diff --git a/set.mm b/set.mm index 91bc13b7c3..21b4d0f963 100644 --- a/set.mm +++ b/set.mm @@ -583403,356 +583403,228 @@ A Fne if ( S = (/) , { X } , U. S ) ) $= $) ${ - $d A u v w x $. $d B u v w $. $d R u v w $. - weiunlem1.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - $( Lemma for ~ weiunpo , ~ weiunso , ~ weiunfr , and ~ weiunse . - (Contributed by Matthew House, 23-Aug-2025.) $) - weiunlem1 $p |- ( ( R We A /\ R Se A ) -> ( F : U_ x e. A B --> A /\ - A. w e. U_ x e. A B w e. [_ ( F ` w ) / x ]_ B /\ A. w e. U_ x e. A B - A. v e. A ( w e. [_ v / x ]_ B -> -. v R ( F ` w ) ) ) ) $= - ( wa cv csb wcel wral wbr wn wi wceq nfcv sylib wwe wse ciun wf crab crio - cfv ssrab2 wreu c0 wne wrex eliun sylbb2 wss wereu2 mpanr1 sylan2 riotacl - rabn0 syl sselid fmptd simpr fvmpt2 syl2anc eqeltrd elrabsf simprd sbcel2 - wsbc ralrimiva eqcomd wb cmpt nfriota1 nfmpt nfcxfr nffv nfn nfralw nfra1 - nfbr nfriota nfeq2 breq2 notbid ralbid riota2f mpbird anbi2i bitri imbi1i - impexp ralbii2 3jca ) EGUAEGUBJZAEFUCZEHUDBKZAWSHUGZFLMZBWRNWSACKZFLMZXBW - TGOZPZQZCENZBWRNWQBWRXBDKZGOZPZCWSFMZAEUEZNZDXLUFZEHWQWSWRMZJZXLEXNXKAEUH - ZXPXMDXLUIZXNXLMZXOWQXLUJUKZXRXOXKAEULXTAWSEFUMXKAEUTUNWQXLEUOXTXRXQDCEXL - GUPUQURZXMDXLUSVAZVBIVCWQXABWRXPXKAWTVKZXAXPWTEMZYCXPWTXLMZYDYCJXPWTXNXLX - PXOXSWTXNRWQXOVDYBBWRXNXLHIVEVFZYBVGZXKAWTEAESZVHTVIAWTWSFVJTVLWQXGBWRXPX - ECXLNZXGXPYIXNWTRZXPWTXNYFVMXPYEXRYIYJVNYGYAXMYIDXLWTDWSHDHBWRXNVOZIDBWRX - NDWRSXMDXLVPVQVRDWSSVSZXEDCXLDXLSXDDDXBWTGDXBSDGSYLWCVTWAXHWTRZXJXECXLCXH - WTCWSHCHYKICBWRXNCWRSXMCDXLXJCXLWBCXLSWDVQVRCWSSVSWEYMXIXDXHWTXBGWFWGWHWI - VFWJXEXFCXLEXBXLMZXEQXBEMZXCJZXEQYOXFQYNYPXEYNYOXKAXBVKZJYPXKAXBEYHVHYQXC - YOAXBWSFVJWKWLWMYOXCXEWNWLWOTVLWP $. - $} - - ${ - $d A u v w x $. $d A s t v w x $. $d B u $. $d B s t v w $. $d F s t $. - $d R u $. $d R s t v w $. - weiunlem2.