Skip to content
Permalink
3904e5573a
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
872 lines (751 sloc) 24.1 KB
package main
/*
#cgo darwin CFLAGS: -I/usr/local/include/postgresql/internal/ -I/usr/local/include/postgresql/server
#cgo linux CFLAGS: -I/usr/include/postgresql/13/server -I/usr/include/postgresql/internal
#cgo linux LDFLAGS: -Wl,-unresolved-symbols=ignore-all
#cgo darwin LDFLAGS: -Wl,-undefined,dynamic_lookup
#include "ch_helpers.h"
*/
import "C"
import (
"fmt"
"strings"
"unsafe"
)
type deparseCtx struct {
//global planner state
root *C.PlannerInfo
// the foreign relation we are planning for
// foreignrel *C.RelOptInfo
// the underlying scan relation. Same as
// foreignrel, when that represents a join or
// a base relation.
scanrel *C.RelOptInfo
// output buffer
buf *strings.Builder
// exprs that will become remote Params
// not supported yet
// List **params_list;
}
// if args order changes btwn functions
// deparse function should take care of that
var mapPGfuncToCH = map[string]string{
"lower": "lower",
"upper": "upper",
"replace": "replaceAll",
"abs": "abs",
"round": "round",
"substr": "substring",
"sum": "sum",
"avg": "avg",
"max": "max",
"min": "min",
"count": "count",
"date_part": "__placeholder__",
"timestamp": "toDateTime",
}
var tsDurations = []string{"'month'", "'year'", "'minute'", "'second'", "'hour'"}
func appendConditions(exprs *C.List, ctx *deparseCtx) {
var expr *C.Expr
var first = true
buf := ctx.buf
for cell := C.list_head(exprs); cell != nil; cell = C.wrapper_lnext(exprs, cell) {
item := (unsafe.Pointer(C.wrapper_lfirst(cell)))
// if cell is of type RestrictInfo, get expr from its `clause`
if C.wrapper_nodeTag((*C.Node)(item)) == C.T_RestrictInfo {
ri := (*C.RestrictInfo)(item)
expr = (*C.Expr)(unsafe.Pointer(ri.clause))
} else {
expr = (*C.Expr)(item)
}
if !first {
buf.WriteString(" AND ")
}
buf.WriteString("(")
deparseExpr(expr, ctx)
buf.WriteString(")")
first = false
}
}
// deparseExpr receives different expr types
// and build the string buffer (which gets passed to CH)
// see primenodes.h for references on these types
func deparseExpr(expr *C.Expr, ctx *deparseCtx) {
node := (*C.Node)(unsafe.Pointer(expr))
if node == nil {
return
}
switch C.wrapper_nodeTag(node) {
case C.T_Const:
deparseConst((*C.Const)(unsafe.Pointer(node)), ctx)
case C.T_Var:
deparseVar((*C.Var)(unsafe.Pointer(node)), ctx)
case C.T_OpExpr:
deparseOpExpr((*C.OpExpr)(unsafe.Pointer(node)), ctx)
case C.T_FuncExpr:
deparseFuncExpr((*C.FuncExpr)(unsafe.Pointer(node)), ctx)
case C.T_ScalarArrayOpExpr:
deparseScalarArrayOpExpr((*C.ScalarArrayOpExpr)(unsafe.Pointer(node)), ctx)
case C.T_RelabelType:
deparseRelabelType((*C.RelabelType)(unsafe.Pointer(node)), ctx)
case C.T_BoolExpr:
deparseBoolExpr((*C.BoolExpr)(unsafe.Pointer(node)), ctx)
case C.T_NullTest:
deparseNullTest((*C.NullTest)(unsafe.Pointer(node)), ctx)
case C.T_ArrayExpr:
deparseArrayExpr((*C.ArrayExpr)(unsafe.Pointer(node)), ctx)
case C.T_CaseExpr:
deparseCaseExpr((*C.CaseExpr)(unsafe.Pointer(node)), ctx)
case C.T_CoalesceExpr:
deparseCoalesceExpr((*C.CoalesceExpr)(unsafe.Pointer(node)), ctx)
case C.T_NullIfExpr:
deparseNullIfExpr((*C.NullIfExpr)(unsafe.Pointer(node)), ctx)
case C.T_Aggref:
deparseAggref((*C.Aggref)(unsafe.Pointer(node)), ctx)
default:
errLogger.Printf("unsupported expression type %v to deparse", int(C.wrapper_nodeTag(node)))
}
}
// deparseOpExpr: for an operator invocation
