t i = 0; i < node->u.flat.length; i++) {
if (outOfMemory())
return 0;
pos = compileFlatSingleChar(((jschar*) node->kid)[i], pos, fails);
if (!pos)
return 0;
}
return pos;
}
#endif
}
LIns* compileClass(RENode* node, LIns* pos, LInsList& fails)
{
if (!node->u.ucclass.sense)
return JS_FALSE;
/*
* If we share generated native code, we need to make a copy
* of the bitmap because the original regexp's copy is destroyed when
* that regexp is.
*/
RECharSet *charSet = &re->classList[node->u.ucclass.index];
size_t bitmapLen = (charSet->length >> 3) + 1;
/* Arbitrary size limit on bitmap. */
if (bitmapLen > 1024)
return NULL;
Allocator &alloc = *JS_TRACE_MONITOR(cx).dataAlloc;
/* The following line allocates charSet.u.bits if successful. */
if (!charSet->converted && !ProcessCharSet(cx, re, charSet))
return NULL;
void* bitmapData = alloc.alloc(bitmapLen);
if (outOfMemory())
return NULL;
memcpy(bitmapData, charSet->u.bits, bitmapLen);
LIns* to_fail = lir->insBranch(LIR_jf, lir->ins2(LIR_plt, pos, cpend), 0);
if (!fails.append(to_fail))
return NULL;
LIns* text_ch = lir->insLoad(LIR_ldcs, pos, 0);
if (!fails.append(lir->insBranch(LIR_jf,
lir->ins2(LIR_le, text_ch, lir->insImm(charSet->length)),
0))) {
return NULL;
}
LIns* byteIndex = lir->ins_i2p(lir->ins2(LIR_rsh, text_ch, lir->insImm(3)));
LIns* bitmap = lir->insImmPtr(bitmapData);
LIns* byte = lir->insLoad(LIR_ldcb, lir->ins2(LIR_piadd, bitmap, byteIndex), (int) 0);
LIns* bitMask = lir->ins2(LIR_lsh, lir->insImm(1),
lir->ins2(LIR_and, text_ch, lir->insImm(0x7)));
LIns* test = lir->ins2(LIR_eq, lir->ins2(LIR_and, byte, bitMask), lir->insImm(0));
LIns* to_next = lir->insBranch(LIR_jt, test, 0);
if (!fails.append(to_next))
return NULL;
return lir->ins2(LIR_piadd, pos, lir->insImmWord(2));
}
/* Factor out common code to index js_alnum. */
LIns *compileTableRead(LIns *chr, const bool *tbl)
{
if (sizeof(bool) != 1) {
LIns *sizeLog2 = lir->insImm(StaticLog2<sizeof(bool)>::result);
chr = lir->ins2(LIR_lsh, chr, sizeLog2);
}
LIns *addr = lir->ins2(LIR_piadd, lir->insImmPtr(tbl), lir->ins_u2p(chr));
return lir->insLoad(LIR_ldcb, addr, 0);
}
/* Compile a builtin character class. */
LIns *compileBuiltinClass(RENode *node, LIns *pos, LInsList &fails)
{
/* All the builtins checked below consume one character. */
if (!fails.append(lir->insBranch(LIR_jf, lir->ins2(LIR_plt, pos, cpend), 0)))
return NULL;
LIns *chr = lir->insLoad(LIR_ldcs, pos, 0);
switch (node->op) {
case REOP_DOT:
{
/* Accept any character except those in ECMA-262 15.10.2.8. */
LIns *eq1 = lir->ins2(LIR_eq, chr, lir->insImm('\n'));
if (!fails.append(lir->insBranch(LIR_jt, eq1, NULL)))
return NULL;
LIns *eq2 = lir->ins2(LIR_eq, chr, lir->insImm('\r'));
if (!fails.append(lir->insBranch(LIR_jt, eq2, NULL)))
return NULL;
LIns *eq3 = lir->ins2(LIR_eq, chr, lir->insImm(LINE_SEPARATOR));
if (!fails.append(lir->insBranch(LIR_jt, eq3, NULL)))
return NULL;
LIns *eq4 = lir->ins2(LIR_eq, chr, lir->insImm(PARA_SEPARATOR));
if (!fails.append(lir->insBranch(LIR_jt, eq4, NULL)))
return NULL;
break;
}
case REOP_DIGIT:
{
LIns *ge = lir->ins2(LIR_ge, chr, lir->insImm('0'));
if (!fails.append(lir->insBranch(LIR_jf, ge, NULL)))
return NULL;
LIns *le = lir->ins2(LIR_le, chr, lir->insImm('9'));
if (!fails.append(lir->insBranch(LIR_jf, le, NULL)))
return NULL;
break;
}
case REOP_NONDIGIT:
{
/* Use 'and' to give a predictable branch for success path. */
LIns *ge = lir->ins2(LIR_ge, chr, lir->insImm('0'));
LIns *le = lir->ins2(LIR_le, chr, lir->insImm('9'));
LIns *both = lir->ins2(LIR_and, ge, le);
if (!fails.append(lir->insBranch(LIR_jf, lir->ins_eq0(both), NULL)))
return NULL;
break;
}
case REOP_ALNUM:
{
/*
* Compile the condition:
* ((uint)*cp) < 128 && js_alnum[(uint)*cp]
*/
LIns *rangeCnd = lir->ins2(LIR_ult, chr, lir->insImm(128));
if (!fails.append(lir->insBranch(LIR_jf, rangeCnd, NULL)))
return NULL;
LIns *tableVal = compileTableRead(chr, js_alnum);
if (!fails.append(lir->insBranch(LIR_jt, lir->ins_eq0(tableVal), NULL)))
return NULL;
break;
}
case REOP_NONALNUM:
{
/*
* Compile the condition:
* ((uint)*cp) >= 128 || !js_alnum[(uint)*cp]
*/
LIns *rangeCnd = lir->ins2(LIR_uge, chr, lir->insImm(128));
LIns *rangeBr = lir->insBranch(LIR_jt, rangeCnd, NULL);
LIns *tableVal = compileTableRead(chr, js_alnum);
if (!fails.append(lir->insBranch(LIR_jf, lir->ins_eq0(tableVal), NULL)))
return NULL;
LIns *success = lir->ins0(LIR_label);
rangeBr->setTarget(success);
break;
}
case REOP_SPACE:
case REOP_NONSPACE:
{
/*
* ECMA-262 7.2, 7.3, and 15.10.2.12 define a bunch of Unicode code
* points for whitespace. We optimize here for the common case of
* ASCII characters using a table lookup for the lower block that
* can actually contain spaces. For the rest, use a (more or less)
* binary search to minimize tests.
