# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import math from dataclasses import dataclass from typing import Optional, Tuple import fairscale.nn.model_parallel.initialize as fs_init import torch import torch.nn.functional as F from fairscale.nn.model_parallel.layers import ( ColumnParallelLinear, RowParallelLinear, VocabParallelEmbedding, ) from torch import nn @dataclass class ModelArgs: dim: int = 4096 n_layers: int = 32 n_heads: int = 32 n_kv_heads: Optional[int] = None vocab_size: int = -1 multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None norm_eps: float = 1e-5 rope_theta: float = 500000 max_batch_size: int = 32 max_seq_len: int = 2048 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device, dtype=torch.float32) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, n_kv_heads, n_rep, head_dim) .reshape(bs, slen, n_kv_heads * n_rep, head_dim) ) class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads model_parallel_size = 1 self.n_local_heads = args.n_heads // model_parallel_size self.n_local_kv_heads = self.n_kv_heads // model_parallel_size self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.dim // args.n_heads self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) self.cache_k = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ) self.cache_v = torch.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ) def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = self.cache_k.to(xq) self.cache_v = self.cache_v.to(xq) self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] # repeat k/v heads if n_kv_heads < n_heads keys = repeat_kv( keys, self.n_rep ) # (bs, cache_len + seqlen, n_local_heads, head_dim) values = repeat_kv( values, self.n_rep ) # (bs, cache_len + seqlen, n_local_heads, head_dim) xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) values = values.transpose( 1, 2 ) # (bs, n_local_heads, cache_len + seqlen, head_dim) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class TransformerBlock(nn.Module): def __init__(self, layer_id: int, args: ModelArgs): super().__init__() self.n_heads = args.n_heads self.dim = args.dim self.head_dim = args.dim // args.n_heads self.attention = Attention(args) self.feed_forward = FeedForward( dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of, ffn_dim_multiplier=args.ffn_dim_multiplier, ) self.layer_id = layer_id self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask) out = h + self.feed_forward(self.ffn_norm(h)) return out class Transformer(nn.Module): def __init__(self, params: ModelArgs): super().__init__() self.params = params self.vocab_size = params.vocab_size self.n_layers = params.n_layers self.tok_embeddings = nn.Embedding( params.vocab_size, params.dim ) self.layers = torch.nn.ModuleList() for layer_id in range(params.n_layers): self.layers.append(TransformerBlock(layer_id, params)) self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output = nn.Linear( params.dim, params.vocab_size, bias=False ) self.freqs_cis = precompute_freqs_cis( params.dim // params.n_heads, params.max_seq_len * 2, params.rope_theta, ) @torch.inference_mode() def forward(self, tokens: torch.Tensor, start_pos: int): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) # self.freqs_cis = self.freqs_cis.to(h.device) freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] mask = None if seqlen > 1: mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device) mask = torch.triu(mask, diagonal=1) # When performing key-value caching, we compute the attention scores # only for the new sequence. Thus, the matrix of scores is of size # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for # j > cache_len + i, since row i corresponds to token cache_len + i. mask = torch.hstack( [torch.zeros((seqlen, start_pos),), mask] ).type_as(h) for layer in self.layers: h = layer(h, start_pos, freqs_cis, mask) h = self.norm(h) output = self.output(h).float() return output