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - $( Lemma for ~ weiunpo , ~ weiunso , and ~ weiunse . (Contributed by - Matthew House, 23-Aug-2025.) $) - weiunlem2 $p |- ( ( R We A /\ R Se A ) -> ( F : U_ x e. A B --> A /\ - A. t e. U_ x e. A B t e. [_ ( F ` t ) / x ]_ B /\ A. t e. U_ x e. A B - A. s e. A ( t e. [_ s / x ]_ B -> -. s R ( F ` t ) ) ) ) $= - ( cv csb wcel wral wbr wn wi nfv nfcv wwe wse ciun cfv w3a weiunlem1 biid - wa wf crab crio cmpt nfmpt1 nfcxfr nffv nfcsbw nfcri weq id fveq2 csbeq1d - eleq12d cbvralw nfbr nfn nfim nfralw nfra1 nfmpt wceq csbeq1 eleq2d breq1 - nfriota notbid imbi12d eleq1w breq2d ralbidv bitrid 3anbi123i sylib ) FHU - AFHUBUHAFGUCZFIUIZBLZAWEIUDZGMZNZBWCOZWEACLZGMZNZWJWFHPZQZRZCFOZBWCOZUEWD - ELZAWRIUDZGMZNZEWCOZWRAJLZGMZNZXCWSHPZQZRZJFOZEWCOZUEABCDFGHIKUFWDWDWIXBW - QXJWDUGWHXABEWCWHESBEWTBAWSGBWRIBIBWCWJDLHPQZCWEGNAFUJZOZDXLUKZULZKBWCXNU - MUNBWRTUOZBGTUPUQBEURZWEWRWGWTXQUSXQAWFWSGWEWRIUTZVAVBVCWPXIBEWCWPESXHBJF - BFTXEXGBXEBSXFBBXCWSHBXCTBHTXPVDVEVFVGWPWEXDNZXCWFHPZQZRZJFOXQXIWOYBCJFWO - JSXSYACXSCSXTCCXCWFHCXCTCHTCWEICIXOKCBWCXNCWCTXMCDXLXKCXLVHCXLTVNVIUNCWET - UOVDVEVFWJXCVJZWLXSWNYAYCWKXDWEAWJXCGVKVLYCWMXTWJXCWFHVMVOVPVCXQYBXHJFXQX - SXEYAXGBEXDVQXQXTXFXQWFWSXCHXRVRVOVPVSVTVCWAWB $. - $} - - ${ - $d A u v w x $. $d A p s t x $. $d A p q r x y z $. $d B u $. - $d B s t v w $. $d B p q r y z $. $d F y z $. $d F s t $. $d R u $. - $d R s v w $. $d R q r t $. $d R p q r y z $. $d S s $. - $d S p q r y z $. $d T p q r $. - weiunpo.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunpo.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ + $d ph t $. $d A m n o p q r s t u v w x $. $d A x y z $. + $d B m n o p q r s t u v w $. $d B y z $. $d C y z $. $d D y z $. + $d E n o s t $. $d F m n o p q r s t y z $. $d R m n o p q r s t u v w $. + $d R y z $. $d S m n o p q r s t y z $. $d T n o p q r $. $d V p q t $. + weiun.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. { x e. A | w e. B } + A. v e. { x e. A | w e. B } -. v R u ) ) $. + weiun.