*
* [0000,0020]: 9, A, B, C, D, 20
* (0020,00A0): none
* [00A0,2000): A0, 1680, 180E
* [2000,200A]: all
* (200A, max): 2028, 2029, 202F, 205F, 3000
*/
/* Below 0x20? */
LIns *tableRangeCnd = lir->ins2(LIR_ule, chr, lir->insImm(0x20));
LIns *tableRangeBr = lir->insBranch(LIR_jt, tableRangeCnd, NULL);
/* Fall through means *chr > 0x20. */
/* Handle (0x20,0xA0). */
LIns *asciiCnd = lir->ins2(LIR_ult, chr, lir->insImm(0xA0));
LIns *asciiMissBr = lir->insBranch(LIR_jt, asciiCnd, NULL);
/* Fall through means *chr >= 0xA0. */
/* Partition around [0x2000,0x200A]. */
LIns *belowCnd = lir->ins2(LIR_ult, chr, lir->insImm(0x2000));
LIns *belowBr = lir->insBranch(LIR_jt, belowCnd, NULL);
LIns *aboveCnd = lir->ins2(LIR_ugt, chr, lir->insImm(0x200A));
LIns *aboveBr = lir->insBranch(LIR_jt, aboveCnd, NULL);
LIns *intervalMatchBr = lir->insBranch(LIR_j, NULL, NULL);
/* Handle [0xA0,0x2000). */
LIns *belowLbl = lir->ins0(LIR_label);
belowBr->setTarget(belowLbl);
LIns *eq1Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0xA0));
LIns *eq1Br = lir->insBranch(LIR_jt, eq1Cnd, NULL);
LIns *eq2Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x1680));
LIns *eq2Br = lir->insBranch(LIR_jt, eq2Cnd, NULL);
LIns *eq3Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x180E));
LIns *eq3Br = lir->insBranch(LIR_jt, eq3Cnd, NULL);
LIns *belowMissBr = lir->insBranch(LIR_j, NULL, NULL);
/* Handle (0x200A, max). */
LIns *aboveLbl = lir->ins0(LIR_label);
aboveBr->setTarget(aboveLbl);
LIns *eq4Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x2028));
LIns *eq4Br = lir->insBranch(LIR_jt, eq4Cnd, NULL);
LIns *eq5Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x2029));
LIns *eq5Br = lir->insBranch(LIR_jt, eq5Cnd, NULL);
LIns *eq6Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x202F));
LIns *eq6Br = lir->insBranch(LIR_jt, eq6Cnd, NULL);
LIns *eq7Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x205F));
LIns *eq7Br = lir->insBranch(LIR_jt, eq7Cnd, NULL);
LIns *eq8Cnd = lir->ins2(LIR_eq, chr, lir->insImm(0x3000));
LIns *eq8Br = lir->insBranch(LIR_jt, eq8Cnd, NULL);
LIns *aboveMissBr = lir->insBranch(LIR_j, NULL, NULL);
/* Handle [0,0x20]. */
LIns *tableLbl = lir->ins0(LIR_label);
tableRangeBr->setTarget(tableLbl);
LIns *tableVal = compileTableRead(chr, js_ws);
LIns *tableCnd = lir->ins_eq0(tableVal);
LIns *tableMatchBr = lir->insBranch(LIR_jf, tableCnd, NULL);
/* Collect misses. */
LIns *missLbl = lir->ins0(LIR_label);
asciiMissBr->setTarget(missLbl);
belowMissBr->setTarget(missLbl);
aboveMissBr->setTarget(missLbl);
LIns *missBr = lir->insBranch(LIR_j, NULL, NULL);
if (node->op == REOP_SPACE) {
if (!fails.append(missBr))
return NULL;
}
/* Collect matches. */
LIns *matchLbl = lir->ins0(LIR_label);
intervalMatchBr->setTarget(matchLbl);
tableMatchBr->setTarget(matchLbl);
eq1Br->setTarget(matchLbl); eq2Br->setTarget(matchLbl);
eq3Br->setTarget(matchLbl); eq4Br->setTarget(matchLbl);
eq5Br->setTarget(matchLbl); eq6Br->setTarget(matchLbl);
eq7Br->setTarget(matchLbl); eq8Br->setTarget(matchLbl);
if (node->op == REOP_NONSPACE) {
LIns *matchBr = lir->insBranch(LIR_j, NULL, NULL);
if (!fails.append(matchBr))
return NULL;
}
/* Fall through means match == success. */
/* Collect successes to fall through. */
LIns *success = lir->ins0(LIR_label);
if (node->op == REOP_NONSPACE)
missBr->setTarget(success);
break;
}
default:
return NULL;
}
return lir->ins2(LIR_piadd, pos, lir->insImmWord(2));
}
LIns *compileAlt(RENode *node, LIns *pos, bool atEnd, LInsList &fails)
{
RENode *leftRe = (RENode *)node->kid, *rightRe = (RENode *)node->u.kid2;
/*
* If the RE continues after the alternative, we need to ensure that no
* backtracking is required. Recursive calls to compileNode will fail
* on capturing parens, so the only thing we have to check here is that,
* if the left subexpression matches, we can keep going without later
* deciding we need to try the right subexpression.
*/
if (!atEnd) {
/*
* If there is no character overlap between left and right, then
* there is only one possible path through the alternative.
*/
CharSet leftSet, rightSet;
if (!enumerateNextChars(cx, leftRe, leftSet) ||
!enumerateNextChars(cx, rightRe, rightSet) ||
!leftSet.disjoint(rightSet))
return NULL;
/*
* If there is an empty path through either subexpression, the above
* check is incomplete; we need to include |node->next| as well.