// `=`, `>`, `<`, `<>` and so forth
// mapping to CH function is done on best effort basis
// we try to report operators that are not available on CH
// more operator exceptions can be added
func deparseOpExpr(node *C.OpExpr, ctx *deparseCtx) {
var (
tuple C.HeapTuple
form C.Form_pg_operator
oprkind C.char
opname string
arg *C.ListCell
)
buf := ctx.buf
/* get the type's output function from system cache*/
tuple = C.wrapper_SearchSysCache1(C.OPEROID, C.wrapper_ObjectIdGetDatum(node.opno))
if bool(!C.wrapper_HeapTupleIsValid(tuple)) {
errLogger.Printf("cache lookup failed for operator %v", node.opno)
}
// we convert the HeapTuple pointer to pg_form_operator struct
form = (C.Form_pg_operator)(unsafe.Pointer(C.wrapper_GETSTRUCT(tuple)))
oprkind = form.oprkind
// make sure that length of args passed to operator are correct
opname = C.GoString(&form.oprname.data[0])
// fmt.Println("oprkind ", oprkind, int(C.list_length(node.args)), " opname ", opname)
if !((oprkind == C.char('r') && C.list_length(node.args) == C.int(1)) ||
(oprkind == C.char('l') && C.list_length(node.args) == C.int(1)) ||
(oprkind == C.char('b') && C.list_length(node.args) == C.int(2))) {
errLogger.Printf("incorrect args length to operator %v", node.opno)
}
buf.WriteString("(")
// deparse left operand
if oprkind == C.char('r') || oprkind == C.char('b') {
arg = C.list_head(node.args)
deparseExpr((*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(arg))), ctx)
buf.WriteString(" ")
}
// deparse operator name
// keeping it simple now
// no overriding or remapping operator name if catalog namespace is different
opname = C.GoString(&form.oprname.data[0])
// only considering name PG_CATALOG_NAMESPACE for form.oprnamespace
if opname == "~~" {
buf.WriteString("LIKE")
} else if opname == "!~~" {
buf.WriteString("NOT LIKE")
} else if opname == "~~*" || opname == "!~~*" || opname == "~" || opname == "!~" || opname == "~*" || opname == "!~*" {
errLogger.Printf("operator is not supported")
} else {
buf.WriteString(opname)
}
//deparse right operand
if oprkind == C.char('l') || oprkind == C.char('b') {
arg = C.list_tail(node.args)
buf.WriteString(" ")
deparseExpr((*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(arg))), ctx)
}
buf.WriteString(")")
C.ReleaseSysCache(tuple)
}
// deparseVar: node representing a table column
// we already have a deparse_column_ref which is used here
func deparseVar(node *C.Var, ctx *deparseCtx) {
var (
column C.StringInfoData
relIds C.Relids
varlevelsup C.Index
)
C.initStringInfo(&column)
relIds = ctx.scanrel.relids
varlevelsup = node.varlevelsup
buf := ctx.buf
if bool(C.bms_is_member(C.int(node.varno), relIds)) && C.uint(varlevelsup) == C.uint(0) {
//Var belongs to foreign tabl
C.deparse_column_ref(&column, C.int(node.varno), C.int(node.varattno), ctx.root)
} else {
// no param support
errLogger.Printf("no params support yet")
}
buf.WriteString(strings.TrimSpace((C.GoString(column.data))))
}
// deparseConst for all different constant types
// see get_const_expr() in ruleutils.c for ideas
func deparseConst(node *C.Const, ctx *deparseCtx) {
var (
typeoutput C.Oid
typeIsVarLen C.bool
actualValue *C.char
)
buf := ctx.buf
if bool(node.constisnull) {
buf.WriteString("NULL")
return
}
// extract type info of the constant into the typeoutput and typeIsVarLen
C.getTypeOutputInfo(node.consttype, &typeoutput, &typeIsVarLen)
// Note that we do the type conversions on best-effort basis here.
