Skip to content
Find file
Fetching contributors…
Cannot retrieve contributors at this time
2035 lines (1758 sloc) 65.7 KB
/*
* Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <arpa/inet.h>
#include "odp-util.h"
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "dynamic-string.h"
#include "flow.h"
#include "netlink.h"
#include "ofpbuf.h"
#include "packets.h"
#include "simap.h"
#include "timeval.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(odp_util);
/* The interface between userspace and kernel uses an "OVS_*" prefix.
* Since this is fairly non-specific for the OVS userspace components,
* "ODP_*" (Open vSwitch Datapath) is used as the prefix for
* interactions with the datapath.
*/
/* The set of characters that may separate one action or one key attribute
* from another. */
static const char *delimiters = ", \t\r\n";
static int parse_odp_key_attr(const char *, const struct simap *port_names,
struct ofpbuf *);
static void format_odp_key_attr(const struct nlattr *a, struct ds *ds);
/* Returns one the following for the action with the given OVS_ACTION_ATTR_*
* 'type':
*
* - For an action whose argument has a fixed length, returned that
* nonnegative length in bytes.
*
* - For an action with a variable-length argument, returns -2.
*
* - For an invalid 'type', returns -1. */
static int
odp_action_len(uint16_t type)
{
if (type > OVS_ACTION_ATTR_MAX) {
return -1;
}
switch ((enum ovs_action_attr) type) {
case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t);
case OVS_ACTION_ATTR_USERSPACE: return -2;
case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan);
case OVS_ACTION_ATTR_POP_VLAN: return 0;
case OVS_ACTION_ATTR_SET: return -2;
case OVS_ACTION_ATTR_SAMPLE: return -2;
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
return -1;
}
return -1;
}
static const char *
ovs_key_attr_to_string(enum ovs_key_attr attr)
{
static char unknown_attr[3 + INT_STRLEN(unsigned int) + 1];
switch (attr) {
case OVS_KEY_ATTR_UNSPEC: return "unspec";
case OVS_KEY_ATTR_ENCAP: return "encap";
case OVS_KEY_ATTR_PRIORITY: return "priority";
case OVS_KEY_ATTR_IN_PORT: return "in_port";
case OVS_KEY_ATTR_ETHERNET: return "eth";
case OVS_KEY_ATTR_VLAN: return "vlan";
case OVS_KEY_ATTR_ETHERTYPE: return "eth_type";
case OVS_KEY_ATTR_IPV4: return "ipv4";
case OVS_KEY_ATTR_IPV6: return "ipv6";
case OVS_KEY_ATTR_TCP: return "tcp";
case OVS_KEY_ATTR_UDP: return "udp";
case OVS_KEY_ATTR_ICMP: return "icmp";
case OVS_KEY_ATTR_ICMPV6: return "icmpv6";
case OVS_KEY_ATTR_ARP: return "arp";
case OVS_KEY_ATTR_ND: return "nd";
case OVS_KEY_ATTR_TUN_ID: return "tun_id";
case __OVS_KEY_ATTR_MAX:
default:
snprintf(unknown_attr, sizeof unknown_attr, "key%u",
(unsigned int) attr);
return unknown_attr;
}
}
static void
format_generic_odp_action(struct ds *ds, const struct nlattr *a)
{
size_t len = nl_attr_get_size(a);
ds_put_format(ds, "action%"PRId16, nl_attr_type(a));
if (len) {
const uint8_t *unspec;
unsigned int i;
unspec = nl_attr_get(a);
for (i = 0; i < len; i++) {
ds_put_char(ds, i ? ' ': '(');
ds_put_format(ds, "%02x", unspec[i]);
}
ds_put_char(ds, ')');
}
}
static void
format_odp_sample_action(struct ds *ds, const struct nlattr *attr)
{
static const struct nl_policy ovs_sample_policy[] = {
[OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 },
[OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED }
};
struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)];
double percentage;
const struct nlattr *nla_acts;
int len;
ds_put_cstr(ds, "sample");
if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) {
ds_put_cstr(ds, "(error)");
return;
}
percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) /
UINT32_MAX;
ds_put_format(ds, "(sample=%.1f%%,", percentage);
ds_put_cstr(ds, "actions(");
nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]);
len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]);
format_odp_actions(ds, nla_acts, len);
ds_put_format(ds, "))");
}
static const char *
slow_path_reason_to_string(enum slow_path_reason bit)
{
switch (bit) {
case SLOW_CFM:
return "cfm";
case SLOW_LACP:
return "lacp";
case SLOW_STP:
return "stp";
case SLOW_IN_BAND:
return "in_band";
case SLOW_CONTROLLER:
return "controller";
case SLOW_MATCH:
return "match";
default:
return NULL;
}
}
static void
format_slow_path_reason(struct ds *ds, uint32_t slow)
{
uint32_t bad = 0;
while (slow) {
uint32_t bit = rightmost_1bit(slow);
const char *s;
s = slow_path_reason_to_string(bit);
if (s) {
ds_put_format(ds, "%s,", s);
} else {
bad |= bit;
}
slow &= ~bit;
}
if (bad) {
ds_put_format(ds, "0x%"PRIx32",", bad);
}
ds_chomp(ds, ',');
}
static void
format_odp_userspace_action(struct ds *ds, const struct nlattr *attr)
{
static const struct nl_policy ovs_userspace_policy[] = {
[OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 },
[OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_U64, .optional = true },
};
struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)];
if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) {
ds_put_cstr(ds, "userspace(error)");
return;
}
ds_put_format(ds, "userspace(pid=%"PRIu32,
nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID]));
if (a[OVS_USERSPACE_ATTR_USERDATA]) {
uint64_t userdata = nl_attr_get_u64(a[OVS_USERSPACE_ATTR_USERDATA]);
union user_action_cookie cookie;
memcpy(&cookie, &userdata, sizeof cookie);
switch (cookie.type) {
case USER_ACTION_COOKIE_SFLOW:
ds_put_format(ds, ",sFlow("
"vid=%"PRIu16",pcp=%"PRIu8",output=%"PRIu32")",
vlan_tci_to_vid(cookie.sflow.vlan_tci),
vlan_tci_to_pcp(cookie.sflow.vlan_tci),
cookie.sflow.output);
break;
case USER_ACTION_COOKIE_SLOW_PATH:
ds_put_cstr(ds, ",slow_path(");
if (cookie.slow_path.reason) {
format_slow_path_reason(ds, cookie.slow_path.reason);
}
ds_put_char(ds, ')');
break;
case USER_ACTION_COOKIE_UNSPEC:
default:
ds_put_format(ds, ",userdata=0x%"PRIx64, userdata);
break;
}
}
ds_put_char(ds, ')');
}
static void
format_vlan_tci(struct ds *ds, ovs_be16 vlan_tci)
{
ds_put_format(ds, "vid=%"PRIu16",pcp=%d",
vlan_tci_to_vid(vlan_tci),
vlan_tci_to_pcp(vlan_tci));
if (!(vlan_tci & htons(VLAN_CFI))) {
ds_put_cstr(ds, ",cfi=0");
}
}
static void
format_odp_action(struct ds *ds, const struct nlattr *a)
{
int expected_len;
enum ovs_action_attr type = nl_attr_type(a);
const struct ovs_action_push_vlan *vlan;
expected_len = odp_action_len(nl_attr_type(a));
if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
ds_put_format(ds, "bad length %zu, expected %d for: ",
nl_attr_get_size(a), expected_len);
format_generic_odp_action(ds, a);
return;
}
switch (type) {
case OVS_ACTION_ATTR_OUTPUT:
ds_put_format(ds, "%"PRIu16, nl_attr_get_u32(a));
break;
case OVS_ACTION_ATTR_USERSPACE:
format_odp_userspace_action(ds, a);
break;
case OVS_ACTION_ATTR_SET:
ds_put_cstr(ds, "set(");
format_odp_key_attr(nl_attr_get(a), ds);
ds_put_cstr(ds, ")");
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
vlan = nl_attr_get(a);
ds_put_cstr(ds, "push_vlan(");
if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) {
ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid));
}
format_vlan_tci(ds, vlan->vlan_tci);
ds_put_char(ds, ')');
break;
case OVS_ACTION_ATTR_POP_VLAN:
ds_put_cstr(ds, "pop_vlan");
break;
case OVS_ACTION_ATTR_SAMPLE:
format_odp_sample_action(ds, a);
break;
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
default:
format_generic_odp_action(ds, a);
break;
}
}
void
format_odp_actions(struct ds *ds, const struct nlattr *actions,
size_t actions_len)
{
if (actions_len) {
const struct nlattr *a;
unsigned int left;
NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
if (a != actions) {
ds_put_char(ds, ',');
}
format_odp_action(ds, a);
}
if (left) {
int i;
if (left == actions_len) {
ds_put_cstr(ds, "<empty>");
}
ds_put_format(ds, ",***%u leftover bytes*** (", left);
for (i = 0; i < left; i++) {
ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
}
ds_put_char(ds, ')');
}
} else {
ds_put_cstr(ds, "drop");
}
}
static int
parse_odp_action(const char *s, const struct simap *port_names,
struct ofpbuf *actions)
{
/* Many of the sscanf calls in this function use oversized destination
* fields because some sscanf() implementations truncate the range of %i
* directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
* value of 0x7fff. The other alternatives are to allow only a single
* radix (e.g. decimal or hexadecimal) or to write more sophisticated
* parsers.