*/
bool epsLeft = mayMatchEmpty(leftRe),
epsRight = mayMatchEmpty(rightRe);
if (epsRight && epsLeft) {
return NULL;
} else if (epsLeft || epsRight) {
CharSet nextSet;
if (!enumerateNextChars(cx, node->next, nextSet) ||
(epsLeft && !nextSet.disjoint(rightSet)) ||
(epsRight && !nextSet.disjoint(leftSet))) {
return NULL;
}
}
}
/* Try left branch. */
LInsList kidFails(cx);
LIns *branchEnd = compileNode(leftRe, pos, atEnd, kidFails);
if (!branchEnd)
return NULL;
/*
* Since there are no phis, simulate by writing to and reading from
* memory (REGlobalData::stateStack, since it is unused).
*/
lir->insStorei(branchEnd, state,
offsetof(REGlobalData, stateStack));
LIns *leftSuccess = lir->insBranch(LIR_j, NULL, NULL);
/* Try right branch. */
targetCurrentPoint(kidFails);
if (!(branchEnd = compileNode(rightRe, pos, atEnd, fails)))
return NULL;
lir->insStorei(branchEnd, state,
offsetof(REGlobalData, stateStack));
/* Land success on the left branch. */
targetCurrentPoint(leftSuccess);
return addName(fragment->lirbuf,
lir->insLoad(LIR_ldp, state,
offsetof(REGlobalData, stateStack)),
"pos");
}
LIns *compileOpt(RENode *node, LIns *pos, bool atEnd, LInsList &fails)
{
/*
* Since there are no phis, simulate by writing to and reading from
* memory (REGlobalData::stateStack, since it is unused).
*/
lir->insStorei(pos, state, offsetof(REGlobalData, stateStack));
/* Try ? body. */
LInsList kidFails(cx);
if (!(pos = compileNode(node, pos, atEnd, kidFails)))
return NULL;
lir->insStorei(pos, state, offsetof(REGlobalData, stateStack));
/* Join success and failure and get new position. */
targetCurrentPoint(kidFails);
pos = addName(fragment->lirbuf,
lir->insLoad(LIR_ldp, state,
offsetof(REGlobalData, stateStack)),
"pos");
return pos;
}
LIns *compileQuant(RENode *node, LIns *pos, bool atEnd, LInsList &fails)
{
/* Only support greedy *, +, ?. */
if (!node->u.range.greedy ||
node->u.range.min > 1 ||
(node->u.range.max > 1 && node->u.range.max < (uintN)-1)) {
return NULL;
}
RENode *bodyRe = (RENode *)node->kid;
/*
* If the RE continues after the alternative, we need to ensure that no
* backtracking is required. Recursive calls to compileNode will fail
* on capturing parens, so the only thing we have to check here is that,
* if the quantifier body matches, we can continue matching the body
* without later deciding we need to undo the body matches.
*/
if (!atEnd) {
/*
* If there is no character overlap between the body and
* |node->next|, then all possible body matches are used.
*/
CharSet bodySet, nextSet;
if (!enumerateNextChars(cx, bodyRe, bodySet) ||
!enumerateNextChars(cx, node->next, nextSet) ||
!bodySet.disjoint(nextSet)) {
return NULL;
}
}
/* Fork off ? and {1,1}. */
if (node->u.range.max == 1) {
if (node->u.range.min == 1)
return compileNode(bodyRe, pos, atEnd, fails);
else
return compileOpt(bodyRe, pos, atEnd, fails);
}
/* For +, compile a copy of the body where failure is real failure. */
if (node->u.range.min == 1) {
if (!(pos = compileNode(bodyRe, pos, atEnd, fails)))
return NULL;
}
/*
* Since there are no phis, simulate by writing to and reading from
* memory (REGlobalData::stateStack, since it is unused).
*/
lir->insStorei(pos, state, offsetof(REGlobalData, stateStack));
/* Begin iteration: load loop variables. */
LIns *loopTop = lir->ins0(LIR_label);
LIns *iterBegin = addName(fragment->lirbuf,
lir->insLoad(LIR_ldp, state,
offsetof(REGlobalData, stateStack)),
"pos");
/* Match quantifier body. */
LInsList kidFails(cx);
LIns *iterEnd = compileNode(bodyRe, iterBegin, atEnd, kidFails);
if (!iterEnd)
return NULL;
/*
* If there is an epsilon path through the body then, when it is taken,
* we need to abort the loop or else we will loop forever.
*/
if (mayMatchEmpty(bodyRe)) {
LIns *eqCnd = lir->ins2(LIR_peq, iterBegin, iterEnd);
if (!kidFails.append(lir->insBranch(LIR_jt, eqCnd, NULL)))
return NULL;
}
/* End iteration: store loop variables, increment, jump */
lir->insStorei(iterEnd, state, offsetof(REGlobalData, stateStack));
lir->insBranch(LIR_j, NULL, loopTop);
/*
* Using '+' as branch, the intended control flow is:
*
* ...
* A -> |
* |<---.
* B -> | |
* +--. |
* C -> | | |
* +--. |
* D -> | | |
* +--|-'
* X -> | |
* |<-'
* E -> |
* ...
*
* We are currently at point X. Since the regalloc makes a single,
* linear, backwards sweep over the IR (going from E to A), point X
* must tell the regalloc what LIR insns are live at the end of D.
* Thus, we need to report *all* insns defined *before* the end of D
* that may be used *after* D. This means insns defined in A, B, C, or
* D and used in B, C, D, or E. Since insns in B, C, and D are
* conditionally executed, and we (currently) don't have real phi
* nodes, we need only consider insns defined in A and used in E.
*/
lir->ins1(LIR_plive, state);
lir->ins1(LIR_plive, cpend);
lir->ins1(LIR_plive, start);
/* After the loop: reload 'pos' from memory and continue. */
targetCurrentPoint(kidFails);
return iterBegin;
}
/*
* Compile the regular expression rooted at 'node'. Return 0 on failed
* compilation. Otherwise, generate code that falls through on success (the
* returned LIns* is the current 'pos') and jumps to the end on failure (by
* adding the guard LIns to 'fails').
