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Chapter 1

Introduction

While the C programming language provides good support for writing efficient,
low-level code, it is not adequate for defining higher-level abstractions relevant
to embedded software. This project addresses that problem and proposes a
language inspired by mbeddr [3] that provides object-oriented functionalities to
embedded software developers. The main advantage of MetaC over mbeddr is
that MetaC is a textual language rather than a projectional language.

MetaC results so a domain specific language oriented to the development of
reliable and highly maintainable software, equipped with extensions such as
State Machine Modelling and Runtime Message Reporting that exempts
programmers from writing boilerplate code.

The language has been built on the solid basis of BaseC, that is described
in detail in this document, and implemented via Stratego/XT [2] and Spoofax
[1] technologies.

Issues as architecture-independence and extensibility have been tackled in
the Spring of 2013 at the TU Delft University, during the course of Model-Driven
Software Development, by four students leaded by Professor Eelco Visser and
supported by the Software Engineering Research Group for one semester.

This documentent is structured as follows. In the next section, a Conceptual
view of mbeddr is given, with references to this project, in order to evidence
strengths of both solution. In section 3, BaseC implementation details are
described, with a description of the standard development process used to obtain
executable software starting from MetaC programs, and focusing on aspects of
syntax and name binding. Sections 4 and 5 contain two DSLs for State Machines
Modelling and Runtime Message Reporting , along with implementation and
usage aspects. The last section describes future improvements. The appendices
contain a quick reference is provided to be used as handy manual.
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Chapter 2

Concepts of MetaC

MetaC is inspired by mbeddr. mbeddr is a language that provides support for
developing embedded software. The main difference between mbeddr and
MetaC is that mbeddr uses a projectional editor while MetaC is a textual
language.

mbeddr enables C programmers to use abstract concepts that are not allowed
in standard C as State-Machine-based reasoning or object-oriented modularity.
Those concepts can be heavily used for tailoring software to the embedded
domain to produce software more maintainable and fixable. Moreover, features
that are prohibited in the majority of standards have been removed, in order to
keep the software stable and reliable.

mbeddr has been designed with MPS [4]. Its approach is radically different
from the other embedded development tools, third parties can use the same
mechanisms for building their own extensions that were used to implement C and
the existing extensions. MPS has a projectional editor, directly manipulating
the AST instead of parsing text, which makes building extensions to the syntax
easier.

Also, mbeddr embody tools to support key aspects of the Software
Engineering Process as Requirement Verification and Documentation. Via
MPS it provides functionalities as such as Model Checking and Contract
verification.

MetaC is a textual language instead of being a projectional language. The
main advantage of this is to not need any specific environment to be used in its
core functionality and to be able to use plaintext based tools such as version
control with the source code.

MetaC provides support to a big variety of data type that are platform
independent, as mbeddr, but also allows old-style C constructs that experienced
programmers can exploit to produce very efficient code.

Also, object-oriented reasoning is enabled by the mbeddr-like concept of
module and this way C is enriched by features as encapsulation and inheritance
that programmers can use in code in an elegant fashion.

The State Machine Modelling and Runtime Message Reporting extensions
are ported from mbeddr. This way the effort for code migration from mbeddr
and maintainability are minimized. Software writtin in mbeddr can be easily
ported to MetaC, if the all extensions used in mbeddr are available.
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Chapter 3

BaseC

BaseC is a language based on C but abstracting over tradtional .c and .h files.
MetaC is BaseC plus extensions, and will be covered in the next chapters. In
this chapter BaseC is described in detail.

3.1 Syntax
The top level concept in MetaC programs are modules. Modules act as
namespaces and as the unit of encapsulation. The classical separation between
.c and .h files doesn’t exists in MetaC. The code resides in .mc files that get
transformed to .c and .h files during the generation phase. A module can
import other modules. The importing module can then access the exported
contents of imported modules. Module contents can be exported using the
keyword exported. All other syntax is simply C.

A basic module is shown in code snippet below.

module HelloWorld {
int32 main() {

return 0;
}

}

3.2 Name binding and type checking
The namebinding for BaseC follows the same rules as basic C. However, the
scope of entities declared inside modules without the “exported” specifier is
limited and these entities are not visible outside the module.

Unlike usual C IDEs, MetaC provides type checking during editing, and
not only after an explicit compilation. The type checking is performed on
statements, expressions and declarations with initialization, that include
variables, numerals and function calls. Additionally, the return types and
parameter types of function calls are also type checked.

