
The scale of change



Y ou are starting a software company. 
Whether it’s an online service, a mobile 
app, or a deep tech startup, your long 

term goal is probably not to write the software 
itself, but to achieve certain business targets 
using the software you’re developing as a tool. 

But what brings value to your software? An 
inert piece of software will only be able to deal 
with the conditions considered when it was 
created. But the world isn’t static, and neither 
can your software be. As time passes, 
everything outside your software changes: the 
data you work with, the way your software is 
used, the platforms it runs on, etc.

Therefore, in order to stay relevant and make 
your software actually valuable, you have no 
choice but to keep changing your software. In 
fact, the longer your software exists, the more 
work you need to put towards keeping up with 
the times. Worst case scenario, at some point 
you either lose the velocity and stop making 
progress, or even fall behind rapidly. So how 
can you catch up with the time? Most companies use version control systems to 

manage their source code. Version control 
systems provide a way to keep track of changes. 
Git is probably the most popular version 
control system today. On top of version control 
systems like Git, platforms like GitHub provide 
tools for collaboration such as code review, 
issue tracking and so on.

At the core of any version control system 
there’s a concept of change. In Git, a single 
atomic change is referred to as “commit”. 
Developers contribute commits one by one, 
often preceded by automated validity checks 
and code review. Every commit represents its 
own unique state of code.

A chain of changes comprises a history. In 
terms of Git, every repository usually contains 
one history, often scoped to a specific project. 
The rise of collaboration platforms like GitHub 
has contributed to the popularity of 
development models where every project gets a 
separate repository. This becomes especially 
relevant over time: repositories are often 
created to enable code sharing and 
collaboration.

This, in turn, means that different projects have 
different histories that aren’t connected, even if 
they are developed on the same time axis. This 
might be acceptable when the projects are 
completely independent, however, in practice 
that is rarely the case.

Even though different projects are developed 
at the same time, it’s difficult to establish a 
connection between them as there’s no link 
in the data model behind the collection of 

different histories



S o what happens when your projects aren’t 
actually independent? There are different 
ways to connect projects that developers 

came up with over time since the multi-reposi-
tory model became popular. However, one 
common denominator is the need to decide 
between either specifying the exact points in 
history which are connected, or leaving one end 
loose and just always pointing to the latest. 
Both of these approaches present their own 
challenges that can’t be solved easily.

When using Git, a common approach is to just 
pick up the latest version of the dependency 
from a repository and a branch. While this 
seems simple enough, it doesn’t scale neither in 
time nor in terms of the size of the codebase: 
every time an upstream dependency changes, 
its tests only take into account its own code 
without downstream consumers. Therefore, 
changing a software entity that other entities 
depend upon is like making changes blindly 
without knowing whether or not they intro-
duce problems.

Instead, it is common to pin dependency ver-
sions by specifying commit SHA1 of a submod-
ule or using the SHA1 in some other way, like 
with language-specific package versions, it 
would be possible to have reproducible builds 
and tests. However, every time the dependency 
is updated, the update wouldn’t propagate auto-
matically to the software entity consuming it. 
There are different solutions for automatically 
bumping dependency versions, but something 
most of them have in common is that the bump 
happens after the change is already merged in 
the dependency.

Moreover, pinning means that from the whole 
exponentially growing set of different version 
combinations, only some versions are meant to 
work together. Building a working set of differ-
ent versions therefore involves both guesswork 
and reliance on human-created rules such as 
semantic versioning. Attempts to automate 
verification of different versions combinations 
are doomed to fail as they would require han-
dling an exponentially growing number of 
combinations.

This means that in a context of a multi-reposi-
tory development model with projects con-
nected by a dependency relationship, change 
that appears to exist within a context of a single 
repository might actually be a change within a 
context of multiple ones. However, this is not 
reflected in the development model or 

When projects with disconnected histories 
are in a dependency relationship, the 

potential number of version combinations 
grows exponentially — even when using 

semantic versioning

This contradiction eventually resulted in 
an attempt to move away from the multi-
repository paradigm. This contributed to the 
rise of popularity of monorepos.

In a monorepo, multiple software projects 
reside together in one repository. Some of these 
projects may be connected by dependency rela-
tionships. This arrangement enables developers 
to make atomic changes across several different 
components. Because components are tested 
together, there is no possibility of confusion 
about what versions of what components work 
together: any given commit represents a valid 
state. Moreover, when making changes to soft-
ware components that other projects in the 
monorepo depend upon, the effect of the 
changes is visible immediately, dramatically 
shortening the feedback cycle.

However, monorepos come at a cost. First of 
all, most software development platforms like 
GitHub were not made with monorepos in 
mind. This is mainly reflected in UI and UX 
choices: developers are used to the model of one 
repository per project, with issues, pull request 
discussions and other metadata scoped per-
project as well. This creates a psychological 
effect for developers where putting multiple 
projects in a single repo is seen as removing a 
degree of separation and mixing code that 
shouldn’t be mixed — even though the reposi-
tory layout has no effect on those qualities. 

acknowledged by the developers. As a result, 
every time a change is made, its impact is only 
seen much later, requiring extra runs of this 
particularly long feedback loop.