*/
LIns *compileNode(RENode *node, LIns *pos, bool atEnd, LInsList &fails)
{
for (; pos && node; node = node->next) {
if (outOfMemory())
return NULL;
bool childNextIsEnd = atEnd && !node->next;
switch (node->op) {
case REOP_EMPTY:
pos = compileEmpty(node, pos, fails);
break;
case REOP_FLAT:
pos = compileFlat(node, pos, fails);
break;
case REOP_ALT:
case REOP_ALTPREREQ:
pos = compileAlt(node, pos, childNextIsEnd, fails);
break;
case REOP_QUANT:
pos = compileQuant(node, pos, childNextIsEnd, fails);
break;
case REOP_CLASS:
pos = compileClass(node, pos, fails);
break;
case REOP_DOT:
case REOP_DIGIT:
case REOP_NONDIGIT:
case REOP_ALNUM:
case REOP_NONALNUM:
case REOP_SPACE:
case REOP_NONSPACE:
pos = compileBuiltinClass(node, pos, fails);
break;
default:
return NULL;
}
}
return pos;
}
/*
* This function kicks off recursive compileNode compilation, finishes the
* success path, and lets the failed-match path fall through.
*/
bool compileRootNode(RENode *root, LIns *pos, LIns *anchorFail)
{
/* Compile the regular expression body. */
LInsList fails(cx);
pos = compileNode(root, pos, true, fails);
if (!pos)
return false;
/* Fall-through from compileNode means success. */
lir->insStorei(pos, state, offsetof(REGlobalData, stateStack));
lir->ins0(LIR_regfence);
lir->ins1(LIR_ret, lir->insImm(1));
/* Stick return here so we don't have to jump over it every time. */
if (anchorFail) {
targetCurrentPoint(anchorFail);
lir->ins0(LIR_regfence);
lir->ins1(LIR_ret, lir->insImm(0));
}
/* Target failed matches. */
targetCurrentPoint(fails);
return true;
}
/* Compile a regular expressions that can only match on the first char. */
bool compileSticky(RENode *root, LIns *start)
{
if (!compileRootNode(root, start, NULL))
return false;
/* Failed to match on first character, so fail whole match. */
lir->ins0(LIR_regfence);
lir->ins1(LIR_ret, lir->insImm(0));
return !outOfMemory();
}
/* Compile normal regular expressions that can match starting at any char. */
bool compileAnchoring(RENode *root, LIns *start)
{
/* Guard outer anchoring loop. Use <= to allow empty regexp match. */
LIns *anchorFail = lir->insBranch(LIR_jf, lir->ins2(LIR_ple, start, cpend), 0);
if (!compileRootNode(root, start, anchorFail))
return false;
/* Outer loop increment. */
lir->insStorei(lir->ins2(LIR_piadd, start, lir->insImmWord(2)), state,
offsetof(REGlobalData, skipped));
return !outOfMemory();
}
inline LIns*
addName(LirBuffer* lirbuf, LIns* ins, const char* name)
{
#ifdef NJ_VERBOSE
debug_only_stmt(lirbuf->names->addName(ins, name);)
#endif
return ins;
}
/*
* Insert the side exit and guard record for a compiled regexp. Most
* of the fields are not used. The important part is the regexp source
* and flags, which we use as the fragment lookup key.
*/
GuardRecord* insertGuard(LIns* loopLabel, const jschar* re_chars, size_t re_length)
{
if (loopLabel) {
lir->insBranch(LIR_j, NULL, loopLabel);
LirBuffer* lirbuf = fragment->lirbuf;
lir->ins1(LIR_plive, lirbuf->state);
lir->ins1(LIR_plive, lirbuf->param1);
}
Allocator &alloc = *JS_TRACE_MONITOR(cx).dataAlloc;
/* Must only create a VMSideExit; see StackFilter::getTops. */
size_t len = (sizeof(GuardRecord) +
sizeof(VMSideExit) +
(re_length-1) * sizeof(jschar));
GuardRecord* guard = (GuardRecord *) alloc.alloc(len);
VMSideExit* exit = (VMSideExit*)(guard+1);
guard->exit = exit;
guard->exit->target = fragment;
fragment->lastIns = lir->insGuard(LIR_x, NULL, guard);
// guard->profCount is calloc'd to zero
verbose_only(
guard->profGuardID = fragment->guardNumberer++;
guard->nextInFrag = fragment->guardsForFrag;
fragment->guardsForFrag = guard;
)
return guard;
}
public:
RegExpNativeCompiler(JSContext* cx, JSRegExp* re, CompilerState* cs, Fragment* fragment)
: tempAlloc(*JS_TRACE_MONITOR(cx).reTempAlloc), cx(cx),
re(re), cs(cs), fragment(fragment), lir(NULL), lirBufWriter(NULL),
lirbuf(new (tempAlloc) LirBuffer(tempAlloc))
{
fragment->lirbuf = lirbuf;
#ifdef DEBUG
LabelMap* labels = new (tempAlloc) LabelMap(tempAlloc, &LogController);
lirbuf->names = new (tempAlloc) LirNameMap(tempAlloc, labels);
#endif
}
~RegExpNativeCompiler() {
/* Purge the tempAlloc used during recording. */
tempAlloc.reset();
}
JSBool compile()
{
GuardRecord* guard = NULL;
const jschar* re_chars;
size_t re_length;
TraceMonitor* tm = &JS_TRACE_MONITOR(cx);
Assembler *assm = tm->assembler;
LIns* loopLabel = NULL;
if (outOfMemory() || OverfullJITCache(tm))
return JS_FALSE;
re->source->getCharsAndLength(re_chars, re_length);
/*
* If the regexp is too long nanojit will assert when we
* try to insert the guard record.
*/
if (re_length > 1024) {
re->flags |= JSREG_NOCOMPILE;
return JS_FALSE;
}
/* At this point we have an empty fragment. */
LirBuffer* lirbuf = fragment->lirbuf;
if (outOfMemory())
goto fail;
/* FIXME Use bug 463260 smart pointer when available. */
lir = lirBufWriter = new LirBufWriter(lirbuf, nanojit::AvmCore::config);
/* FIXME Use bug 463260 smart pointer when available. */
#ifdef NJ_VERBOSE
debug_only_stmt(
if (LogController.lcbits & LC_TMRegexp) {
lir = verbose_filter = new VerboseWriter(tempAlloc, lir, lirbuf->names,
&LogController);
}
)
#endif
#ifdef DEBUG
lir = validate_writer = new ValidateWriter(lir, "regexp writer pipeline");
#endif
/*
* Although we could just load REGlobalData::cpend from 'state', by
* passing it as a parameter, we avoid loading it every iteration.