// if there's a type that doesn't get handled by default case
// as in its string-repr isn't a valid expr on CH side
// that will come up as error
// but we should fix them retroactively
switch node.consttype {
case C.INT2OID:
fallthrough
case C.INT4OID:
fallthrough
case C.INT8OID:
fallthrough
case C.OIDOID:
fallthrough
case C.FLOAT4OID:
fallthrough
case C.FLOAT8OID:
fallthrough
case C.NUMERICOID:
actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
// if special values like NaN quote them
// numbers, decimals with exponents can be passed as such
// strspn returns the length of the initial portion of str1 which consists only of characters that are part of str2.
if C.strspn(actualValue, C.CString("0123456789+-eE.")) == C.strlen(actualValue) {
// no modifications to `-` or `+` signs
buf.WriteString(C.GoString(actualValue))
} else {
// either 'NaN' or 'infinity' ??
buf.WriteString(fmt.Sprintf("'%s'", C.GoString(actualValue)))
}
// handle booleans, binary values, bits
case C.BITOID:
case C.VARBITOID:
case C.BYTEAOID:
// there is no binary types in CH
// everything should map to String/FixedString
// the string for BYTEA always seems to be in the format "\\x##"
// where # is a hex digit, Even if the value passed in is
// 'hi'::bytea we will receive "\x6869". Making this assumption
// allows us to quickly convert postgres escaped strings to sqlite
// ones for comparison
// TODO: find appropriate parsing scheme for passing hex values
errLogger.Println("binary type deparse not supported")
// actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
// buf.WriteString(C.GoString(actualValue))
// scalaryArrayExpr are handeled in parseConstArrays
// the cases when these blocks are executed are different
// mostly when we've x = '{1, 2, 3}' or x = ARRAY[1, 2] etc.
case C.INT2ARRAYOID:
fallthrough
case C.INT4ARRAYOID:
fallthrough
case C.INT8ARRAYOID:
fallthrough
case C.OIDARRAYOID:
fallthrough
case C.FLOAT4ARRAYOID:
fallthrough
case C.FLOAT8ARRAYOID:
fallthrough
case C.NUMERICARRAYOID:
// extract output values
// remove leading and trailing '}' and '{'
actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
value := C.GoString(actualValue)
value = strings.TrimLeft(value, "{")
value = strings.TrimRight(value, "}")
// we're considering only these numeric arrays
// so no escaping for them
// values are already concat with ',' so just print them
buf.WriteString("[")
buf.WriteString(value)
buf.WriteString("]")
case C.TEXTARRAYOID:
fallthrough
case C.VARCHARARRAYOID:
// extract output values
// remove leading and trailing '}' and '{'
actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
value := C.GoString(actualValue)
value = strings.TrimLeft(value, "{")
value = strings.TrimRight(value, "}")
// quote every item of passed array (after removing'{' and '}')
// standard lib doesn't provide a way for quoting with single quotes
separated := strings.Split(value, ",")
buf.WriteString("[")
for i, item := range separated {
item = fmt.Sprintf("'%s'", item)
if i != 0 {
buf.WriteString(",")
}
buf.WriteString(item)
}
buf.WriteString("]")
default:
// string literals and any other types will be treated as string and escaped
actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
// we need to check escaping here
buf.WriteString(fmt.Sprintf("'%s'", C.GoString(actualValue)))
}
}
// deparseFuncExpr: for a function call
// we use a hardcoded map to look for appropriate CH func name
func deparseFuncExpr(node *C.FuncExpr, ctx *deparseCtx) {
var (
tuple C.HeapTuple
form C.Form_pg_proc
procname string
first = true
)
buf := ctx.buf
/* get the type's output function from system cache*/
tuple = C.wrapper_SearchSysCache1(C.PROCOID, C.wrapper_ObjectIdGetDatum(node.funcid))
if bool(!C.wrapper_HeapTupleIsValid(tuple)) {
errLogger.Printf("cache lookup failed for function %v", node.funcid)
}
// we convert the HeapTuple pointer to pg_form_proc struct
form = (C.Form_pg_proc)(unsafe.Pointer(C.wrapper_GETSTRUCT(tuple)))
// extract function name
// see NameStr for equiv macro in PG source
procname = C.GoString(&form.proname.data[0])
// map PG func to CH equivalent
modprocname, ok := mapPGfuncToCH[procname]
if !ok {
errLogger.Printf("no support for %v", procname)
}
switch modprocname {
case "__placeholder__":
buf.WriteString(modprocname)
default:
buf.WriteString(fmt.Sprintf("%s(", modprocname))
}
// add arguments
for cell := C.list_head(node.args); cell != nil; cell = C.wrapper_lnext(node.args, cell) {
if !first {
buf.WriteString(", ")
}
// assuming that we always get a list of `Expr`
// not RestrictInfo's