*
* The tun_id parser has to use an alternative approach because there is no
* type larger than 64 bits. */
{
unsigned long long int port;
int n = -1;
if (sscanf(s, "%lli%n", &port, &n) > 0 && n > 0) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port);
return n;
}
}
if (port_names) {
int len = strcspn(s, delimiters);
struct simap_node *node;
node = simap_find_len(port_names, s, len);
if (node) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, node->data);
return len;
}
}
{
unsigned long long int pid;
unsigned long long int output;
char userdata_s[32];
int vid, pcp;
int n = -1;
if (sscanf(s, "userspace(pid=%lli)%n", &pid, &n) > 0 && n > 0) {
odp_put_userspace_action(pid, NULL, actions);
return n;
} else if (sscanf(s, "userspace(pid=%lli,sFlow(vid=%i,"
"pcp=%i,output=%lli))%n",
&pid, &vid, &pcp, &output, &n) > 0 && n > 0) {
union user_action_cookie cookie;
uint16_t tci;
tci = vid | (pcp << VLAN_PCP_SHIFT);
if (tci) {
tci |= VLAN_CFI;
}
cookie.type = USER_ACTION_COOKIE_SFLOW;
cookie.sflow.vlan_tci = htons(tci);
cookie.sflow.output = output;
odp_put_userspace_action(pid, &cookie, actions);
return n;
} else if (sscanf(s, "userspace(pid=%lli,slow_path(%n", &pid, &n) > 0
&& n > 0) {
union user_action_cookie cookie;
cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
cookie.slow_path.unused = 0;
cookie.slow_path.reason = 0;
while (s[n] != ')') {
uint32_t bit;
for (bit = 1; bit; bit <<= 1) {
const char *reason = slow_path_reason_to_string(bit);
size_t len = strlen(reason);
if (reason
&& !strncmp(s + n, reason, len)
&& (s[n + len] == ',' || s[n + len] == ')'))
{
cookie.slow_path.reason |= bit;
n += len + (s[n + len] == ',');
break;
}
}
if (!bit) {
return -EINVAL;
}
}
if (s[n + 1] != ')') {
return -EINVAL;
}
n += 2;
odp_put_userspace_action(pid, &cookie, actions);
return n;
} else if (sscanf(s, "userspace(pid=%lli,userdata="
"%31[x0123456789abcdefABCDEF])%n", &pid, userdata_s,
&n) > 0 && n > 0) {
union user_action_cookie cookie;
uint64_t userdata;
userdata = strtoull(userdata_s, NULL, 0);
memcpy(&cookie, &userdata, sizeof cookie);
odp_put_userspace_action(pid, &cookie, actions);
return n;
}
}
if (!strncmp(s, "set(", 4)) {
size_t start_ofs;
int retval;
start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET);
retval = parse_odp_key_attr(s + 4, port_names, actions);
if (retval < 0) {
return retval;
}
if (s[retval + 4] != ')') {
return -EINVAL;
}
nl_msg_end_nested(actions, start_ofs);
return retval + 5;
}
{
struct ovs_action_push_vlan push;
int tpid = ETH_TYPE_VLAN;
int vid, pcp;
int cfi = 1;
int n = -1;
if ((sscanf(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n) > 0
&& n > 0)
|| (sscanf(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n",
&vid, &pcp, &cfi, &n) > 0 && n > 0)
|| (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n",
&tpid, &vid, &pcp, &n) > 0 && n > 0)
|| (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n",
&tpid, &vid, &pcp, &cfi, &n) > 0 && n > 0)) {
push.vlan_tpid = htons(tpid);
push.vlan_tci = htons((vid << VLAN_VID_SHIFT)
| (pcp << VLAN_PCP_SHIFT)
| (cfi ? VLAN_CFI : 0));
nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN,
&push, sizeof push);
return n;
}
}
if (!strncmp(s, "pop_vlan", 8)) {
nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN);
return 8;
}
{
double percentage;
int n = -1;
if (sscanf(s, "sample(sample=%lf%%,actions(%n", &percentage, &n) > 0
&& percentage >= 0. && percentage <= 100.0
&& n > 0) {
size_t sample_ofs, actions_ofs;
double probability;
probability = floor(UINT32_MAX * (percentage / 100.0) + .5);
sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY,
(probability <= 0 ? 0
: probability >= UINT32_MAX ? UINT32_MAX
: probability));
actions_ofs = nl_msg_start_nested(actions,
OVS_SAMPLE_ATTR_ACTIONS);
for (;;) {
int retval;
n += strspn(s + n, delimiters);
if (s[n] == ')') {
break;
}
retval = parse_odp_action(s + n, port_names, actions);
if (retval < 0) {
return retval;
}
n += retval;
}
nl_msg_end_nested(actions, actions_ofs);
nl_msg_end_nested(actions, sample_ofs);
return s[n + 1] == ')' ? n + 2 : -EINVAL;
}
}
return -EINVAL;
}
/* Parses the string representation of datapath actions, in the format output
* by format_odp_action(). Returns 0 if successful, otherwise a positive errno
* value. On success, the ODP actions are appended to 'actions' as a series of
* Netlink attributes. On failure, no data is appended to 'actions'. Either
* way, 'actions''s data might be reallocated. */
int
odp_actions_from_string(const char *s, const struct simap *port_names,
struct ofpbuf *actions)
{
size_t old_size;
if (!strcasecmp(s, "drop")) {
return 0;
}
old_size = actions->size;
for (;;) {
int retval;
s += strspn(s, delimiters);
if (!*s) {
return 0;
}
retval = parse_odp_action(s, port_names, actions);
if (retval < 0 || !strchr(delimiters, s[retval])) {
actions->size = old_size;
return -retval;
}
s += retval;
}
return 0;
}
/* Returns the correct length of the payload for a flow key attribute of the
* specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload
* is variable length. */
static int
odp_flow_key_attr_len(uint16_t type)
{
if (type > OVS_KEY_ATTR_MAX) {
return -1;
}
switch ((enum ovs_key_attr) type) {