*/
lir->ins0(LIR_start);
for (int i = 0; i < NumSavedRegs; ++i)
lir->insParam(i, 1);
#ifdef DEBUG
for (int i = 0; i < NumSavedRegs; ++i)
addName(lirbuf, lirbuf->savedRegs[i], regNames[Assembler::savedRegs[i]]);
#endif
lirbuf->state = state = addName(lirbuf, lir->insParam(0, 0), "state");
lirbuf->param1 = cpend = addName(lirbuf, lir->insParam(1, 0), "cpend");
loopLabel = lir->ins0(LIR_label);
// If profiling, record where the loop label is, so that the
// assembler can insert a frag-entry-counter increment at that
// point
verbose_only( if (LogController.lcbits & LC_FragProfile) {
NanoAssert(!fragment->loopLabel);
fragment->loopLabel = loopLabel;
})
start = addName(lirbuf,
lir->insLoad(LIR_ldp, state,
offsetof(REGlobalData, skipped)),
"start");
if (cs->flags & JSREG_STICKY) {
if (!compileSticky(cs->result, start))
goto fail;
} else {
if (!compileAnchoring(cs->result, start))
goto fail;
}
guard = insertGuard(loopLabel, re_chars, re_length);
if (outOfMemory())
goto fail;
/*
* Deep in the nanojit compiler, the StackFilter is trying to throw
* away stores above the VM interpreter/native stacks. We have no such
* stacks, so rely on the fact that lirbuf->sp and lirbuf->rp are null
* to ensure our stores are ignored.
*/
JS_ASSERT(!lirbuf->sp && !lirbuf->rp);
assm->compile(fragment, tempAlloc, /*optimize*/true
verbose_only(, lirbuf->names->labels));
if (assm->error() != nanojit::None)
goto fail;
delete lirBufWriter;
#ifdef DEBUG
delete validate_writer;
#endif
#ifdef NJ_VERBOSE
debug_only_stmt( if (LogController.lcbits & LC_TMRegexp)
delete verbose_filter; )
#endif
return JS_TRUE;
fail:
if (outOfMemory() || OverfullJITCache(tm)) {
delete lirBufWriter;
// recover profiling data from expiring Fragments
verbose_only(
REHashMap::Iter iter(*(tm->reFragments));
while (iter.next()) {
nanojit::Fragment* frag = iter.value();
FragProfiling_FragFinalizer(frag, tm);
}
)
FlushJITCache(cx);
} else {
if (!guard) insertGuard(loopLabel, re_chars, re_length);
re->flags |= JSREG_NOCOMPILE;
delete lirBufWriter;
}
#ifdef DEBUG
delete validate_writer;
#endif
#ifdef NJ_VERBOSE
debug_only_stmt( if (LogController.lcbits & LC_TMRegexp)
delete lir; )
#endif
return JS_FALSE;
}
};
/*
* Compile a regexp to native code in the given fragment.
*/
static inline JSBool
CompileRegExpToNative(JSContext* cx, JSRegExp* re, Fragment* fragment)
{
JSBool rv = JS_FALSE;
void* mark;
CompilerState state;
RegExpNativeCompiler rc(cx, re, &state, fragment);
JS_ASSERT(!fragment->code());
mark = JS_ARENA_MARK(&cx->tempPool);
if (!CompileRegExpToAST(cx, NULL, re->source, re->flags, state)) {
goto out;
}
rv = rc.compile();
out:
JS_ARENA_RELEASE(&cx->tempPool, mark);
return rv;
}
/* Function type for a compiled native regexp. */
typedef void *(FASTCALL *NativeRegExp)(REGlobalData*, const jschar *);
/*
* Return a compiled native regexp if one already exists or can be created
* now, or NULL otherwise.
*/
static NativeRegExp
GetNativeRegExp(JSContext* cx, JSRegExp* re)
{
const jschar *re_chars;
size_t re_length;
re->source->getCharsAndLength(re_chars, re_length);
Fragment *fragment = LookupNativeRegExp(cx, re->flags, re_chars, re_length);
JS_ASSERT(fragment);
if (!fragment->code() && fragment->recordAttempts == 0) {
fragment->recordAttempts++;
if (!CompileRegExpToNative(cx, re, fragment))
return NULL;
}
union { NIns *code; NativeRegExp func; } u;
u.code = fragment->code();
return u.func;
}
#endif
JSRegExp *
js_NewRegExp(JSContext *cx, JSTokenStream *ts,
JSString *str, uintN flags, JSBool flat)
{
JSRegExp *re;
void *mark;
CompilerState state;
size_t resize;
jsbytecode *endPC;
uintN i;
re = NULL;
mark = JS_ARENA_MARK(&cx->tempPool);
/*
* Parsing the string as flat is now expressed internally using
* a flag, so that we keep this information in the JSRegExp, but
* we keep the 'flat' parameter for now for compatibility.
*/
if (flat) flags |= JSREG_FLAT;
if (!CompileRegExpToAST(cx, ts, str, flags, state))
goto out;
resize = offsetof(JSRegExp, program) + state.progLength + 1;
re = (JSRegExp *) cx->malloc(resize);
if (!re)
goto out;
re->nrefs = 1;
JS_ASSERT(state.classBitmapsMem <= CLASS_BITMAPS_MEM_LIMIT);
re->classCount = state.classCount;
if (re->classCount) {
re->classList = (RECharSet *)
cx->malloc(re->classCount * sizeof(RECharSet));
if (!re->classList) {
js_DestroyRegExp(cx, re);
re = NULL;
goto out;
}
for (i = 0; i < re->classCount; i++)
re->classList[i].converted = JS_FALSE;
} else {
re->classList = NULL;
}
/* Compile the bytecode version. */
endPC = EmitREBytecode(&state, re, state.treeDepth, re->program, state.result);
if (!endPC) {
js_DestroyRegExp(cx, re);
re = NULL;
goto out;
}
*endPC++ = REOP_END;
/*
* Check whether size was overestimated and shrink using realloc.
* This is safe since no pointers to newly parsed regexp or its parts
* besides re exist here.
