# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import json import os import sys import time from pathlib import Path from typing import List, Optional, Tuple, TypedDict import torch import torch.nn.functional as F from llama.model import ModelArgs, Transformer from llama.tokenizer import ChatFormat, Dialog, Message, Tokenizer class CompletionPrediction(TypedDict, total=False): generation: str tokens: List[str] # not required logprobs: List[float] # not required class ChatPrediction(TypedDict, total=False): generation: Message tokens: List[str] # not required logprobs: List[float] # not required class Llama: @staticmethod def build( ckpt_dir: str, tokenizer_path: str, max_seq_len: int, max_batch_size: int, seed: int = 1, ) -> "Llama": """ Build a Llama instance by initializing and loading a model checkpoint. Args: ckpt_dir (str): Path to the directory containing checkpoint files. tokenizer_path (str): Path to the tokenizer file. max_seq_len (int): Maximum sequence length for input text. max_batch_size (int): Maximum batch size for inference. model_parallel_size (Optional[int], optional): Number of model parallel processes. If not provided, it's determined from the environment. Defaults to None. Returns: Llama: An instance of the Llama class with the loaded model and tokenizer. Raises: AssertionError: If there are no checkpoint files in the specified directory, or if the model parallel size does not match the number of checkpoint files. Note: This method initializes the distributed process group, sets the device to CUDA, and loads the pre-trained model and tokenizer. """ # seed must be the same in all processes torch.manual_seed(seed) start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" ckpt_path = checkpoints[0] checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params, ) tokenizer = Tokenizer(model_path=tokenizer_path) assert model_args.vocab_size == tokenizer.n_words torch.set_default_tensor_type(torch.FloatTensor) model = Transformer(model_args) model.load_state_dict(checkpoint, strict=False) model.to('cpu') print(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer) def __init__(self, model: Transformer, tokenizer: Tokenizer): self.model = model self.tokenizer = tokenizer self.formatter = ChatFormat(tokenizer) @torch.inference_mode() def generate( self, prompt_tokens: List[List[int]], max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = False, echo: bool = False, ) -> Tuple[List[List[int]], Optional[List[List[float]]]]: """ Generate text sequences based on provided prompts using the language generation model. Args: prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers. max_gen_len (int): Maximum length of the generated text sequence. temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. Returns: Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities. Note: This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness. If logprobs is True, token log probabilities are computed for each generated token. """ params = self.model.params bsz = len(prompt_tokens) assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) assert max_prompt_len <= params.max_seq_len total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cpu") for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cpu") if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) prev_pos = 0 eos_reached = torch.tensor([False] * bsz, device="cpu") input_text_mask = tokens != pad_id if min_prompt_len == total_len: logits = self.model.forward(tokens, prev_pos) token_logprobs = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens, reduction="none", ignore_index=pad_id, ) stop_tokens = torch.tensor(list(self.tokenizer.stop_tokens)) for cur_pos in range(min_prompt_len, total_len): logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where( input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token ) tokens[:, cur_pos] = next_token if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & ( torch.isin(next_token, stop_tokens) ) prev_pos = cur_pos if all(eos_reached): break if logprobs: token_logprobs = token_logprobs.tolist() out_tokens, out_logprobs = [], [] for i, toks in enumerate(tokens.tolist()): # cut to max gen len start = 0 if echo else len(prompt_tokens[i]) toks = toks[start : len(prompt_tokens[i]) + max_gen_len] probs = None if logprobs: probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len] # cut to after eos tok if any for stop_token in self.tokenizer.stop_tokens: try: eos_idx = toks.index(stop_token) toks = toks[:eos_idx] probs = probs[:eos_idx] if logprobs else None except ValueError: pass out_tokens.append(toks) out_logprobs.append(probs) return (out_tokens, out_logprobs if logprobs else None) def text_completion( self, prompts: List[str], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, echo: bool = False, ) -> List[CompletionPrediction]: """ Perform text completion for a list of prompts using the language generation model. Args: prompts (List[str]): List of text prompts for completion. temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence. If not provided, it's set to the model's maximum sequence length minus 1. logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. Returns: List[CompletionPrediction]: List of completion predictions, each containing the generated text completion. Note: This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness. If logprobs is True, token log probabilities are computed for each generated token. """ if max_gen_len is None: max_gen_len = self.model.params.max_seq_len - 1 prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts] generation_tokens, generation_logprobs = self.generate( prompt_tokens=prompt_tokens, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=echo, ) if logprobs: return [ { "generation": self.tokenizer.decode(t), "tokens": [self.tokenizer.decode([x]) for x in t], "logprobs": logprobs_i, } for t, logprobs_i in zip(generation_tokens, generation_logprobs) ] return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens] def chat_completion( self, dialogs: List[Dialog], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, ) -> List[ChatPrediction]: """ Generate assistant responses for a list of conversational dialogs using the language generation model. Args: dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages. temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. max_gen_len (Optional[int], optional): Maximum length of the generated response sequence. If not provided, it's set to the model's maximum sequence length minus 1. logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. Returns: List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response. Note: This method generates assistant responses for the provided conversational dialogs. It employs nucleus sampling to introduce controlled randomness in text generation. If logprobs is True, token log probabilities are computed for each generated token. """ if max_gen_len is None: max_gen_len = self.model.params.max_seq_len - 1 prompt_tokens = [ self.formatter.encode_dialog_prompt(dialog) for dialog in dialogs ] generation_tokens, generation_logprobs = self.generate( prompt_tokens=prompt_tokens, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=logprobs, ) if logprobs: return [ { "generation": { "role": "assistant", "content": self.tokenizer.decode(t), }, "tokens": [self.tokenizer.decode([x]) for x in t], "logprobs": logprobs_i, } for t, logprobs_i in zip(generation_tokens, generation_logprobs) ] return [ { "generation": { "role": "assistant", "content": self.tokenizer.decode(t), }, } for t in generation_tokens ] def sample_top_p(probs, p): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token