case OVS_KEY_ATTR_ENCAP: return -2;
case OVS_KEY_ATTR_PRIORITY: return 4;
case OVS_KEY_ATTR_TUN_ID: return 8;
case OVS_KEY_ATTR_IN_PORT: return 4;
case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet);
case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16);
case OVS_KEY_ATTR_ETHERTYPE: return 2;
case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4);
case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6);
case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp);
case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp);
case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp);
case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6);
case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp);
case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd);
case OVS_KEY_ATTR_UNSPEC:
case __OVS_KEY_ATTR_MAX:
return -1;
}
return -1;
}
static void
format_generic_odp_key(const struct nlattr *a, struct ds *ds)
{
size_t len = nl_attr_get_size(a);
if (len) {
const uint8_t *unspec;
unsigned int i;
unspec = nl_attr_get(a);
for (i = 0; i < len; i++) {
ds_put_char(ds, i ? ' ': '(');
ds_put_format(ds, "%02x", unspec[i]);
}
ds_put_char(ds, ')');
}
}
static const char *
ovs_frag_type_to_string(enum ovs_frag_type type)
{
switch (type) {
case OVS_FRAG_TYPE_NONE:
return "no";
case OVS_FRAG_TYPE_FIRST:
return "first";
case OVS_FRAG_TYPE_LATER:
return "later";
case __OVS_FRAG_TYPE_MAX:
default:
return "<error>";
}
}
static void
format_odp_key_attr(const struct nlattr *a, struct ds *ds)
{
const struct ovs_key_ethernet *eth_key;
const struct ovs_key_ipv4 *ipv4_key;
const struct ovs_key_ipv6 *ipv6_key;
const struct ovs_key_tcp *tcp_key;
const struct ovs_key_udp *udp_key;
const struct ovs_key_icmp *icmp_key;
const struct ovs_key_icmpv6 *icmpv6_key;
const struct ovs_key_arp *arp_key;
const struct ovs_key_nd *nd_key;
enum ovs_key_attr attr = nl_attr_type(a);
int expected_len;
ds_put_cstr(ds, ovs_key_attr_to_string(attr));
expected_len = odp_flow_key_attr_len(nl_attr_type(a));
if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
ds_put_format(ds, "(bad length %zu, expected %d)",
nl_attr_get_size(a),
odp_flow_key_attr_len(nl_attr_type(a)));
format_generic_odp_key(a, ds);
return;
}
switch (attr) {
case OVS_KEY_ATTR_ENCAP:
ds_put_cstr(ds, "(");
if (nl_attr_get_size(a)) {
odp_flow_key_format(nl_attr_get(a), nl_attr_get_size(a), ds);
}
ds_put_char(ds, ')');
break;
case OVS_KEY_ATTR_PRIORITY:
ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a));
break;
case OVS_KEY_ATTR_TUN_ID:
ds_put_format(ds, "(%#"PRIx64")", ntohll(nl_attr_get_be64(a)));
break;
case OVS_KEY_ATTR_IN_PORT:
ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a));
break;
case OVS_KEY_ATTR_ETHERNET:
eth_key = nl_attr_get(a);
ds_put_format(ds, "(src="ETH_ADDR_FMT",dst="ETH_ADDR_FMT")",
ETH_ADDR_ARGS(eth_key->eth_src),
ETH_ADDR_ARGS(eth_key->eth_dst));
break;
case OVS_KEY_ATTR_VLAN:
ds_put_char(ds, '(');
format_vlan_tci(ds, nl_attr_get_be16(a));
ds_put_char(ds, ')');
break;
case OVS_KEY_ATTR_ETHERTYPE:
ds_put_format(ds, "(0x%04"PRIx16")",
ntohs(nl_attr_get_be16(a)));
break;
case OVS_KEY_ATTR_IPV4:
ipv4_key = nl_attr_get(a);
ds_put_format(ds, "(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8
",tos=%#"PRIx8",ttl=%"PRIu8",frag=%s)",
IP_ARGS(&ipv4_key->ipv4_src),
IP_ARGS(&ipv4_key->ipv4_dst),
ipv4_key->ipv4_proto, ipv4_key->ipv4_tos,
ipv4_key->ipv4_ttl,
ovs_frag_type_to_string(ipv4_key->ipv4_frag));
break;
case OVS_KEY_ATTR_IPV6: {
char src_str[INET6_ADDRSTRLEN];
char dst_str[INET6_ADDRSTRLEN];
ipv6_key = nl_attr_get(a);
inet_ntop(AF_INET6, ipv6_key->ipv6_src, src_str, sizeof src_str);
inet_ntop(AF_INET6, ipv6_key->ipv6_dst, dst_str, sizeof dst_str);
ds_put_format(ds, "(src=%s,dst=%s,label=%#"PRIx32",proto=%"PRIu8
",tclass=%#"PRIx8",hlimit=%"PRIu8",frag=%s)",
src_str, dst_str, ntohl(ipv6_key->ipv6_label),
ipv6_key->ipv6_proto, ipv6_key->ipv6_tclass,
ipv6_key->ipv6_hlimit,
ovs_frag_type_to_string(ipv6_key->ipv6_frag));
break;
}
case OVS_KEY_ATTR_TCP:
tcp_key = nl_attr_get(a);
ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
ntohs(tcp_key->tcp_src), ntohs(tcp_key->tcp_dst));
break;
case OVS_KEY_ATTR_UDP:
udp_key = nl_attr_get(a);
ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
ntohs(udp_key->udp_src), ntohs(udp_key->udp_dst));
break;
case OVS_KEY_ATTR_ICMP:
icmp_key = nl_attr_get(a);
ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
icmp_key->icmp_type, icmp_key->icmp_code);
break;
case OVS_KEY_ATTR_ICMPV6:
icmpv6_key = nl_attr_get(a);
ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
icmpv6_key->icmpv6_type, icmpv6_key->icmpv6_code);
break;
case OVS_KEY_ATTR_ARP:
arp_key = nl_attr_get(a);
ds_put_format(ds, "(sip="IP_FMT",tip="IP_FMT",op=%"PRIu16","
"sha="ETH_ADDR_FMT",tha="ETH_ADDR_FMT")",
IP_ARGS(&arp_key->arp_sip), IP_ARGS(&arp_key->arp_tip),
ntohs(arp_key->arp_op), ETH_ADDR_ARGS(arp_key->arp_sha),
ETH_ADDR_ARGS(arp_key->arp_tha));
break;
case OVS_KEY_ATTR_ND: {
char target[INET6_ADDRSTRLEN];
nd_key = nl_attr_get(a);
inet_ntop(AF_INET6, nd_key->nd_target, target, sizeof target);
ds_put_format(ds, "(target=%s", target);
if (!eth_addr_is_zero(nd_key->nd_sll)) {
ds_put_format(ds, ",sll="ETH_ADDR_FMT,