*/
if ((size_t)(endPC - re->program) != state.progLength + 1) {
JSRegExp *tmp;
JS_ASSERT((size_t)(endPC - re->program) < state.progLength + 1);
resize = offsetof(JSRegExp, program) + (endPC - re->program);
tmp = (JSRegExp *) cx->realloc(re, resize);
if (tmp)
re = tmp;
}
re->flags = flags;
re->parenCount = state.parenCount;
re->source = str;
out:
JS_ARENA_RELEASE(&cx->tempPool, mark);
return re;
}
JSRegExp *
js_NewRegExpOpt(JSContext *cx, JSString *str, JSString *opt, JSBool flat)
{
uintN flags;
const jschar *s;
size_t i, n;
char charBuf[2];
flags = 0;
if (opt) {
opt->getCharsAndLength(s, n);
for (i = 0; i < n; i++) {
#define HANDLE_FLAG(name) \
JS_BEGIN_MACRO \
if (flags & (name)) \
goto bad_flag; \
flags |= (name); \
JS_END_MACRO
switch (s[i]) {
case 'g':
HANDLE_FLAG(JSREG_GLOB);
break;
case 'i':
HANDLE_FLAG(JSREG_FOLD);
break;
case 'm':
HANDLE_FLAG(JSREG_MULTILINE);
break;
case 'y':
HANDLE_FLAG(JSREG_STICKY);
break;
default:
bad_flag:
charBuf[0] = (char)s[i];
charBuf[1] = '\0';
JS_ReportErrorFlagsAndNumber(cx, JSREPORT_ERROR,
js_GetErrorMessage, NULL,
JSMSG_BAD_REGEXP_FLAG, charBuf);
return NULL;
}
#undef HANDLE_FLAG
}
}
return js_NewRegExp(cx, NULL, str, flags, flat);
}
/*
* Save the current state of the match - the position in the input
* text as well as the position in the bytecode. The state of any
* parent expressions is also saved (preceding state).
* Contents of parenCount parentheses from parenIndex are also saved.
*/
static REBackTrackData *
PushBackTrackState(REGlobalData *gData, REOp op,
jsbytecode *target, REMatchState *x, const jschar *cp,
size_t parenIndex, size_t parenCount)
{
size_t i;
REBackTrackData *result =
(REBackTrackData *) ((char *)gData->backTrackSP + gData->cursz);
size_t sz = sizeof(REBackTrackData) +
gData->stateStackTop * sizeof(REProgState) +
parenCount * sizeof(RECapture);
ptrdiff_t btsize = gData->backTrackStackSize;
ptrdiff_t btincr = ((char *)result + sz) -
((char *)gData->backTrackStack + btsize);
re_debug("\tBT_Push: %lu,%lu",
(unsigned long) parenIndex, (unsigned long) parenCount);
if (btincr > 0) {
ptrdiff_t offset = (char *)result - (char *)gData->backTrackStack;
btincr = JS_ROUNDUP(btincr, btsize);
JS_ARENA_GROW_CAST(gData->backTrackStack, REBackTrackData *,
&gData->cx->regexpPool, btsize, btincr);
if (!gData->backTrackStack) {
js_ReportOutOfScriptQuota(gData->cx);
gData->ok = JS_FALSE;
return NULL;
}
gData->backTrackStackSize = btsize + btincr;
result = (REBackTrackData *) ((char *)gData->backTrackStack + offset);
}
gData->backTrackSP = result;
result->sz = gData->cursz;
gData->cursz = sz;
result->backtrack_op = op;
result->backtrack_pc = target;
result->cp = cp;
result->parenCount = parenCount;
result->parenIndex = parenIndex;
result->saveStateStackTop = gData->stateStackTop;
JS_ASSERT(gData->stateStackTop);
memcpy(result + 1, gData->stateStack,
sizeof(REProgState) * result->saveStateStackTop);
if (parenCount != 0) {
memcpy((char *)(result + 1) +
sizeof(REProgState) * result->saveStateStackTop,
&x->parens[parenIndex],
sizeof(RECapture) * parenCount);
for (i = 0; i != parenCount; i++)
x->parens[parenIndex + i].index = -1;
}
return result;
}
/*
* Consecutive literal characters.
*/
#if 0
static REMatchState *
FlatNMatcher(REGlobalData *gData, REMatchState *x, jschar *matchChars,
size_t length)
{
size_t i;
if (length > gData->cpend - x->cp)
return NULL;
for (i = 0; i != length; i++) {
if (matchChars[i] != x->cp[i])
return NULL;
}
x->cp += length;
return x;
}
#endif
static JS_ALWAYS_INLINE REMatchState *
FlatNIMatcher(REGlobalData *gData, REMatchState *x, jschar *matchChars,
size_t length)
{
size_t i;
JS_ASSERT(gData->cpend >= x->cp);
if (length > (size_t)(gData->cpend - x->cp))
return NULL;
for (i = 0; i != length; i++) {
if (upcase(matchChars[i]) != upcase(x->cp[i]))
return NULL;
}
x->cp += length;
return x;
}
/*
* 1. Evaluate DecimalEscape to obtain an EscapeValue E.
* 2. If E is not a character then go to step 6.
* 3. Let ch be E's character.
* 4. Let A be a one-element RECharSet containing the character ch.
* 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
* 6. E must be an integer. Let n be that integer.
* 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
* 8. Return an internal Matcher closure that takes two arguments, a State x
* and a Continuation c, and performs the following:
* 1. Let cap be x's captures internal array.
* 2. Let s be cap[n].
* 3. If s is undefined, then call c(x) and return its result.
* 4. Let e be x's endIndex.
* 5. Let len be s's length.
* 6. Let f be e+len.
* 7. If f>InputLength, return failure.
* 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
* such that Canonicalize(s[i]) is not the same character as
* Canonicalize(Input [e+i]), then return failure.
* 9. Let y be the State (f, cap).
* 10. Call c(y) and return its result.