expr := (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(cell)))
deparseExpr(expr, ctx)
first = false
}
if modprocname == "__placeholder__" {
// In short : we are mapping `date_part("month", timestamp(xx))` => `toMonth(toDateTime(xx))`
// if we get a `date_part`
// pick the argument for this function
// and map to the appropriate CH function like toMonth, toYear etc.
var (
index = -1
matched string
funcName string
)
finalizedStr := buf.String()
// split the original formatted buffer into two , there should always be two splits only
splitted := strings.Split(finalizedStr, "__placeholder__")
pre, funcStr := splitted[0], splitted[1]
for _, v := range tsDurations {
index = strings.Index(funcStr, v)
if index != -1 {
matched = v
break
}
}
// if no match found in available TS types
if index == -1 {
errLogger.Println("Unsupported extract operator for timestamp")
}
// get actual argument to date_part function
// assuming date_part is always a 2 arg function try to remove the operator string (i.e map `month,` => ``)
arg := strings.TrimSpace(strings.Replace(funcStr, matched+",", "", -1))
switch matched {
case "'month'":
funcName = "toMonth"
case "'year'":
funcName = "toYear"
case "'hour'":
funcName = "toHour"
case "'minute'":
funcName = "toMinute"
case "'second'":
funcName = "toSecond"
}
// reset buffer
buf.Reset()
// rewrite with new formatted function
buf.WriteString(pre + fmt.Sprintf("%s(%s", funcName, arg))
}
buf.WriteString(")")
C.ReleaseSysCache(tuple)
}
// ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
func deparseScalarArrayOpExpr(node *C.ScalarArrayOpExpr, ctx *deparseCtx) {
var (
tuple C.HeapTuple
form C.Form_pg_operator
opname string
arg1 *C.Expr
arg2 *C.Expr
)
buf := ctx.buf
/* get the type's output function from system cache*/
tuple = C.wrapper_SearchSysCache1(C.OPEROID, C.wrapper_ObjectIdGetDatum(node.opno))
if bool(!C.wrapper_HeapTupleIsValid(tuple)) {
errLogger.Printf("cache lookup failed for operator %v", node.opno)
}
// we convert the HeapTuple pointer to pg_form_operator struct
form = (C.Form_pg_operator)(unsafe.Pointer(C.wrapper_GETSTRUCT(tuple)))
if C.list_length(node.args) != C.int(2) {
errLogger.Printf("Incorrect arg length for scalar op expr")
}
arg1 = (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(C.list_head(node.args))))
arg2 = (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(C.wrapper_lnext(node.args, C.list_head(node.args)))))
// deparse left operand
deparseExpr(arg1, ctx)
buf.WriteString(" ")
opname = C.GoString(&form.oprname.data[0])
// add opname
if opname == "<>" {
buf.WriteString(" NOT ")
} else {
// every other time the opname is going to be `=`
// IN operator equates to `=`
// buf.WriteString(fmt.Sprintf(" %s ", opname))
}
buf.WriteString("IN (")
//add second operand
switch C.wrapper_nodeTag((*C.Node)(unsafe.Pointer(arg2))) {
case C.T_Const:
// this means we have arrays of constants
c := (*C.Const)(unsafe.Pointer(arg2))
deparseConstArray(c, ctx)
default:
// otherwise parse expressions
deparseExpr(arg2, ctx)
}
buf.WriteString(")")
C.ReleaseSysCache(tuple)
}
// RelabelType represents a "dummy" type coercion between two binary-compatible datatypes
func deparseRelabelType(node *C.RelabelType, ctx *deparseCtx) {
deparseExpr(node.arg, ctx)
}
// BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
// arguments are given as a List. For NOT, of course the list
// must always have exactly one element. For AND and OR, there can be two
// or more arguments.
// args here are flattened into a list
func deparseBoolExpr(node *C.BoolExpr, ctx *deparseCtx) {
var (
op string
buf = ctx.buf
)
switch node.boolop {
case C.AND_EXPR:
op = "AND"
case C.OR_EXPR:
op = "OR"
case C.NOT_EXPR:
op = "NOT"
}
buf.WriteString(fmt.Sprintf(" (%s", op))
// add arguments
for cell := C.list_head(node.args); cell != nil; cell = C.wrapper_lnext(node.args, cell) {
expr := (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(cell)))
deparseExpr(expr, ctx)
}
}
// deparse IS NULL , IS NOT NULL
func deparseNullTest(node *C.NullTest, ctx *deparseCtx) {
var (
op string
buf = ctx.buf
)
switch node.nulltesttype {
case C.IS_NULL:
op = "isNull"
case C.IS_NOT_NULL:
op = "isNotNull"
default:
errLogger.Printf("unknown null test type")
}
buf.WriteString(fmt.Sprintf("%s(", op))
deparseExpr(node.arg, ctx)
buf.WriteString(")")
}
// deparse ARRAY[...]
// note that in case of multidimensional arrays
// elements will be again ArrayExpr
func deparseArrayExpr(node *C.ArrayExpr, ctx *deparseCtx) {
var (
buf = ctx.buf
first = true
)
// construct CH arrays as [...]