ETH_ADDR_ARGS(nd_key->nd_sll));
}
if (!eth_addr_is_zero(nd_key->nd_tll)) {
ds_put_format(ds, ",tll="ETH_ADDR_FMT,
ETH_ADDR_ARGS(nd_key->nd_tll));
}
ds_put_char(ds, ')');
break;
}
case OVS_KEY_ATTR_UNSPEC:
case __OVS_KEY_ATTR_MAX:
default:
format_generic_odp_key(a, ds);
break;
}
}
/* Appends to 'ds' a string representation of the 'key_len' bytes of
* OVS_KEY_ATTR_* attributes in 'key'. */
void
odp_flow_key_format(const struct nlattr *key, size_t key_len, struct ds *ds)
{
if (key_len) {
const struct nlattr *a;
unsigned int left;
NL_ATTR_FOR_EACH (a, left, key, key_len) {
if (a != key) {
ds_put_char(ds, ',');
}
format_odp_key_attr(a, ds);
}
if (left) {
int i;
if (left == key_len) {
ds_put_cstr(ds, "<empty>");
}
ds_put_format(ds, ",***%u leftover bytes*** (", left);
for (i = 0; i < left; i++) {
ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
}
ds_put_char(ds, ')');
}
} else {
ds_put_cstr(ds, "<empty>");
}
}
static int
put_nd_key(int n, const char *nd_target_s,
const uint8_t *nd_sll, const uint8_t *nd_tll, struct ofpbuf *key)
{
struct ovs_key_nd nd_key;
memset(&nd_key, 0, sizeof nd_key);
if (inet_pton(AF_INET6, nd_target_s, nd_key.nd_target) != 1) {
return -EINVAL;
}
if (nd_sll) {
memcpy(nd_key.nd_sll, nd_sll, ETH_ADDR_LEN);
}
if (nd_tll) {
memcpy(nd_key.nd_tll, nd_tll, ETH_ADDR_LEN);
}
nl_msg_put_unspec(key, OVS_KEY_ATTR_ND, &nd_key, sizeof nd_key);
return n;
}
static bool
ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type)
{
if (!strcasecmp(s, "no")) {
*type = OVS_FRAG_TYPE_NONE;
} else if (!strcasecmp(s, "first")) {
*type = OVS_FRAG_TYPE_FIRST;
} else if (!strcasecmp(s, "later")) {
*type = OVS_FRAG_TYPE_LATER;
} else {
return false;
}
return true;
}
static int
parse_odp_key_attr(const char *s, const struct simap *port_names,
struct ofpbuf *key)
{
/* Many of the sscanf calls in this function use oversized destination
* fields because some sscanf() implementations truncate the range of %i
* directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
* value of 0x7fff. The other alternatives are to allow only a single
* radix (e.g. decimal or hexadecimal) or to write more sophisticated
* parsers.
*
* The tun_id parser has to use an alternative approach because there is no
* type larger than 64 bits. */
{
unsigned long long int priority;
int n = -1;
if (sscanf(s, "priority(%lli)%n", &priority, &n) > 0 && n > 0) {
nl_msg_put_u32(key, OVS_KEY_ATTR_PRIORITY, priority);
return n;
}
}
{
char tun_id_s[32];
int n = -1;
if (sscanf(s, "tun_id(%31[x0123456789abcdefABCDEF])%n",
tun_id_s, &n) > 0 && n > 0) {
uint64_t tun_id = strtoull(tun_id_s, NULL, 0);
nl_msg_put_be64(key, OVS_KEY_ATTR_TUN_ID, htonll(tun_id));
return n;
}
}
{
unsigned long long int in_port;
int n = -1;
if (sscanf(s, "in_port(%lli)%n", &in_port, &n) > 0 && n > 0) {
nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, in_port);
return n;
}
}
if (port_names && !strncmp(s, "in_port(", 8)) {
const char *name;
const struct simap_node *node;
int name_len;
name = s + 8;
name_len = strcspn(s, ")");
node = simap_find_len(port_names, name, name_len);
if (node) {
nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, node->data);
return 8 + name_len + 1;
}
}
{
struct ovs_key_ethernet eth_key;
int n = -1;
if (sscanf(s,
"eth(src="ETH_ADDR_SCAN_FMT",dst="ETH_ADDR_SCAN_FMT")%n",
ETH_ADDR_SCAN_ARGS(eth_key.eth_src),
ETH_ADDR_SCAN_ARGS(eth_key.eth_dst), &n) > 0 && n > 0) {
nl_msg_put_unspec(key, OVS_KEY_ATTR_ETHERNET,
&eth_key, sizeof eth_key);
return n;
}
}
{
uint16_t vid;
int pcp;
int cfi;
int n = -1;
if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i)%n", &vid, &pcp, &n) > 0
&& n > 0)) {
nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
htons((vid << VLAN_VID_SHIFT) |
(pcp << VLAN_PCP_SHIFT) |
VLAN_CFI));
return n;
} else if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i,cfi=%i)%n",
&vid, &pcp, &cfi, &n) > 0
&& n > 0)) {
nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
htons((vid << VLAN_VID_SHIFT) |
(pcp << VLAN_PCP_SHIFT) |
(cfi ? VLAN_CFI : 0)));
return n;
}
}
{
int eth_type;
int n = -1;
if (sscanf(s, "eth_type(%i)%n", &eth_type, &n) > 0 && n > 0) {
nl_msg_put_be16(key, OVS_KEY_ATTR_ETHERTYPE, htons(eth_type));
return n;
}
}
{
ovs_be32 ipv4_src;
ovs_be32 ipv4_dst;
int ipv4_proto;
int ipv4_tos;
int ipv4_ttl;
char frag[8];
enum ovs_frag_type ipv4_frag;
int n = -1;
if (sscanf(s, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT","
"proto=%i,tos=%i,ttl=%i,frag=%7[a-z])%n",
IP_SCAN_ARGS(&ipv4_src), IP_SCAN_ARGS(&ipv4_dst),
&ipv4_proto, &ipv4_tos, &ipv4_ttl, frag, &n) > 0
&& n > 0
&& ovs_frag_type_from_string(frag, &ipv4_frag)) {
struct ovs_key_ipv4 ipv4_key;
ipv4_key.ipv4_src = ipv4_src;
ipv4_key.ipv4_dst = ipv4_dst;
ipv4_key.ipv4_proto = ipv4_proto;
ipv4_key.ipv4_tos = ipv4_tos;
ipv4_key.ipv4_ttl = ipv4_ttl;
ipv4_key.ipv4_frag = ipv4_frag;
nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV4,
&ipv4_key, sizeof ipv4_key);
return n;
}
}
{
char ipv6_src_s[IPV6_SCAN_LEN + 1];
char ipv6_dst_s[IPV6_SCAN_LEN + 1];
int ipv6_label;
int ipv6_proto;
int ipv6_tclass;
int ipv6_hlimit;
char frag[8];
enum ovs_frag_type ipv6_frag;
int n = -1;
if (sscanf(s, "ipv6(src="IPV6_SCAN_FMT",dst="IPV6_SCAN_FMT","
"label=%i,proto=%i,tclass=%i,hlimit=%i,frag=%7[a-z])%n",