*/
static REMatchState *
BackrefMatcher(REGlobalData *gData, REMatchState *x, size_t parenIndex)
{
size_t len, i;
const jschar *parenContent;
RECapture *cap = &x->parens[parenIndex];
if (cap->index == -1)
return x;
len = cap->length;
if (x->cp + len > gData->cpend)
return NULL;
parenContent = &gData->cpbegin[cap->index];
if (gData->regexp->flags & JSREG_FOLD) {
for (i = 0; i < len; i++) {
if (upcase(parenContent[i]) != upcase(x->cp[i]))
return NULL;
}
} else {
for (i = 0; i < len; i++) {
if (parenContent[i] != x->cp[i])
return NULL;
}
}
x->cp += len;
return x;
}
/* Add a single character to the RECharSet */
static void
AddCharacterToCharSet(RECharSet *cs, jschar c)
{
uintN byteIndex = (uintN)(c >> 3);
JS_ASSERT(c <= cs->length);
cs->u.bits[byteIndex] |= 1 << (c & 0x7);
}
/* Add a character range, c1 to c2 (inclusive) to the RECharSet */
static void
AddCharacterRangeToCharSet(RECharSet *cs, uintN c1, uintN c2)
{
uintN i;
uintN byteIndex1 = c1 >> 3;
uintN byteIndex2 = c2 >> 3;
JS_ASSERT(c2 <= cs->length && c1 <= c2);
c1 &= 0x7;
c2 &= 0x7;
if (byteIndex1 == byteIndex2) {
cs->u.bits[byteIndex1] |= ((uint8)0xFF >> (7 - (c2 - c1))) << c1;
} else {
cs->u.bits[byteIndex1] |= 0xFF << c1;
for (i = byteIndex1 + 1; i < byteIndex2; i++)
cs->u.bits[i] = 0xFF;
cs->u.bits[byteIndex2] |= (uint8)0xFF >> (7 - c2);
}
}
struct CharacterRange {
jschar start;
jschar end;
};
/*
* The following characters are taken from the ECMA-262 standard, section 7.2
* and 7.3, and the Unicode 3 standard, Table 6-1.
*/
static const CharacterRange WhiteSpaceRanges[] = {
/* TAB, LF, VT, FF, CR */
{ 0x0009, 0x000D },
/* SPACE */
{ 0x0020, 0x0020 },
/* NO-BREAK SPACE */
{ 0x00A0, 0x00A0 },
/*
* EN QUAD, EM QUAD, EN SPACE, EM SPACE, THREE-PER-EM SPACE, FOUR-PER-EM
* SPACE, SIX-PER-EM SPACE, FIGURE SPACE, PUNCTUATION SPACE, THIN SPACE,
* HAIR SPACE, ZERO WIDTH SPACE
*/
{ 0x2000, 0x200B },
/* LS, PS */
{ 0x2028, 0x2029 },
/* NARROW NO-BREAK SPACE */
{ 0x202F, 0x202F },
/* IDEOGRAPHIC SPACE */
{ 0x3000, 0x3000 }
};
/* ECMA-262 standard, section 15.10.2.6. */
static const CharacterRange WordRanges[] = {
{ jschar('0'), jschar('9') },
{ jschar('A'), jschar('Z') },
{ jschar('_'), jschar('_') },
{ jschar('a'), jschar('z') }
};
static void
AddCharacterRanges(RECharSet *charSet,
const CharacterRange *range,
const CharacterRange *end)
{
for (; range < end; ++range)
AddCharacterRangeToCharSet(charSet, range->start, range->end);
}
static void
AddInvertedCharacterRanges(RECharSet *charSet,
const CharacterRange *range,
const CharacterRange *end)
{
uint16 previous = 0;
for (; range < end; ++range) {
AddCharacterRangeToCharSet(charSet, previous, range->start - 1);
previous = range->end + 1;
}
AddCharacterRangeToCharSet(charSet, previous, charSet->length);
}
/* Compile the source of the class into a RECharSet */
static JSBool
ProcessCharSet(JSContext *cx, JSRegExp *re, RECharSet *charSet)
{
const jschar *src, *end;
JSBool inRange = JS_FALSE;
jschar rangeStart = 0;
uintN byteLength, n;
jschar c, thisCh;
intN nDigits, i;
JS_ASSERT(!charSet->converted);
/*
* Assert that startIndex and length points to chars inside [] inside
* source string.
*/
JS_ASSERT(1 <= charSet->u.src.startIndex);
JS_ASSERT(charSet->u.src.startIndex < re->source->length());
JS_ASSERT(charSet->u.src.length <= re->source->length()
- 1 - charSet->u.src.startIndex);
charSet->converted = JS_TRUE;
src = re->source->chars() + charSet->u.src.startIndex;
end = src + charSet->u.src.length;
JS_ASSERT(src[-1] == '[');
JS_ASSERT(end[0] == ']');
byteLength = (charSet->length >> 3) + 1;
charSet->u.bits = (uint8 *)cx->malloc(byteLength);
if (!charSet->u.bits) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
memset(charSet->u.bits, 0, byteLength);
if (src == end)
return JS_TRUE;
if (*src == '^') {
JS_ASSERT(charSet->sense == JS_FALSE);
++src;
} else {
JS_ASSERT(charSet->sense == JS_TRUE);
}
while (src != end) {
switch (*src) {
case '\\':
++src;
c = *src++;
switch (c) {
case 'b':
thisCh = 0x8;
break;
case 'f':
thisCh = 0xC;
break;
case 'n':
thisCh = 0xA;
break;
case 'r':
thisCh = 0xD;
break;
case 't':
thisCh = 0x9;
break;
case 'v':
thisCh = 0xB;
break;
case 'c':
if (src < end && JS_ISWORD(*src)) {
thisCh = (jschar)(*src++ & 0x1F);
} else {
--src;
thisCh = '\\';
}
break;
case 'x':
nDigits = 2;
goto lexHex;
case 'u':
nDigits = 4;
lexHex:
n = 0;
for (i = 0; (i < nDigits) && (src < end); i++) {
uintN digit;
c = *src++;
if (!isASCIIHexDigit(c, &digit)) {
/*
* Back off to accepting the original '\'
* as a literal
*/
src -= i + 1;
n = '\\';
break;
}
n = (n << 4) | digit;
}
thisCh = (jschar)n;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
/*
* This is a non-ECMA extension - decimal escapes (in this
* case, octal!) are supposed to be an error inside class
* ranges, but supported here for backwards compatibility.