Like in C, typedefs define synonym types to already existing types. In
MetaC, when the type checking encounters a synonym type, it recursively
extracts the base type, which is then used in the type checking.
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3.3 Mapping to C and Building

Figure 3.1: The transformation steps in compilation of MetaC

In the bigger picture the mapping from BaseC to C is called the generate
step as is shown in Figure 3.1. MetaC is mapped to c and h files together with
a make file. Every module generates one c file and one header file. External
modules only generate a header file (see next subsection for that). This mapping
is based on the way mbeddr maps its modules to c, h and makefile.
The c corresponding to a MetaC module contains:

• Its corresponding header file

• The header files of the imported modules

• Declarations

• Function definitions

• Structs, Unions and Enums

The accompanying header file contains:

• standard ifndef define

• all external functions

The makefile contains:

• All object file targets for all modules

For multiple files the imports are chased iteratively as is shown in Figure 3.2.
A check is done to ensure modules referenced more than once is only included
once in this process. Cyclic references are solved the same way.

After the c files, the headers files and the makefile are generated make with
gcc is called, which compiles the program into an executable. This can bee seen
in Figure 3.3 which also shows the last part of the complete build process.

Figure 3.2: Tracing imports
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Figure 3.3: The complete build process of MetaC

3.3.1 Example program with two modules
Here we show an example with two modules. The MetaC files (*.mc) show the
source code, and the other files the generated c, h and make-file(s) which are
fed to gcc.

test52.mc

module test52 imports factorial{
exported int32 main(int32 argc, string[] argv) {

printf("5! is %d \n", fact(5));
return 0;

}
}

factorial.mc

module factorial{
exported int32 fact(int32 x){

if (x <= 1)
return 1;

return x * fact(x-1);
}

}

test52.h

#ifndef TEST52
#define TEST52

#include <stdint.h>

int32_t main (int32_t argc, int8_t * argv []);

#endif
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test52.c

#include "test52.h"
#include <stdlib.h>
#include "factorial.h"
int32_t main (int32_t argc, int8_t * argv [])
{

printf("5! is %d \n", fact(5));
return(0);

}

factorial.h

#ifndef FACTORIAL
#define FACTORIAL

#include <stdint.h>

int32_t fact (int32_t x);

#endif

factorial.c

#include "factorial.h"
#include <stdlib.h>
int32_t fact (int32_t x)
{

if((x <= 1))
return(1);

return((x * fact((x - 1))));
}

makefile

CC=gcc
CFLAGS=-std=c99
ODIR=./bin
_OBJ_test52=test52.o factorial.o
OBJ_test52=$(patsubst %,$(ODIR)/%,$(_OBJ_test52))

all: removeStuffFromLibraries clean test52
.PHONY: removeStuffFromLibraries all clean
removeStuffFromLibraries:

$(ODIR)/%.o: %.c
mkdir -p $(ODIR)

$(CC) $(CFLAGS) -c -o $@ $<
debug: CFLAGS +=-g
debug: clean test52
test52: $(OBJ_test52)

$(CC) $(CFLAGS) -o $@ $^
clean:

rm -rf $(ODIR)
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Note that all header files include stdint.h and that all .c files include stdlib.h
because these are needed for the test programs without external modules. In
the future these should be removed.

3.4 External: standard C libraries
Standard C libraries can be included by using external modules. These external
resources can be imported by using the resource keyword. External modules are
not compiled themselves, only the libraries they reference are imported. The
remainder of this section contains one example with the resulting c code showing
how this works in practise.
test50.mc

module test50 imports c_stdio{
exported int32 main(int32 argc, string[] argv){

int32 a = 3;
printf("%d",a);
return 0;

}
}

c_stdio.mc

external module c_stdio resources stdio.h {
void printf(string formatString, int32 arg1);

}

test50.h

#ifndef TEST50
#define TEST50
#include <stdint.h>
int32_t main (int32_t argc, int8_t * argv []);
#endif

test50.c

#include "test50.h"
#include <stdlib.h>
#include "c_stdio.h"
int32_t main (int32_t argc, int8_t * argv [])
{

int32_t a = 3;
printf("%d", a);
return(0);