ipv6_src_s, ipv6_dst_s, &ipv6_label,
&ipv6_proto, &ipv6_tclass, &ipv6_hlimit, frag, &n) > 0
&& n > 0
&& ovs_frag_type_from_string(frag, &ipv6_frag)) {
struct ovs_key_ipv6 ipv6_key;
if (inet_pton(AF_INET6, ipv6_src_s, &ipv6_key.ipv6_src) != 1 ||
inet_pton(AF_INET6, ipv6_dst_s, &ipv6_key.ipv6_dst) != 1) {
return -EINVAL;
}
ipv6_key.ipv6_label = htonl(ipv6_label);
ipv6_key.ipv6_proto = ipv6_proto;
ipv6_key.ipv6_tclass = ipv6_tclass;
ipv6_key.ipv6_hlimit = ipv6_hlimit;
ipv6_key.ipv6_frag = ipv6_frag;
nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV6,
&ipv6_key, sizeof ipv6_key);
return n;
}
}
{
int tcp_src;
int tcp_dst;
int n = -1;
if (sscanf(s, "tcp(src=%i,dst=%i)%n",&tcp_src, &tcp_dst, &n) > 0
&& n > 0) {
struct ovs_key_tcp tcp_key;
tcp_key.tcp_src = htons(tcp_src);
tcp_key.tcp_dst = htons(tcp_dst);
nl_msg_put_unspec(key, OVS_KEY_ATTR_TCP, &tcp_key, sizeof tcp_key);
return n;
}
}
{
int udp_src;
int udp_dst;
int n = -1;
if (sscanf(s, "udp(src=%i,dst=%i)%n", &udp_src, &udp_dst, &n) > 0
&& n > 0) {
struct ovs_key_udp udp_key;
udp_key.udp_src = htons(udp_src);
udp_key.udp_dst = htons(udp_dst);
nl_msg_put_unspec(key, OVS_KEY_ATTR_UDP, &udp_key, sizeof udp_key);
return n;
}
}
{
int icmp_type;
int icmp_code;
int n = -1;
if (sscanf(s, "icmp(type=%i,code=%i)%n",
&icmp_type, &icmp_code, &n) > 0
&& n > 0) {
struct ovs_key_icmp icmp_key;
icmp_key.icmp_type = icmp_type;
icmp_key.icmp_code = icmp_code;
nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMP,
&icmp_key, sizeof icmp_key);
return n;
}
}
{
struct ovs_key_icmpv6 icmpv6_key;
int n = -1;
if (sscanf(s, "icmpv6(type=%"SCNi8",code=%"SCNi8")%n",
&icmpv6_key.icmpv6_type, &icmpv6_key.icmpv6_code,&n) > 0
&& n > 0) {
nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMPV6,
&icmpv6_key, sizeof icmpv6_key);
return n;
}
}
{
ovs_be32 arp_sip;
ovs_be32 arp_tip;
int arp_op;
uint8_t arp_sha[ETH_ADDR_LEN];
uint8_t arp_tha[ETH_ADDR_LEN];
int n = -1;
if (sscanf(s, "arp(sip="IP_SCAN_FMT",tip="IP_SCAN_FMT","
"op=%i,sha="ETH_ADDR_SCAN_FMT",tha="ETH_ADDR_SCAN_FMT")%n",
IP_SCAN_ARGS(&arp_sip),
IP_SCAN_ARGS(&arp_tip),
&arp_op,
ETH_ADDR_SCAN_ARGS(arp_sha),
ETH_ADDR_SCAN_ARGS(arp_tha), &n) > 0 && n > 0) {
struct ovs_key_arp arp_key;
memset(&arp_key, 0, sizeof arp_key);
arp_key.arp_sip = arp_sip;
arp_key.arp_tip = arp_tip;
arp_key.arp_op = htons(arp_op);
memcpy(arp_key.arp_sha, arp_sha, ETH_ADDR_LEN);
memcpy(arp_key.arp_tha, arp_tha, ETH_ADDR_LEN);
nl_msg_put_unspec(key, OVS_KEY_ATTR_ARP, &arp_key, sizeof arp_key);
return n;
}
}
{
char nd_target_s[IPV6_SCAN_LEN + 1];
uint8_t nd_sll[ETH_ADDR_LEN];
uint8_t nd_tll[ETH_ADDR_LEN];
int n = -1;
if (sscanf(s, "nd(target="IPV6_SCAN_FMT")%n",
nd_target_s, &n) > 0 && n > 0) {
return put_nd_key(n, nd_target_s, NULL, NULL, key);
}
if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT")%n",
nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll), &n) > 0
&& n > 0) {
return put_nd_key(n, nd_target_s, nd_sll, NULL, key);
}
if (sscanf(s, "nd(target="IPV6_SCAN_FMT",tll="ETH_ADDR_SCAN_FMT")%n",
nd_target_s, ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
&& n > 0) {
return put_nd_key(n, nd_target_s, NULL, nd_tll, key);
}
if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT","
"tll="ETH_ADDR_SCAN_FMT")%n",
nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll),
ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
&& n > 0) {
return put_nd_key(n, nd_target_s, nd_sll, nd_tll, key);
}
}
if (!strncmp(s, "encap(", 6)) {
const char *start = s;
size_t encap;
encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP);
s += 6;
for (;;) {
int retval;
s += strspn(s, ", \t\r\n");
if (!*s) {
return -EINVAL;
} else if (*s == ')') {
break;
}
retval = parse_odp_key_attr(s, port_names, key);
if (retval < 0) {
return retval;
}
s += retval;
}
s++;
nl_msg_end_nested(key, encap);
return s - start;
}
return -EINVAL;
}
/* Parses the string representation of a datapath flow key, in the
* format output by odp_flow_key_format(). Returns 0 if successful,
* otherwise a positive errno value. On success, the flow key is
* appended to 'key' as a series of Netlink attributes. On failure, no
* data is appended to 'key'. Either way, 'key''s data might be
* reallocated.
*
* If 'port_names' is nonnull, it points to an simap that maps from a port name
* to a port number. (Port names may be used instead of port numbers in
* in_port.)
*
* On success, the attributes appended to 'key' are individually syntactically
* valid, but they may not be valid as a sequence. 'key' might, for example,
* have duplicated keys. odp_flow_key_to_flow() will detect those errors. */
int
odp_flow_key_from_string(const char *s, const struct simap *port_names,
struct ofpbuf *key)
{
const size_t old_size = key->size;
for (;;) {
int retval;
s += strspn(s, delimiters);
if (!*s) {
return 0;
}
retval = parse_odp_key_attr(s, port_names, key);
if (retval < 0) {
key->size = old_size;
return -retval;
}
s += retval;
}
return 0;
}
static uint8_t
ovs_to_odp_frag(uint8_t nw_frag)
{
return (nw_frag == 0 ? OVS_FRAG_TYPE_NONE
: nw_frag == FLOW_NW_FRAG_ANY ? OVS_FRAG_TYPE_FIRST
: OVS_FRAG_TYPE_LATER);
}
/* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'.