buf.WriteString("[")
for cell := C.list_head(node.elements); cell != nil; cell = C.wrapper_lnext(node.elements, cell) {
if !first {
buf.WriteString(", ")
}
expr := (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(cell)))
deparseExpr(expr, ctx)
first = false
}
buf.WriteString("]")
}
// ADD when needed
func deparseCaseExpr(node *C.CaseExpr, ctx *deparseCtx) {
errLogger.Printf("no support yet")
}
func deparseCoalesceExpr(node *C.CoalesceExpr, ctx *deparseCtx) {
var (
buf = ctx.buf
first = true
)
buf.WriteString("coalesce(")
// add arguments
for cell := C.list_head(node.args); cell != nil; cell = C.wrapper_lnext(node.args, cell) {
if !first {
buf.WriteString(", ")
}
expr := (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(cell)))
deparseExpr(expr, ctx)
first = false
}
buf.WriteString(")")
}
// NULLIF expression
func deparseNullIfExpr(node *C.NullIfExpr, ctx *deparseCtx) {
var (
buf = ctx.buf
)
buf.WriteString("nullIf(")
// get first and second elements from the args list
expr := (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(C.list_head(node.args))))
deparseExpr(expr, ctx)
expr = (*C.Expr)(unsafe.Pointer(C.wrapper_lfirst(C.list_tail(node.args))))
deparseExpr(expr, ctx)
buf.WriteString(")")
}
// see nodes.h for details on Aggref struct
// and pg_aggregate.h for details on various Aggregate types
func deparseAggref(node *C.Aggref, ctx *deparseCtx) {
var (
buf = ctx.buf
tuple C.HeapTuple
form C.Form_pg_proc
procname string
tle *C.TargetEntry
first = true
)
if node.aggsplit != C.AGGSPLIT_SIMPLE {
errLogger.Println("only basic non-split aggregation are supported")
}
if node.aggvariadic != C.bool(false) {
errLogger.Println("no variadic arguments support yet")
}
// get function name from OID of function name
tuple = C.wrapper_SearchSysCache1(C.PROCOID, C.wrapper_ObjectIdGetDatum(node.aggfnoid))
if bool(!C.wrapper_HeapTupleIsValid(tuple)) {
errLogger.Printf("cache lookup failed for function %v", node.aggfnoid)
}
// we convert the HeapTuple pointer to pg_form_proc struct
form = (C.Form_pg_proc)(unsafe.Pointer(C.wrapper_GETSTRUCT(tuple)))
// PG_CATALOG_NAMESPACE = 11
// we should check namespace for functions but constants are not available on CGO side
// if form.pronamespace != 11 {
// // otherwise we'll need to append schema name with function name
// errLogger.Println("only pg_catalog namespace for functions is supported")
// }
// extract function name
// see NameStr for equiv macro in PG source
procname = C.GoString(&form.proname.data[0])
// map PG func to CH equivalent
name, ok := mapPGfuncToCH[procname]
if !ok {
errLogger.Printf("no support for %v", procname)
}
buf.WriteString(fmt.Sprintf("%s(", name))
C.ReleaseSysCache(tuple)
if node.aggdistinct != nil {