}

c_stdio.h

#include <stdio.h>

makefile

CC=gcc
CFLAGS=-std=c99
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ODIR=./bin
_OBJ_test50=test50.o
OBJ_test50=$(patsubst %,$(ODIR)/%,$(_OBJ_test50))

all: removeStuffFromLibraries clean test50
.PHONY: removeStuffFromLibraries all clean
removeStuffFromLibraries:

$(ODIR)/%.o: %.c
mkdir -p $(ODIR)

$(CC) $(CFLAGS) -c -o $@ $<
debug: CFLAGS +=-g
debug: clean test50
test50: $(OBJ_test50)

$(CC) $(CFLAGS) -o $@ $^
clean:

rm -rf $(ODIR)
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Chapter 4

Reporting DSL

The implementation of the reporting DSL is relatively straightforward. The
message constructor has the form Message(id, paramList, modifier,
messageText) where messageText is a string representing the contents of the
message.

The example below shows the parsing of a message declaration.

INFO HelloWorld() active: "Hello, World!"

Message(
Identifier("HelloWorld"),
[],
MessageActive(),
String("\"Hello, World!\"")

)

During indexing, the last term of the constructor (the message text) is stored
in the index as MsgText() data. This term (messageText) is later retrieved
from the index during the to-basec phase (see the complete build process of
MetaC) in order to translate Report statements into printf() function calls.
The messageText is used as the parameter for the printf() call.

4.1 Example

module HelloWorld {
exported int32 main(int32 argc, string[] argv) {

report m.HelloWorld();
return 0;

}
messagelist m {

INFO HelloWorld() active: "Hello, World!"
}

}
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The report statement:

report m.HelloWorld();

will be translated to:

printf("Hello, World!");
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Chapter 5

State Machine DSL

The State Machine DSL is the main C extension implemented for MetaC. This
extension allows the definition and usage of State Machines inside regular
MetaC code. The MetaC State Machine DSL closely follows the mbeddr
implementation of State Machines.

5.1 Syntax
The syntax for the State Machine DSL follows the one used by mbeddr and can
be divided into State Machine definition syntax and State Machine operation
in BaseC syntax.

5.1.1 Definition
A State Machine is defined by using the following construction. The State
Machine name has to be a valid identifier according to BaseC, and the initial
state must be defined as a state inside the State Machine.

statemachine statemachine_name initial = initial_state.

A State Machine has several components:

• inner variables, declared using the keyword var;

• State Machine states, declared using the keyword state;

• transition triggering events, declared using the keyword in;

• outer events, declared using the keyword out;

In and out events must be declared before they can be used in states to
describe transitions. Their declaration is the same as for function prototypes,
except for the missing return type. In addition, the out events have to be bound
to an external function, called when the outer events are triggered.

state beforeFlight {
entry { points = 0; }
on next [tp->alt > 0] -> airborne
on report[]-> beforeFlight {printf("STATE: beforeFlight");}
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exit { points += TAKEOFF; }
}

State machine states have three elements, all of them optional.

• entry clause defines a block of instructions executed when entering the
state;

• exit clause defines a block of instructions executed before leaving the state;

• transitions, marked by the keyword on. In the general syntax for
transitions, the transition condition is expressed between square brackets
as a boolean expression, with the parameters of the transition triggering
event, declared at the State Machine level. The instructions that need to
be executed during the transition are listed in an optional block.

on <trigger_event> [ <condition> ] -> <target_state> <block?>

5.1.2 Integration with BaseC
In BaseC, State Machines are defined inside modules, next to structs and
functions. Similarly to structs, a State Machine definition generates a new
type. Further, one can declare variables that have State Machine types
previously defined.

module AnalyzeFlight{
statemachine analyzeFlight initial = beforeFlight {

...
}
exported int8 main(int32 argc, string[] argv) {

statemachine analyzeFlight smvar;
return 0;

}
}

Handling State Machine variables is done through three predefined functions:
two translate into BaseC statements (sminit and smtrigger), and one into a
BaseC expression (smIsInState).

• sminit(smvar); initializes the internal variables of the State Machine and
sets the initial state. The only parameter points to a variable of a State
Machine type.

• smtrigger(smvar, report()); sends an event to the State Machine. The
two parameters point to the State Machine variable and the in event that
needs to be analyzed.