*/
n = JS7_UNDEC(c);
c = *src;
if ('0' <= c && c <= '7') {
src++;
n = 8 * n + JS7_UNDEC(c);
c = *src;
if ('0' <= c && c <= '7') {
src++;
i = 8 * n + JS7_UNDEC(c);
if (i <= 0377)
n = i;
else
src--;
}
}
thisCh = (jschar)n;
break;
case 'd':
AddCharacterRangeToCharSet(charSet, '0', '9');
continue; /* don't need range processing */
case 'D':
AddCharacterRangeToCharSet(charSet, 0, '0' - 1);
AddCharacterRangeToCharSet(charSet,
(jschar)('9' + 1),
(jschar)charSet->length);
continue;
case 's':
AddCharacterRanges(charSet, WhiteSpaceRanges,
WhiteSpaceRanges + JS_ARRAY_LENGTH(WhiteSpaceRanges));
continue;
case 'S':
AddInvertedCharacterRanges(charSet, WhiteSpaceRanges,
WhiteSpaceRanges + JS_ARRAY_LENGTH(WhiteSpaceRanges));
continue;
case 'w':
AddCharacterRanges(charSet, WordRanges,
WordRanges + JS_ARRAY_LENGTH(WordRanges));
continue;
case 'W':
AddInvertedCharacterRanges(charSet, WordRanges,
WordRanges + JS_ARRAY_LENGTH(WordRanges));
continue;
default:
thisCh = c;
break;
}
break;
default:
thisCh = *src++;
break;
}
if (inRange) {
if (re->flags & JSREG_FOLD) {
int i;
JS_ASSERT(rangeStart <= thisCh);
for (i = rangeStart; i <= thisCh; i++) {
jschar uch, dch;
AddCharacterToCharSet(charSet, i);
uch = upcase(i);
dch = inverse_upcase(i);
if (i != uch)
AddCharacterToCharSet(charSet, uch);
if (i != dch)
AddCharacterToCharSet(charSet, dch);
}
} else {
AddCharacterRangeToCharSet(charSet, rangeStart, thisCh);
}
inRange = JS_FALSE;
} else {
if (re->flags & JSREG_FOLD) {
AddCharacterToCharSet(charSet, upcase(thisCh));
AddCharacterToCharSet(charSet, inverse_upcase(thisCh));
} else {
AddCharacterToCharSet(charSet, thisCh);
}
if (src < end - 1) {
if (*src == '-') {
++src;
inRange = JS_TRUE;
rangeStart = thisCh;
}
}
}
}
return JS_TRUE;
}
static inline JSBool
MatcherProcessCharSet(REGlobalData *gData, RECharSet *charSet) {
JSBool rv = ProcessCharSet(gData->cx, gData->regexp, charSet);
if (!rv) gData->ok = JS_FALSE;
return rv;
}
void
js_DestroyRegExp(JSContext *cx, JSRegExp *re)
{
if (JS_ATOMIC_DECREMENT(&re->nrefs) == 0) {
if (re->classList) {
uintN i;
for (i = 0; i < re->classCount; i++) {
if (re->classList[i].converted)
cx->free(re->classList[i].u.bits);
re->classList[i].u.bits = NULL;
}
cx->free(re->classList);
}
cx->free(re);
}
}
static JSBool
ReallocStateStack(REGlobalData *gData)
{
size_t limit = gData->stateStackLimit;
size_t sz = sizeof(REProgState) * limit;
JS_ARENA_GROW_CAST(gData->stateStack, REProgState *,
&gData->cx->regexpPool, sz, sz);
if (!gData->stateStack) {
js_ReportOutOfScriptQuota(gData->cx);
gData->ok = JS_FALSE;
return JS_FALSE;
}
gData->stateStackLimit = limit + limit;
return JS_TRUE;
}
#define PUSH_STATE_STACK(data) \
JS_BEGIN_MACRO \
++(data)->stateStackTop; \
if ((data)->stateStackTop == (data)->stateStackLimit && \
!ReallocStateStack((data))) { \
return NULL; \
} \
JS_END_MACRO
/*
* Apply the current op against the given input to see if it's going to match
* or fail. Return false if we don't get a match, true if we do. If updatecp is
* true, then update the current state's cp. Always update startpc to the next
* op.
*/
static JS_ALWAYS_INLINE REMatchState *
SimpleMatch(REGlobalData *gData, REMatchState *x, REOp op,
jsbytecode **startpc, JSBool updatecp)
{
REMatchState *result = NULL;
jschar matchCh;
size_t parenIndex;
size_t offset, length, index;
jsbytecode *pc = *startpc; /* pc has already been incremented past op */
jschar *source;
const jschar *startcp = x->cp;
jschar ch;
RECharSet *charSet;
#ifdef REGEXP_DEBUG
const char *opname = reop_names[op];
re_debug("\n%06d: %*s%s", pc - gData->regexp->program,
gData->stateStackTop * 2, "", opname);
#endif
switch (op) {
case REOP_EMPTY:
result = x;
break;
case REOP_BOL:
if (x->cp != gData->cpbegin) {
if (!gData->cx->regExpStatics.multiline &&
!(gData->regexp->flags & JSREG_MULTILINE)) {
break;
}
if (!RE_IS_LINE_TERM(x->cp[-1]))
break;
}
result = x;
break;
case REOP_EOL:
if (x->cp != gData->cpend) {
if (!gData->cx->regExpStatics.multiline &&
!(gData->regexp->flags & JSREG_MULTILINE)) {
break;
}
if (!RE_IS_LINE_TERM(*x->cp))
break;
}
result = x;
break;
case REOP_WBDRY:
if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
!(x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
result = x;
}
break;
case REOP_WNONBDRY:
if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
(x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
result = x;
}
break;
case REOP_DOT:
if (x->cp != gData->cpend && !RE_IS_LINE_TERM(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_DIGIT:
if (x->cp != gData->cpend && JS7_ISDEC(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_NONDIGIT:
if (x->cp != gData->cpend && !JS7_ISDEC(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_ALNUM:
if (x->cp != gData->cpend && JS_ISWORD(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_NONALNUM:
if (x->cp != gData->cpend && !JS_ISWORD(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_SPACE:
if (x->cp != gData->cpend && JS_ISSPACE(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_NONSPACE:
if (x->cp != gData->cpend && !JS_ISSPACE(*x->cp)) {
result = x;
result->cp++;
}
break;
case REOP_BACKREF:
pc = ReadCompactIndex(pc, &parenIndex);
JS_ASSERT(parenIndex < gData->regexp->parenCount);
result = BackrefMatcher(gData, x, parenIndex);
break;
case REOP_FLAT:
pc = ReadCompactIndex(pc, &offset);
JS_ASSERT(offset < gData->regexp->source->length());
pc = ReadCompactIndex(pc, &length);
JS_ASSERT(1 <= length);
JS_ASSERT(length <= gData->regexp->source->length() - offset);