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. + $( Lemma for ~ weiunpo , ~ weiunso , ~ weiunfr , and ~ weiunse . + (Contributed by Matthew House, 8-Sep-2025.) $) + weiunlem1 $p |- ( C T D <-> ( ( C e. U_ x e. A B /\ + D e. U_ x e. A B ) /\ ( ( F ` C ) R ( F ` D ) \/ + ( ( F ` C ) = ( F ` D ) /\ C [_ ( F ` C ) / x ]_ S D ) ) ) ) $= + ( cfv wbr wceq wa cv csb ciun simpl fveq2d simpr breq12d eqeq12d breq123d + wo csbeq1d anbi12d orbi12d brab2a ) BUAZNQZCUAZNQZKRZUPURSZUOUQAUPLUBZRZT + ZUJINQZJNQZKRZVDVESZIJAVDLUBZRZTZUJBCIJAGHUCZVKMUOISZUQJSZTZUSVFVCVJVNUPV + DURVEKVNUOINVLVMUDZUEZVNUQJNVLVMUFZUEZUGVNUTVGVBVIVNUPVDURVEVPVRUHVNUOIUQ + JVAVHVOVNAUPVDLVPUKVQUIULUMPUN $. + + ${ + weiunlem2.3 $e |- ( ph -> R We A ) $. + weiunlem2.4 $e |- ( ph -> R Se A ) $. + $( Lemma for ~ weiunpo , ~ weiunso , ~ weiunfr , and ~ weiunse . + (Contributed by Matthew House, 23-Aug-2025.) $) + weiunlem2 $p |- ( ph -> ( F : U_ x e. A B --> A /\ + A. t e. U_ x e. A B t e. [_ ( F ` t ) / x ]_ B /\ + A. s e. A A. t e. [_ s / x ]_ B -. s R ( F ` t ) ) ) $= + ( vr wwe wse ciun wf cv cfv csb wcel wral wbr w3a wfn crab crio riotaex + wn wa fnmpti a1i wceq weq breq2 notbid ralbidv cbvriotavw rabbidv breq1 + eleq1w cbvralvw raleqdv bitrid riotaeqbidv eqtrid fvmpt3i adantl c0 wne + wreu wrex eliun rabn0 bitr4i wss ssrab2 wereu2 sylan2b riotacl2 eqeltrd + mpanr1 elrabi 3syl ralrimiva ffnfv sylanbrc wsbc dfsbcq elrabsf simprbi + syl nfcv vtoclga sbcel2 sylib simpr anbi2i bitri sylibr ne0d syldan rsp + elrab sylc ralrimivva 3jca syl2anc ) AIKUAZIKUBZBIJUCZINUDZHUEZBXTNUFZJ + UGUHZHXRUIZOUEZYAKUJZUPZHBYDJUGZUIOIUIZUKRSXPXQUQZXSYCYHYINXRULZYAIUHZH + XRUIXSYJYIEXRFUEZGUEZKUJZUPZFEUEJUHZBIUMZUIZGYQUNZNYRGYQUOZPURUSYIYKHXR + YIXTXRUHZUQZYAYDTUEZKUJZUPZOXTJUHZBIUMZUIZTUUGUMZUHZYAUUGUHZYKUUBYAUUHT + UUGUNZUUIUUAYAUULUTYIEXTYSUULXRNEHVAZYSYLUUCKUJZUPZFYQUIZTYQUNUULYRUUPG + TYQGTVAZYOUUOFYQUUQYNUUNYMUUCYLKVBVCVDVEUUMUUPUUHTYQUUGUUMYPUUFBIEHJVHV + FZUUPUUEOYQUIUUMUUHUUOUUEFOYQFOVAUUNUUDYLYDUUCKVGVCVIUUMUUEOYQUUGUURVJV + KVLVMPYTVNVOUUBUUHTUUGVRZUULUUIUHUUAYIUUGVPVQZUUSUUAUUFBIVSUUTBXTIJVTUU + FBIWAWBZYIUUGIWCUUTUUSUUFBIWDTOIUUGKWEWIWFUUHTUUGWGWSWHZUUHTYAUUGWJZUUF + BYAIWJWKWLHXRINWMWNYIYBHXRUUBUUFBYAWOZYBUUBUUJUUKUVDUVBUVCUUFBYDWOZUVDO + YAUUGUUFBYDYAWPYDUUGUHZYDIUHZUVEUUFBYDIBIWTWQZWRXAWKBYAXTJXBXCWLYIYFOHI + YGYIUVGXTYGUHZUQZUQZYFOUUGUIZUVFYFYIUVJUUAUVLUVKUUTUUAUVKUUGYDUVKUVJUVF + YIUVJXDUVFUVGUVEUQUVJUVHUVEUVIUVGBYDXTJXBXEXFXGZXHUVAXGUUBUUJUVLUVBUUJU + UKUVLUUHUVLTYAUUGUUCYAUTZUUEYFOUUGUVNUUDYEUUCYAYDKVBVCVDXKWRWSXIUVMYFOU + UGXJXLXMXNXO $. + + weiunfrlem.5 $e |- E = + ( iota_ p e. ( F " r ) A. q e. ( F " r ) -. q R p ) $. + weiunfrlem.6 $e |- ( ph -> r C_ U_ x e. A B ) $. + weiunfrlem.7 $e |- ( ph -> r =/= (/) ) $. + $( Lemma for ~ weiunfr . (Contributed by Matthew House, 23-Aug-2025.) $) + weiunfrlem $p |- ( ph -> ( E e. ( F " r ) /\ A. t e. r -. ( F ` t ) R E + /\ A. t e. ( r i^i [_ E / x ]_ B ) ( F ` t ) = E ) ) $= + ( vo vn vs cv cima wcel cfv wbr wn wral wceq csb cin crab crio wreu wwe + wa wse wss c0 wne ciun wf weiunlem2 simp1d fimassd cdm sseqtrrd sseqin2 + sylib eqnetrd imadisjlnd wereu2 syl22anc riotacl2 syl weq simpr breq12d + fdmd simpl notbid cbvraldva cbvrabv 3eltr4g breq2 ralbidv simpld simprd + elrab wfn wb ffnd breq1 ralima syl2anc mpbid wel elin1d syl2an2r csbeq1 + rspa raleqbidv simp3d sseldd rspcdva elin2d wor weso ffvelcdmd sotrieq2 + adantr syl12anc mpbir2and ralrimiva 3jca ) ANOPUIZUJZUKZHUIZOULZNKUMZUN + ZHYCUOZYGNUPZHYCBNJUQZURZUOAYEUFUIZNKUMZUNZUFYDUOZANYNUGUIZKUMZUNZUFYDU + OZUGYDUSZUKYEYQVCAQUIZRUIZKUMZUNZQYDUOZRYDUTZUUGRYDUSZNUUBAUUGRYDVAZUUH + UUIUKAIKVBZIKVDYDIVEYDVFVGUUJUAUBABIJVHZIOYCAUULIOVIZYFBYGJUQUKHUULUOZU + HUIZYGKUMZUNZHBUUOJUQZUOZUHIUOZABCDEFGHIJKLMOUHSTUAUBVJZVKZVLZAOYCAOVMZ + YCURZYCVFAYCUVDVEUVEYCUPAYCUULUVDUDAUULIOUVBWFVNYCUVDVOVPUEVQVRRQIYDKVS + VTUUGRYDWAWBUCUUAUUGUGRYDUGRWCZYTUUFUFQYDUVFUFQWCZVCZYSUUEUVHYNUUCYRUUD + KUVFUVGWDUVFUVGWGWEWHWIWJWKUUAYQUGNYDYRNUPZYTYPUFYDUVIYSYOYRNYNKWLWHWMW + PVPZWNZAYQYJAYEYQUVJWOAOUULWQYCUULVEZYQYJWRAUULIOUVBWSUDYPYIUFHUULYCOYN + YGUPYOYHYNYGNKWTWHXAXBXCZAYKHYMAYFYMUKZVCZYKYINYGKUMZUNZAYJUVNHPXDYIUVM + UVOYCYLYFAUVNWDZXEZYIHYCXHXFAUVQHYLUOZUVNYFYLUKUVQAUUSUVTUHINUUONUPZUUQ + UVQHUURYLBUUONJXGUWAUUPUVPUUONYGKWTWHXIAUUMUUNUUTUVAXJAYDINUVCUVKXKZXLU + VOYCYLYFUVRXMUVQHYLXHXFUVOIKXNZYGIUKNIUKZYKYIUVQVCWRAUWCUVNAUUKUWCUAIKX + OWBXRUVOUULIYFOAUUMUVNUVBXRUVOYCUULYFAUVLUVNUDXRUVSXKXPAUWDUVNUWBXRIYGN + KXQXSXTYAYB $. + $} + $( A partial ordering on an indexed union can be constructed from a - well-ordering on its index set and a collection of partial orderings on - its members. (Contributed by Matthew House, 23-Aug-2025.) $) + well-ordering on its index class and a collection of partial orderings + on its members. (Contributed by Matthew House, 23-Aug-2025.) $) weiunpo $p |- ( ( R We A /\ R Se A /\ A. x e. A S Po B ) -> T Po U_ x e. A B ) $= - ( vt wbr wa wcel wceq csbeq1d vp vq vr vs wwe wse wpo wral w3a cv wn ciun - wi cfv csb wo wor simpl1 syl wf simpl2 weiunlem2 syl2anc simp1d ffvelcdmd - weso simpr1 sonr csbeq1 poeq1 poeq2 bitrd simpl3 nfv nfcsb1v nfpo csbeq1a - wb weq cbvralw sylib rspcdva id fveq2 eleq12d simp2d poirr ioran sylanbrc - intnand simpl fveq2d simpr breq12d eqeq12d anbi12d orbi12d brab2a simprbi - breq123d nsyl simpr3 jca simpr2 sotr syl13anc imp orcd ex simprll eqbrtrd - simprr simprl simprrl breqtrd eqtrd simprlr simprrr breqd mpbird eleqtrrd - adantr potr mp2and ccased syl2ani biimpri syl6an ralrimivvva df-po sylibr - olcd ) GIUEZGIUFZHJUGZAGUHZUIZUAUJZYRKPZUKZYRUBUJZKPZUUAUCUJZKPZQZYRUUCKP - ZUMZQZUCAGHULZUHUBUUIUHUAUUIUHUUIKUGYQUUHUAUBUCUUIUUIUUIYQYRUUIRZUUAUUIRZ - UUCUUIRZUIZQZYTUUGUUNYRLUNZUUOIPZUUOUUOSZYRYRAUUOJUOZPZQZUPZYSUUNUUPUKZUU - TUKUVAUKUUNGIUQZUUOGRZUVBUUNYMUVCYMYNYPUUMURZGIVFUSZUUNUUIGYRLUUNUUIGLUTZ - OUJZAUVHLUNZHUOZRZOUUIUHZUVHAUDUJZHUOZRUVMUVIIPUKUMUDGUHOUUIUHZUUNYMYNUVG - UVLUVOUIUVEYMYNYPUUMVAADEFOGHILUDMVBVCZVDZYQUUJUUKUULVGZVEZGUUOIVHVCUUNUU - SUUQUUNAUUOHUOZUURUGZYRUVTRZUUSUKUUNUVNAUVMJUOZUGZUWAUDGUUOUVMUUOSZUWDUVN - UURUGZUWAUWEUWCUURSUWDUWFVRAUVMUUOJVIUVNUWCUURVJUSUWEUVNUVTSUWFUWAVRAUVMU - UOHVIUVNUVTUURVKUSVLUUNYPUWDUDGUHYMYNYPUUMVMYOUWDAUDGYOUDVNAUVNUWCAUVMJVO - AUVMHVOVPAUDVSZYOHUWCUGZUWDUWGJUWCSYOUWHVRAUVMJVQHJUWCVJUSUWGHUVNSUWHUWDV - RAUVMHVQHUVNUWCVKUSVLVTWAUVSWBZUUNUVKUWBOUUIYRUVHYRSZUVHYRUVJUVTUWJWCUWJA - UVIUUOHUVHYRLWDTWEUUNUVGUVLUVOUVPWFZUVRWBZUVTYRUURWGVCWJUUPUUTWHWIYSUUJUU - JQUVABUJZLUNZCUJZLUNZIPZUWNUWPSZUWMUWOAUWNJUOZPZQZUPZUVABCYRYRUUIUUIKBUAV - SZUWOYRSZQZUWQUUPUXAUUTUXEUWNUUOUWPUUOIUXEUWMYRLUXCUXDWKZWLZUXEUWOYRLUXCU - XDWMZWLZWNUXEUWRUUQUWTUUSUXEUWNUUOUWPUUOUXGUXIWOUXEUWMYRUWOYRUWSUURUXFUXE - AUWNUUOJUXGTUXHWTWPWQNWRWSXAUUNUUJUULQZUUEUUOUUCLUNZIPZUUOUXKSZYRUUCUURPZ - QZUPZUUFUUNUUJUULUVRYQUUJUUKUULXBZXCUUBUUNUUOUUALUNZIPZUUOUXRSZYRUUAUURPZ - QZUPZUXRUXKIPZUXRUXKSZUUAUUCAUXRJUOZPZQZUPZUXPUUDUUBUUJUUKQUYCUXBUYCBCYRU - UAUUIUUIKUXCUWOUUASZQZUWQUXSUXAUYBUYKUWNUUOUWPUXRIUYKUWMYRLUXCUYJWKZWLZUY - KUWOUUALUXCUYJWMZWLZWNUYKUWRUXTUWTUYAUYKUWNUUOUWPUXRUYMUYOWOUYKUWMYRUWOUU - AUWSUURUYLUYKAUWNUUOJUYMTUYNWTWPWQNWRWSUUDUUKUULQUYIUXBUYIBCUUAUUCUUIUUIK - UWMUUASZCUCVSZQZUWQUYDUXAUYHUYRUWNUXRUWPUXKIUYRUWMUUALUYPUYQWKZWLZUYRUWOU - UCLUYPUYQWMZWLZWNUYRUWRUYEUWTUYGUYRUWNUXRUWPUXKUYTVUBWOUYRUWMUUAUWOUUCUWS - UYFUYSUYRAUWNUXRJUYTTVUAWTWPWQNWRWSUUNUXSUYDUYBUYHUXPUUNUXSUYDQZUXPUUNVUC - QUXLUXOUUNVUCUXLUUNUVCUVDUXRGRUXKGRVUCUXLUMUVFUVSUUNUUIGUUALUVQYQUUJUUKUU - LXDZVEUUNUUIGUUCLUVQUXQVEGUUOUXRUXKIXEXFXGXHXIUUNUYBUYDQZUXPUUNVUEQZUXLUX - OVUFUUOUXRUXKIUUNUXTUYAUYDXJUUNUYBUYDXLXKXHXIUUNUXSUYHQZUXPUUNVUGQZUXLUXO - VUHUUOUXRUXKIUUNUXSUYHXMUUNUXSUYEUYGXNXOXHXIUUNUYBUYHQZUXPUUNVUIQZUXOUXLV - UJUXMUXNVUJUUOUXRUXKUUNUXTUYAUYHXJZUUNUYBUYEUYGXNXPZVUJUYAUUAUUCUURPZUXNU - UNUXTUYAUYHXQVUJVUMUYGUUNUYBUYEUYGXRVUJUURUYFUUAUUCVUJAUUOUXRJVUKTXSXTVUJ - UWAUWBUUAUVTRUUCUVTRUYAVUMQUXNUMUUNUWAVUIUWIYBUUNUWBVUIUWLYBVUJUUAAUXRHUO - ZUVTUUNUUAVUNRZVUIUUNUVKVUOOUUIUUAOUBVSZUVHUUAUVJVUNVUPWCVUPAUVIUXRHUVHUU - ALWDTWEUWKVUDWBYBVUJAUUOUXRHVUKTYAVUJUUCAUXKHUOZUVTUUNUUCVUQRZVUIUUNUVKVU - ROUUIUUCOUCVSZUVHUUCUVJVUQVUSWCVUSAUVIUXKHUVHUUCLWDTWEUWKUXQWBYBVUJAUUOUX - KHVULTYAUVTYRUUAUUCUURYCXFYDXCYLXIYEYFUUFUXJUXPQUXBUXPBCYRUUCUUIUUIKUXCUY - QQZUWQUXLUXAUXOVUTUWNUUOUWPUXKIVUTUWMYRLUXCUYQWKZWLZVUTUWOUUCLUXCUYQWMZWL - ZWNVUTUWRUXMUWTUXNVUTUWNUUOUWPUXKVVBVVDWOVUTUWMYRUWOUUCUWSUURVVAVUTAUWNUU - OJVVBTVVCWTWPWQNWRYGYHXCYIUAUBUCUUIKYJYK $. - $} - - ${ - $d A u v w x $. $d A q s t x $. $d A q r x y z $. $d B u $. - $d B s t v w $. $d B q r y z $. $d F y z $. $d F s t $. $d R u $. - $d R r t $. $d R s v w $. $d R q r y z $. $d S s $. $d S q r y z $. - $d T q r $. - weiunso.