• smIsInState(smvar, statename); checks whether the State Machine’s
current state is the one indicated by the second parameter. The statename
parameter is an identifier describing an existing state of the State Machine.
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5.2 Type checking and name binding
Since the State Machine DSL is built upon BaseC, most of the typechecking
and name binding are inherited from BaseC. The additional name binding is
related to states, events, inner variables and outer events to functions defined
in BaseC.

In the State Machine definition, no additional type checking is needed,
other than the one inherited from BaseC. However, type checking rules are
necessary when the State Machine DSL is integrated into BaseC. A State
Machine definition generates a type, so it has to be integrated in the type
system, similarly to structs. Further type checking is done on the call
parameters of the predefined functions for State Machine handling.

5.3 Mapping to BaseC
The State Machine to BaseC mapping transforms the State Machine constructor
into a list consisting of headerAST, initFunction and executeFunction.

The headerAST contains:

• an enum that is used to store the states of the State Machine

• an enum used to store the events that the State Machine can react to

• a struct that contains internal variables defined by the State Machine +
a special field (__currentState) that is used to store the current state of
the State Machine

The initFunction has the role of initializing the variables of the State
Machine and the __currentState variable to their default values. The
function has one parameter: a pointer to the State Machine variable that
needs to be (re-)initialized.

The executeFunction is the ‘engine’ of the State Machine. It has 3
parameters: a pointer to the State Machine variable, the name of the event
and a (double) pointer to a void variable that is used to pass the event
arguments to the State Machine. The executeFunction is structured as nested
switch-case statements. The outer switch statement checks the current state of
the State Machine. Each case statement matches a particular state and has as
a ‘body’ another switch statement that checks the current event. The case
statements of the event switch match only the events that can be received in
that state and the body of these event case statements consists of the
statements contained in the entry, exit and transition blocks of the state.
First, the statements from the current state’s exit block are generated,
followed by the statements from the appropriate transition block, a statement
that changes the value of the current state variable to the corresponding next
state and finally, the statements found in the next state’s entry block. The
transition from one state to another can also be controlled with a boolean
condition. If this is the case, the statement described above are generated
inside an if statement block which checks that condition.
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5.3.1 Example
State Machine definition

statemachine counter initial = start {
readable var int8 current = 0
in increment(int8 delta)
in reset()
state start {

entry {
current = 0;

}
exit {

printf("exit start\n");
}
on increment[delta<15]->

increasing {current +=delta;}
}

state increasing {
entry{

printf("in increasing: current: %d\n",current);
}
on reset[] -> start {printf("statemachine reset\n");}
on increment[delta<5 && current<5]-> increasing {current

+=delta;}
}

}

headerAST

enum moduleName_sm_events_counter{
counter__event_increment,
counter__event_reset

};
enum moduleName_sm_states_counter{

counter__state_start,
counter__state_increasing

};
struct moduleName_sm_data_counter{

enum moduleName_sm_states_counter __currentState;
int8_t current;

};

initFunction

void moduleName_sm_init_counter(
struct moduleName_sm_data_counter * instance){

instance->__currentState = counter__state_start;
instance->current = 0;

}
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executeFunction

void moduleName_sm_execute_counter(
struct moduleName_sm_data_counter* instance,
enum moduleName_sm_events_counter event,
void** arguments){
switch ( instance->__currentState ){

case counter__state_start:{
switch(event){

case counter__event_increment:
{

if((((*((int8_t*)arguments[0])))<15))
{

printf("exit start\n");
instance->current +=

((*((int8_t*)arguments[0])));
instance->__currentState =

counter__state_increasing;
printf("in increasing: current: %d\n",

instance->current);
return(-1);

}break;
}

}break;
}
case counter__state_increasing:{

switch(event){
case counter__event_reset:{

{
printf("statemachine reset\n");
instance->__currentState =

counter__state_start;
instance->current = 0;
return(-1);

}break;
}
case counter__event_increment:{

if(((((*((int8_t*)arguments[0]))) < 5) &&
(instance->current < 5)))

{
instance->current +=

((*((int8_t*)arguments[0])));
instance->__currentState =

counter__state_increasing;
printf("in increasing: current: %d\n",

instance->current);
return(-1);

}break ;
}

}break; }}}
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Chapter 6

Future work

MetaC is a solid base for future expansions. The language provides basic
functionality with modules and has the reporting and State Machine DSLs.
Some suggested features can be found on the issue tracker of MetaC 1.