*
* 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
* capable of being expanded to allow for that much space. */
void
odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow)
{
struct ovs_key_ethernet *eth_key;
size_t encap;
if (flow->skb_priority) {
nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, flow->skb_priority);
}
if (flow->tun_id != htonll(0)) {
nl_msg_put_be64(buf, OVS_KEY_ATTR_TUN_ID, flow->tun_id);
}
if (flow->in_port != OFPP_NONE && flow->in_port != OFPP_CONTROLLER) {
nl_msg_put_u32(buf, OVS_KEY_ATTR_IN_PORT,
ofp_port_to_odp_port(flow->in_port));
}
eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET,
sizeof *eth_key);
memcpy(eth_key->eth_src, flow->dl_src, ETH_ADDR_LEN);
memcpy(eth_key->eth_dst, flow->dl_dst, ETH_ADDR_LEN);
if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) {
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN));
nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, flow->vlan_tci);
encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP);
if (flow->vlan_tci == htons(0)) {
goto unencap;
}
} else {
encap = 0;
}
if (ntohs(flow->dl_type) < ETH_TYPE_MIN) {
goto unencap;
}
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, flow->dl_type);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4,
sizeof *ipv4_key);
ipv4_key->ipv4_src = flow->nw_src;
ipv4_key->ipv4_dst = flow->nw_dst;
ipv4_key->ipv4_proto = flow->nw_proto;
ipv4_key->ipv4_tos = flow->nw_tos;
ipv4_key->ipv4_ttl = flow->nw_ttl;
ipv4_key->ipv4_frag = ovs_to_odp_frag(flow->nw_frag);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6,
sizeof *ipv6_key);
memcpy(ipv6_key->ipv6_src, &flow->ipv6_src, sizeof ipv6_key->ipv6_src);
memcpy(ipv6_key->ipv6_dst, &flow->ipv6_dst, sizeof ipv6_key->ipv6_dst);
ipv6_key->ipv6_label = flow->ipv6_label;
ipv6_key->ipv6_proto = flow->nw_proto;
ipv6_key->ipv6_tclass = flow->nw_tos;
ipv6_key->ipv6_hlimit = flow->nw_ttl;
ipv6_key->ipv6_frag = ovs_to_odp_frag(flow->nw_frag);
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
struct ovs_key_arp *arp_key;
arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP,
sizeof *arp_key);
memset(arp_key, 0, sizeof *arp_key);
arp_key->arp_sip = flow->nw_src;
arp_key->arp_tip = flow->nw_dst;
arp_key->arp_op = htons(flow->nw_proto);
memcpy(arp_key->arp_sha, flow->arp_sha, ETH_ADDR_LEN);
memcpy(arp_key->arp_tha, flow->arp_tha, ETH_ADDR_LEN);
}
if ((flow->dl_type == htons(ETH_TYPE_IP)
|| flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct ovs_key_tcp *tcp_key;
tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP,
sizeof *tcp_key);
tcp_key->tcp_src = flow->tp_src;
tcp_key->tcp_dst = flow->tp_dst;
} else if (flow->nw_proto == IPPROTO_UDP) {
struct ovs_key_udp *udp_key;
udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP,
sizeof *udp_key);
udp_key->udp_src = flow->tp_src;
udp_key->udp_dst = flow->tp_dst;
} else if (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP,
sizeof *icmp_key);
icmp_key->icmp_type = ntohs(flow->tp_src);
icmp_key->icmp_code = ntohs(flow->tp_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)
&& flow->nw_proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6,
sizeof *icmpv6_key);
icmpv6_key->icmpv6_type = ntohs(flow->tp_src);
icmpv6_key->icmpv6_code = ntohs(flow->tp_dst);
if (icmpv6_key->icmpv6_type == ND_NEIGHBOR_SOLICIT
|| icmpv6_key->icmpv6_type == ND_NEIGHBOR_ADVERT) {
struct ovs_key_nd *nd_key;
nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND,
sizeof *nd_key);
memcpy(nd_key->nd_target, &flow->nd_target,
sizeof nd_key->nd_target);
memcpy(nd_key->nd_sll, flow->arp_sha, ETH_ADDR_LEN);
memcpy(nd_key->nd_tll, flow->arp_tha, ETH_ADDR_LEN);
}
}
}
unencap:
if (encap) {
nl_msg_end_nested(buf, encap);
}
}
uint32_t
odp_flow_key_hash(const struct nlattr *key, size_t key_len)
{
BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t)));
return hash_words((const uint32_t *) key, key_len / sizeof(uint32_t), 0);
}
static void
log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title,
uint64_t attrs, int out_of_range_attr,
const struct nlattr *key, size_t key_len)
{
struct ds s;
int i;
if (VLOG_DROP_DBG(rl)) {
return;
}
ds_init(&s);
for (i = 0; i < 64; i++) {
if (attrs & (UINT64_C(1) << i)) {
ds_put_format(&s, " %s", ovs_key_attr_to_string(i));
}
}
if (out_of_range_attr) {
ds_put_format(&s, " %d (and possibly others)", out_of_range_attr);
}
ds_put_cstr(&s, ": ");
odp_flow_key_format(key, key_len, &s);
VLOG_DBG("%s:%s", title, ds_cstr(&s));
ds_destroy(&s);
}
static bool
odp_to_ovs_frag(uint8_t odp_frag, struct flow *flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (odp_frag > OVS_FRAG_TYPE_LATER) {
VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag);
return false;
}
if (odp_frag != OVS_FRAG_TYPE_NONE) {
flow->nw_frag |= FLOW_NW_FRAG_ANY;
if (odp_frag == OVS_FRAG_TYPE_LATER) {
flow->nw_frag |= FLOW_NW_FRAG_LATER;
}
}
return true;
}
static bool
parse_flow_nlattrs(const struct nlattr *key, size_t key_len,
const struct nlattr *attrs[], uint64_t *present_attrsp,
int *out_of_range_attrp)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
const struct nlattr *nla;
uint64_t present_attrs;
size_t left;
present_attrs = 0;
*out_of_range_attrp = 0;
NL_ATTR_FOR_EACH (nla, left, key, key_len) {
uint16_t type = nl_attr_type(nla);
size_t len = nl_attr_get_size(nla);
int expected_len = odp_flow_key_attr_len(type);
if (len != expected_len && expected_len >= 0) {
VLOG_ERR_RL(&rl, "attribute %s has length %zu but should have "
"length %d", ovs_key_attr_to_string(type),
len, expected_len);
return false;
}
if (type >= CHAR_BIT * sizeof present_attrs) {
*out_of_range_attrp = type;
} else {
if (present_attrs & (UINT64_C(1) << type)) {
VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key",
ovs_key_attr_to_string(type));
return false;
}
present_attrs |= UINT64_C(1) << type;
attrs[type] = nla;
}
}
if (left) {
VLOG_ERR_RL(&rl, "trailing garbage in flow key");
return false;
}
*present_attrsp = present_attrs;
return true;
}
static enum odp_key_fitness
check_expectations(uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs,
const struct nlattr *key, size_t key_len)
{
uint64_t missing_attrs;
uint64_t extra_attrs;
missing_attrs = expected_attrs & ~present_attrs;
if (missing_attrs) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