errLogger.Println("DISTINCT with GROUP BY not supported yet")
}
// AGGKIND_NORMAL = 'n' see pg_aggregate.h (#defined)
if node.aggkind != C.char('n') {
errLogger.Println("ordered-set aggregates are not supported")
}
if node.aggstar == C.bool(true) {
// '*' as argument
buf.WriteString("*")
} else {
// extract arguments from list of node.args
for cell := C.list_head(node.args); cell != nil; cell = C.wrapper_lnext(node.args, cell) {
// get the targetEntry and get the expr
tle = (*C.TargetEntry)(unsafe.Pointer(C.wrapper_lfirst(cell)))
expr := (*C.Expr)(unsafe.Pointer(tle.expr))
if tle.resjunk {
continue
}
if !first {
buf.WriteString(", ")
}
deparseExpr(expr, ctx)
first = false
}
}
// TODO: add order by support if passed from prev stages
if node.aggorder != nil {
// will need to implement dpearseAggOrder/appendAggOrderBy
}
if node.aggfilter != nil {
errLogger.Println("no FILTER ( WHERE .. ) support yet")
}
buf.WriteString(")")
}
// we need this because const arrays are being represented
// as '{1, 2, 3...}' format in PG
// which we need to parse into proper arrays of CH (applicable for strings or numbers)
// this is almost same as deparseConst therefore
func deparseConstArray(node *C.Const, ctx *deparseCtx) {
var (
typeoutput C.Oid
typeIsVarLen C.bool
actualValue *C.char
)
buf := ctx.buf
if bool(node.constisnull) {
buf.WriteString(" NULL ")
return
}
// extract type info of the constant into the typeoutput and typeIsVarLen
C.getTypeOutputInfo(node.consttype, &typeoutput, &typeIsVarLen)
// extract output values
// remove leading and trailing '}' and '{'
actualValue = C.OidOutputFunctionCall(typeoutput, node.constvalue)
value := C.GoString(actualValue)
value = strings.TrimLeft(value, "{")
value = strings.TrimRight(value, "}")
switch node.consttype {
case C.INT2ARRAYOID:
fallthrough
case C.INT4ARRAYOID:
fallthrough
case C.INT8ARRAYOID:
fallthrough
case C.OIDARRAYOID:
fallthrough
case C.FLOAT4ARRAYOID:
fallthrough
case C.FLOAT8ARRAYOID:
fallthrough
case C.NUMERICARRAYOID:
// we're considering only these numeric arrays
// so no escaping for them
// values are already concat with ',' so just print them
buf.WriteString(value)
default:
// otherwise quote every item of passed array (after removing'{' and '}')
// standard lib doesn't provide a way for quoting with single quotes
separated := strings.Split(value, ",")
for i, item := range separated {
item = fmt.Sprintf("'%s'", item)
if i != 0 {
buf.WriteString(",")
}
buf.WriteString(item)
}
}
}
// extract TargetEntry from TargetList
// parse the exprs which in turn have Vars present is TargetEntry
// retrievedAttrs is the list of continuously increasing integers starting
// from 1. It has same number of entries as tlist.