6.1 Import all std. C libraries automatically
One suggestion to improve MetaC is to automatically generate all external
modules wrapping C standard libraries. The glibc is however full of macros,
which make it non trivial to extract the external function definitions.
Discussing this feature can be done on the issue tracker 2.

6.2 Import custom C libraries
An important feature for MetaC is the use of external custom C libraries. This
is important as developers can keep using existing systems and build MetaC
on top of these systems. As with the standard C libraries this could be done
automatically, too. Based on the amount of macros in these custom libraries
this might either be easy or not. Writing a generic solution would mean ignoring
macros, since tracing all macro logic is nearly impossible3.

6.3 Variable argument function definitions
In order to support variable argument functions for standard C libraries these
variable argument functions need to be supported in MetaC themselves 4.
Since functions like printf are often used this would be a very appreciated
improvement. For developers of embedded software this might be less
important since embedded programming is usually conservative in use of
features for performance and reliability.

1http://yellowgrass.org/project/MetaC
2http://yellowgrass.org/issue/MetaC/39
3http://yellowgrass.org/issue/MetaC/47
4http://yellowgrass.org/issue/MetaC/43
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6.4 Changing synonym types
Currently, defining struct and State Machine variables is done by using
unambiguous type names. For example:

struct Person john;
statemachine counter varStatemachine;

An improvement would be to define struct and State Machine variables
without using the struct and statemachine keywords. Currently, defining a
variable in this way: Person john; will define a variable ’john’ with the type
TypeSynonym(Identifier(Person)). This can be extended to check if any State
Machines or structs have been defined with that name (Person) and change
the type of the variable accordingly if this is true. This is an interesting
problem because it is characteristic to text-based editors and is typically not
encountered in projectional editors.

6.5 Configurable reporting DSL
Another improvement to MetaC would be to make the reporting DSL
configurable. Currently, all report statements are translated into printf.
However, in an embedded environment, reporting errors or creating logging
information with printf does not make sense for a lot of applications. Thus,
the reporting DSL should be extended to translate report statements into
statements that set memory flags or update different registers.

6.6 Units
Implementing a DSL that attaches physical units to variables, as described in
thee mbeddr userguide, is another interesting option for future work. Such a
DSL would test the flexibility of the current typing and typechecking systems.

6.7 Making pointers safe
Another future improvement of MetaC would be making pointer operation
safe. This could be implemented by disallowing pointer operations in the
BaseC language and implementing them and related checks in a separate DSL
that needs to be activated explicitly.

6.8 Conclusion
In conclusion, there are a lot of possible future improvements for MetaC, both
by improving or extending existing systems and by implementing new features
or extensions. Currently, mbeddr has a wide range of extensions available that
can serve as inspiration. These include pre- and postconditions, support for
requirement tracing and product line variablity. However, the focus should be
on implementing extensions that offer real value to the general user, as the
usability of these extensions varies based on the user’s domain and interest.
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Appendix A

Quick reference

A.1 Datatypes
In table below is reported a list of data types implemented in the syntax of
MetaC, with reference to the equivalent standard C data type and size of the
type.

MetaC Standard C Size [bit]
boolean - -
int8 char 8
int16 short 16
int32 int 32
int64 long long 64
uint8 unsigned char 8
uint16 unsigned short 16
uint32 unsigned int 32
uint64 unsigned long long 64
float float 32
double double 64
string - -

Table A.1: MetaC and Standard C data types

A.2 Non-decimal numbers
There are three types of non decimal representation of numbers:

• binary. Binary numbers can be expressed in the form [0][b][0-1]+.

• Octal. Octal numbers can be expressed in the form [0][0-7]+.

• Hexadecimal. Hex numbers can be epxressed in the form [0][xX][0-9a-fA-
F]+.
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Appendix B

Get up and running

The readme.md1 file can be found on the github page of the project. It contains
example files.

B.1 Get Spoofax
In order to build this project get Eclipse 3.7/3.8 and install Spoofax
(http://metaborg.org/wiki/spoofax/download).

The nightly version of Spoofax is required to work with the template
language files (*.tmpl).

B.2 Checkout project
Clone https://github.com/metaborg/metac.git in Eclipse-Spoofax.

B.3 First build
The first build is actually building the project. Everything should work out of
the box, including the template language.

1https://github.com/metaborg/metac
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