Additionally, at a certain scale, the lack of scop-
ing of metadata such as issues and pull requests 
creates information noise for teams that only 
are interested in a subset of projects.

Secondly, as the amount of code in monorepo 
increases, it becomes increasingly more difficult 
to deal with the size of code. One of the most 
common complaints about monorepos is the 
process of working with them being slow. 
Developers often have negative experiences 
working with really big Git or Subversion 
repositories that were not using any additional 
tooling to improve the monorepo experience. 
To start working with the monorepo often 
means running a full clone for hours or even 
days.

Finally, lack of granular access control means 
that any given developer can access either all of 
the code or none of it. It becomes even more 
complicated when organizations want to share 
a part of their codebase with other organiza-
tions or as an open-source project.

Therefore, while monorepos became more 
popular, only the companies that could afford 
spending on custom tooling to make the work-
flow more bearable. Examples include tools that 
enable Git clients to do partial checkout, as well 
as automatic repository synchronization tools.

This presents a problem of scale that over time 
becomes more and more relevant in a world 
increasingly defined by software.

2017 Microsoft 
monorepo:

"The largest Git repo 
on the planet"

2016 Google monorepo:

"Why Google Stores Billions 
of Lines of Code in a Single 

Repository"

2013 2023
Relative search interest in monorepos

Data: Google Trends

W hile the benefits of using a 
monorepo are well defined and very 
attractive for a software organi-

zation, the downsides hinder adoption. So what 
can be done about the problem of scale?

One assumption that might arise from the 
available literature on the topic on monorepos 
is that there exists a hard choice between a 
single and multiple repository model. Let’s 
examine this assumption in depth in context of 
Git as a version control system.

In Git, repository history consists of commits. 
Commits are nodes in a directed acyclic graph. 
Every commit refers to a tree of objects. Trees 
represent structures similar to how files and 
folders are laid out in a filesystem; every inter-
mediate tree node represents a path 
component, and leaves of the tree link to 
objects that store the contents of the files.

Every Git commit can be identified by the 
combined hash of the object tree it points to 
and other data such as commit parents. This 
means that any given Git history can be 
transformed in a variety of ways by going 
through the history and recombining parts of 
the trees to get a projection of the repository. 
This projection would only contain relevant 
parts of the whole history.

Because of how the Git data model is designed, 
this history transformation can be performed 
incrementally, with parts of transformed 
histories cached for reuse. Therefore, this 
transformation can be extremely cheap, even 
on really large repositories.

This presents a new realm for Git repositories: 
any repository could be viewed through a 
number of different projections, each only 

components

button.js

components

input.js

button.js

The data model of Git makes efficient 
history transformations possible



focusing on relevant components. This new Git 
history would be just like any other repository 
history: it would be possible to clone it and 
make new commits. In practice, it would give 
developers a way to work on a projection of a 
monorepo, only working with commits and 
code relevant to them.

Moreover, it would be possible to perform the 
opposite transformation: when a developer 
pushes a commit to such a projection, because 
the initial transformation is known, and can be 
restricted to be made fully reversible. This 
means that every change pushed to a 
projection, even though made from a limited 
view, is still a part of the single history, and in 
turn, the benefits of monorepos are preserved 
even though developers do not work with the 
whole big repository.

There have been attempts at writing tools for 
editing Git histories. For example, “git-filter-
branch” command, included in Git, offers a 
command line interface for one-time 
operations, like removing unwanted files from 
a history. Like most other tools of that nature, 
it is too slow for practical use in this scenario. 
The reverse transformation is also not 
supported.

However, this is still a theoretical description. 
To make it work in the real world, we can wrap 
this history filtering mechanism into a service. 
There are different ways this service could 
work; we will look at one of the possible 
scenarios.

The core of this technology was implemented 
in an open source project “Josh” — from “Just 
One Single History”. Josh provides a bare-bone 
history transformation solution for companies 
to build on top of, and integrate in their own 
tooling.

Metahead is a continuation of this idea that 
aims to provide a complete software 
engineering and version control platform, 
democratizing this technology by making it 
available for companies of any size. Metahead 
erases the boundary between monorepos and 
multirepos without requiring organizations to 
develop their own complex tooling. It also 
scales with your organization, enabling you to 
avoid the wall of exponential complexity and 
keep making changes.

Metahead connects to your existing repos and 
combines them in one single history in a meta-
repository which serves as the source of truth. 
It enables you to easily rearrange them into 
views as required by your business needs. Each 
of these views is a fully-fledged git repository. 
Pushes to them are reflected in every affected 
view, where CI checks can ensure the validity of 
the main history. Individual views can also have 
different access permissions, enabling granular 
access control.

Your software is only as valuable as the changes 
you make — and with Metahead, you bring 
value to your organization through your 
software.