func deparseExplicitTargetList(targetList *C.List, retrievedAttrs **C.List, ctx *deparseCtx) {
var (
buf = ctx.buf
index = 0
tle *C.TargetEntry
)
for cell := C.list_head(targetList); cell != nil; cell = C.wrapper_lnext(targetList, cell) {
if index > 0 {
buf.WriteString(",")
}
expr := (unsafe.Pointer(C.wrapper_lfirst(cell)))
if C.wrapper_nodeTag((*C.Node)(expr)) == C.T_TargetEntry {
tle = (*C.TargetEntry)(expr)
} else {
errLogger.Println("unexpected type in expr list for targetList")
}
// use deparseExpr to add Var names to buffer, this will even include any Function operated on Var names like SUM(x)..
deparseExpr((*C.Expr)(unsafe.Pointer(tle.expr)), ctx)
*retrievedAttrs = C.lappend_int(*retrievedAttrs, C.int(index+1))
index++
}
}
func appendGroupByClause(targetList *C.List, ctx *deparseCtx) {
var (
buf = ctx.buf
first = true
// query is *C.Query struct
query = ctx.root.parse
)
if query.groupClause == nil {
return
}
// buf.WriteString("")
// no groupingSets yet
if query.groupingSets != nil {
errLogger.Println("no support for groping sets")
}
for cell := C.list_head(query.groupClause); cell != nil; cell = C.wrapper_lnext(query.groupClause, cell) {
if !first {
buf.WriteString(", ")
}
grp := (*C.SortGroupClause)(unsafe.Pointer(C.wrapper_lfirst(cell)))
deparseSortGroupClause(grp.tleSortGroupRef, targetList, ctx)
first = false
}
}
func deparseSortGroupClause(refno C.Index, targetList *C.List, ctx *deparseCtx) {
var (
buf = ctx.buf
tle *C.TargetEntry
)
//Find the targetlist entry matching the given SortGroupRef index,
//and return it.
tle = C.get_sortgroupref_tle(refno, targetList)
expr := tle.expr
if expr == nil {
return
}
if C.wrapper_nodeTag((*C.Node)(unsafe.Pointer(expr))) == C.T_Const {
deparseConst((*C.Const)(unsafe.Pointer(expr)), ctx)
} else if C.wrapper_nodeTag((*C.Node)(unsafe.Pointer(expr))) == C.T_Var {
deparseExpr(expr, ctx)
} else {
// if not constant or plain columns
// parenthesize
buf.WriteString("(")
deparseExpr(expr, ctx)
buf.WriteString(")")
}
}
func appendHaving(remoteConds *C.List, ctx *deparseCtx) {
// remoteConds is a list of RestrictInfo structs so pick clause from them
appendConditions(remoteConds, ctx)
}