log_odp_key_attributes(&rl, "expected but not present",
missing_attrs, 0, key, key_len);
return ODP_FIT_TOO_LITTLE;
}
extra_attrs = present_attrs & ~expected_attrs;
if (extra_attrs || out_of_range_attr) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
log_odp_key_attributes(&rl, "present but not expected",
extra_attrs, out_of_range_attr, key, key_len);
return ODP_FIT_TOO_MUCH;
}
return ODP_FIT_PERFECT;
}
static bool
parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, uint64_t *expected_attrs,
struct flow *flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) {
flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]);
if (ntohs(flow->dl_type) < 1536) {
VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key",
ntohs(flow->dl_type));
return false;
}
*expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE;
} else {
flow->dl_type = htons(FLOW_DL_TYPE_NONE);
}
return true;
}
static enum odp_key_fitness
parse_l3_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs, struct flow *flow,
const struct nlattr *key, size_t key_len)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) {
const struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]);
flow->nw_src = ipv4_key->ipv4_src;
flow->nw_dst = ipv4_key->ipv4_dst;
flow->nw_proto = ipv4_key->ipv4_proto;
flow->nw_tos = ipv4_key->ipv4_tos;
flow->nw_ttl = ipv4_key->ipv4_ttl;
if (!odp_to_ovs_frag(ipv4_key->ipv4_frag, flow)) {
return ODP_FIT_ERROR;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) {
const struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]);
memcpy(&flow->ipv6_src, ipv6_key->ipv6_src, sizeof flow->ipv6_src);
memcpy(&flow->ipv6_dst, ipv6_key->ipv6_dst, sizeof flow->ipv6_dst);
flow->ipv6_label = ipv6_key->ipv6_label;
flow->nw_proto = ipv6_key->ipv6_proto;
flow->nw_tos = ipv6_key->ipv6_tclass;
flow->nw_ttl = ipv6_key->ipv6_hlimit;
if (!odp_to_ovs_frag(ipv6_key->ipv6_frag, flow)) {
return ODP_FIT_ERROR;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) {
const struct ovs_key_arp *arp_key;
arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]);
flow->nw_src = arp_key->arp_sip;
flow->nw_dst = arp_key->arp_tip;
if (arp_key->arp_op & htons(0xff00)) {
VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow "
"key", ntohs(arp_key->arp_op));
return ODP_FIT_ERROR;
}
flow->nw_proto = ntohs(arp_key->arp_op);
memcpy(flow->arp_sha, arp_key->arp_sha, ETH_ADDR_LEN);
memcpy(flow->arp_tha, arp_key->arp_tha, ETH_ADDR_LEN);
}
}
if (flow->nw_proto == IPPROTO_TCP
&& (flow->dl_type == htons(ETH_TYPE_IP) ||
flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) {
const struct ovs_key_tcp *tcp_key;
tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]);
flow->tp_src = tcp_key->tcp_src;
flow->tp_dst = tcp_key->tcp_dst;
}
} else if (flow->nw_proto == IPPROTO_UDP
&& (flow->dl_type == htons(ETH_TYPE_IP) ||
flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) {
const struct ovs_key_udp *udp_key;
udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]);
flow->tp_src = udp_key->udp_src;
flow->tp_dst = udp_key->udp_dst;
}
} else if (flow->nw_proto == IPPROTO_ICMP
&& flow->dl_type == htons(ETH_TYPE_IP)
&& !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) {
const struct ovs_key_icmp *icmp_key;
icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]);
flow->tp_src = htons(icmp_key->icmp_type);
flow->tp_dst = htons(icmp_key->icmp_code);
}
} else if (flow->nw_proto == IPPROTO_ICMPV6
&& flow->dl_type == htons(ETH_TYPE_IPV6)
&& !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) {
const struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]);
flow->tp_src = htons(icmpv6_key->icmpv6_type);
flow->tp_dst = htons(icmpv6_key->icmpv6_code);
if (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
flow->tp_src == htons(ND_NEIGHBOR_ADVERT)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) {
const struct ovs_key_nd *nd_key;
nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]);
memcpy(&flow->nd_target, nd_key->nd_target,
sizeof flow->nd_target);
memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN);
memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN);
}
}
}
}
return check_expectations(present_attrs, out_of_range_attr, expected_attrs,
key, key_len);
}
/* Parse 802.1Q header then encapsulated L3 attributes. */
static enum odp_key_fitness
parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs, struct flow *flow,
const struct nlattr *key, size_t key_len)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
const struct nlattr *encap
= (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)
? attrs[OVS_KEY_ATTR_ENCAP] : NULL);
enum odp_key_fitness encap_fitness;
enum odp_key_fitness fitness;
ovs_be16 tci;
/* Calulate fitness of outer attributes. */
expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) |
(UINT64_C(1) << OVS_KEY_ATTR_ENCAP));
fitness = check_expectations(present_attrs, out_of_range_attr,
expected_attrs, key, key_len);
/* Get the VLAN TCI value. */
if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) {
return ODP_FIT_TOO_LITTLE;
}
tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]);
if (tci == htons(0)) {
/* Corner case for a truncated 802.1Q header. */
if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) {
return ODP_FIT_TOO_MUCH;
}
return fitness;
} else if (!(tci & htons(VLAN_CFI))) {
VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero "
"but CFI bit is not set", ntohs(tci));
return ODP_FIT_ERROR;
}
/* Set vlan_tci.
* Remove the TPID from dl_type since it's not the real Ethertype. */
flow->vlan_tci = tci;
flow->dl_type = htons(0);
/* Now parse the encapsulated attributes. */
if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap),
attrs, &present_attrs, &out_of_range_attr)) {
return ODP_FIT_ERROR;
}
expected_attrs = 0;
if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
return ODP_FIT_ERROR;
}
encap_fitness = parse_l3_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len);
/* The overall fitness is the worse of the outer and inner attributes. */
return MAX(fitness, encap_fitness);
}
/* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow
* structure in 'flow'. Returns an ODP_FIT_* value that indicates how well
* 'key' fits our expectations for what a flow key should contain.
*
* This function doesn't take the packet itself as an argument because none of
* the currently understood OVS_KEY_ATTR_* attributes require it. Currently,
* it is always possible to infer which additional attribute(s) should appear
* by looking at the attributes for lower-level protocols, e.g. if the network
* protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we
* know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it
* must be absent. */
enum odp_key_fitness
odp_flow_key_to_flow(const struct nlattr *key, size_t key_len,
struct flow *flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1];
uint64_t expected_attrs;
uint64_t present_attrs;
int out_of_range_attr;
memset(flow, 0, sizeof *flow);
/* Parse attributes. */
if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs,
&out_of_range_attr)) {
return ODP_FIT_ERROR;
}
expected_attrs = 0;
/* Metadata. */
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) {
flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUN_ID)) {
flow->tun_id = nl_attr_get_be64(attrs[OVS_KEY_ATTR_TUN_ID]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUN_ID;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) {
uint32_t in_port = nl_attr_get_u32(attrs[OVS_KEY_ATTR_IN_PORT]);
if (in_port >= UINT16_MAX || in_port >= OFPP_MAX) {
VLOG_ERR_RL(&rl, "in_port %"PRIu32" out of supported range",
in_port);
return ODP_FIT_ERROR;
}
flow->in_port = odp_port_to_ofp_port(in_port);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT;
} else {
flow->in_port = OFPP_NONE;
}
/* Ethernet header. */
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) {
const struct ovs_key_ethernet *eth_key;
eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]);
memcpy(flow->dl_src, eth_key->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth_key->eth_dst, ETH_ADDR_LEN);
}
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
/* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */
if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
return ODP_FIT_ERROR;
}
if (flow->dl_type == htons(ETH_TYPE_VLAN)) {
return parse_8021q_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len);
}
return parse_l3_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len);
}
/* Returns 'fitness' as a string, for use in debug messages. */
const char *
odp_key_fitness_to_string(enum odp_key_fitness fitness)
{
switch (fitness) {
case ODP_FIT_PERFECT:
return "OK";
case ODP_FIT_TOO_MUCH:
return "too_much";
case ODP_FIT_TOO_LITTLE:
return "too_little";
case ODP_FIT_ERROR:
return "error";
default:
return "<unknown>";
}
}
/* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies
* Netlink PID 'pid'. If 'cookie' is nonnull, adds a userdata attribute whose
* contents contains 'cookie' and returns the offset within 'odp_actions' of
* the start of the cookie. (If 'cookie' is null, then the return value is not
* meaningful.) */
size_t
odp_put_userspace_action(uint32_t pid, const union user_action_cookie *cookie,
struct ofpbuf *odp_actions)
{
size_t offset;
offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE);
nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid);
if (cookie) {
nl_msg_put_unspec(odp_actions, OVS_USERSPACE_ATTR_USERDATA,
cookie, sizeof *cookie);
}
nl_msg_end_nested(odp_actions, offset);
return cookie ? odp_actions->size - NLA_ALIGN(sizeof *cookie) : 0;
}
/* The commit_odp_actions() function and its helpers. */
static void
commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type,
const void *key, size_t key_size)
{
size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
nl_msg_put_unspec(odp_actions, key_type, key, key_size);
nl_msg_end_nested(odp_actions, offset);
}
static void
commit_set_tun_id_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
if (base->tun_id == flow->tun_id) {
return;
}
base->tun_id = flow->tun_id;
commit_set_action(odp_actions, OVS_KEY_ATTR_TUN_ID,
&base->tun_id, sizeof(base->tun_id));
}
static void
commit_set_ether_addr_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
struct ovs_key_ethernet eth_key;
if (eth_addr_equals(base->dl_src, flow->dl_src) &&
eth_addr_equals(base->dl_dst, flow->dl_dst)) {
return;
}
memcpy(base->dl_src, flow->dl_src, ETH_ADDR_LEN);
memcpy(base->dl_dst, flow->dl_dst, ETH_ADDR_LEN);
memcpy(eth_key.eth_src, base->dl_src, ETH_ADDR_LEN);
memcpy(eth_key.eth_dst, base->dl_dst, ETH_ADDR_LEN);
commit_set_action(odp_actions, OVS_KEY_ATTR_ETHERNET,
&eth_key, sizeof(eth_key));
}
static void
commit_vlan_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
if (base->vlan_tci == flow->vlan_tci) {
return;
}
if (base->vlan_tci & htons(VLAN_CFI)) {
nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN);
}
if (flow->vlan_tci & htons(VLAN_CFI)) {
struct ovs_action_push_vlan vlan;
vlan.vlan_tpid = htons(ETH_TYPE_VLAN);
vlan.vlan_tci = flow->vlan_tci;
nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN,
&vlan, sizeof vlan);
}
base->vlan_tci = flow->vlan_tci;
}
static void
commit_set_ipv4_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
struct ovs_key_ipv4 ipv4_key;
if (base->nw_src == flow->nw_src &&
base->nw_dst == flow->nw_dst &&
base->nw_tos == flow->nw_tos &&
base->nw_ttl == flow->nw_ttl &&
base->nw_frag == flow->nw_frag) {
return;
}
ipv4_key.ipv4_src = base->nw_src = flow->nw_src;
ipv4_key.ipv4_dst = base->nw_dst = flow->nw_dst;
ipv4_key.ipv4_tos = base->nw_tos = flow->nw_tos;
ipv4_key.ipv4_ttl = base->nw_ttl = flow->nw_ttl;
ipv4_key.ipv4_proto = base->nw_proto;
ipv4_key.ipv4_frag = ovs_to_odp_frag(base->nw_frag);
commit_set_action(odp_actions, OVS_KEY_ATTR_IPV4,
&ipv4_key, sizeof(ipv4_key));
}
static void
commit_set_ipv6_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
struct ovs_key_ipv6 ipv6_key;
if (ipv6_addr_equals(&base->ipv6_src, &flow->ipv6_src) &&
ipv6_addr_equals(&base->ipv6_dst, &flow->ipv6_dst) &&
base->ipv6_label == flow->ipv6_label &&
base->nw_tos == flow->nw_tos &&
base->nw_ttl == flow->nw_ttl &&
base->nw_frag == flow->nw_frag) {
return;
}
base->ipv6_src = flow->ipv6_src;
memcpy(&ipv6_key.ipv6_src, &base->ipv6_src, sizeof(ipv6_key.ipv6_src));
base->ipv6_dst = flow->ipv6_dst;
memcpy(&ipv6_key.ipv6_dst, &base->ipv6_dst, sizeof(ipv6_key.ipv6_dst));
ipv6_key.ipv6_label = base->ipv6_label = flow->ipv6_label;
ipv6_key.ipv6_tclass = base->nw_tos = flow->nw_tos;
ipv6_key.ipv6_hlimit = base->nw_ttl = flow->nw_ttl;
ipv6_key.ipv6_proto = base->nw_proto;
ipv6_key.ipv6_frag = ovs_to_odp_frag(base->nw_frag);
commit_set_action(odp_actions, OVS_KEY_ATTR_IPV6,
&ipv6_key, sizeof(ipv6_key));
}
static void
commit_set_nw_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
/* Check if flow really have an IP header. */
if (!flow->nw_proto) {
return;
}
if (base->dl_type == htons(ETH_TYPE_IP)) {
commit_set_ipv4_action(flow, base, odp_actions);
} else if (base->dl_type == htons(ETH_TYPE_IPV6)) {
commit_set_ipv6_action(flow, base, odp_actions);
}
}
static void
commit_set_port_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
if (!base->tp_src && !base->tp_dst) {
return;
}
if (base->tp_src == flow->tp_src &&
base->tp_dst == flow->tp_dst) {
return;
}
if (flow->nw_proto == IPPROTO_TCP) {
struct ovs_key_tcp port_key;
port_key.tcp_src = base->tp_src = flow->tp_src;
port_key.tcp_dst = base->tp_dst = flow->tp_dst;
commit_set_action(odp_actions, OVS_KEY_ATTR_TCP,
&port_key, sizeof(port_key));
} else if (flow->nw_proto == IPPROTO_UDP) {
struct ovs_key_udp port_key;
port_key.udp_src = base->tp_src = flow->tp_src;
port_key.udp_dst = base->tp_dst = flow->tp_dst;
commit_set_action(odp_actions, OVS_KEY_ATTR_UDP,
&port_key, sizeof(port_key));
}
}
static void
commit_set_priority_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
if (base->skb_priority == flow->skb_priority) {
return;
}
base->skb_priority = flow->skb_priority;
commit_set_action(odp_actions, OVS_KEY_ATTR_PRIORITY,
&base->skb_priority, sizeof(base->skb_priority));
}
/* If any of the flow key data that ODP actions can modify are different in
* 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow
* key from 'base' into 'flow', and then changes 'base' the same way. */
void
commit_odp_actions(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
commit_set_tun_id_action(flow, base, odp_actions);
commit_set_ether_addr_action(flow, base, odp_actions);
commit_vlan_action(flow, base, odp_actions);
commit_set_nw_action(flow, base, odp_actions);
commit_set_port_action(flow, base, odp_actions);
commit_set_priority_action(flow, base, odp_actions);
}
Something went wrong with that request. Please try again.