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunso.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ - z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ - ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. + ( vt vs wbr wa wcel wceq vp vq vr wwe wse wpo wral w3a cv wn ciun cfv csb + wi wo wor simpl1 weso wf simpl2 weiunlem2 simp1d simpr1 ffvelcdmd syl2anc + syl sonr csbeq1 poeq1 poeq2 bitrd simpl3 nfv nfcsb1v nfpo csbeq1a cbvralw + wb weq sylib rspcdva id fveq2 csbeq1d eleq12d simp2d poirr ioran sylanbrc + intnand weiunlem1 simprbi nsyl simpr3 jca simpr2 sotr syl13anc orc simprr + syl6 simprll eqbrtrd orcd ex simprl simprrl breqtrd eqtrd simprlr simprrr + breqd mpbird adantr eleqtrrd potr mp2and olcd syl2ani biimpri ralrimivvva + ccased syl6an df-po sylibr ) GIUDZGIUEZHJUFZAGUGZUHZUAUIZYKKQZUJZYKUBUIZK + QZYNUCUIZKQZRZYKYPKQZUNZRZUCAGHUKZUGUBUUBUGUAUUBUGUUBKUFYJUUAUAUBUCUUBUUB + UUBYJYKUUBSZYNUUBSZYPUUBSZUHZRZYMYTUUGYKLULZUUHIQZUUHUUHTZYKYKAUUHJUMZQZR + ZUOZYLUUGUUIUJZUUMUJUUNUJUUGGIUPZUUHGSZUUOUUGYFUUPYFYGYIUUFUQZGIURVFZUUGU + UBGYKLUUGUUBGLUSZOUIZAUVALULZHUMZSZOUUBUGZPUIZUVBIQUJOAUVFHUMZUGPGUGZUUGA + BCDEFOGHIJKLPMNUURYFYGYIUUFUTVAZVBZYJUUCUUDUUEVCZVDZGUUHIVGVEUUGUULUUJUUG + AUUHHUMZUUKUFZYKUVMSZUULUJUUGUVGAUVFJUMZUFZUVNPGUUHUVFUUHTZUVQUVGUUKUFZUV + NUVRUVPUUKTUVQUVSVRAUVFUUHJVHUVGUVPUUKVIVFUVRUVGUVMTUVSUVNVRAUVFUUHHVHUVG + UVMUUKVJVFVKUUGYIUVQPGUGYFYGYIUUFVLYHUVQAPGYHPVMAUVGUVPAUVFJVNAUVFHVNVOAP + VSZYHHUVPUFZUVQUVTJUVPTYHUWAVRAUVFJVPHJUVPVIVFUVTHUVGTUWAUVQVRAUVFHVPHUVG + UVPVJVFVKVQVTUVLWAZUUGUVDUVOOUUBYKOUAVSZUVAYKUVCUVMUWCWBUWCAUVBUUHHUVAYKL + WCWDWEUUGUUTUVEUVHUVIWFZUVKWAZUVMYKUUKWGVEWJUUIUUMWHWIYLUUCUUCRUUNABCDEFG + HYKYKIJKLMNWKWLWMUUGUUCUUERZYRUUHYPLULZIQZUUHUWGTZYKYPUUKQZRZUOZYSUUGUUCU + UEUVKYJUUCUUDUUEWNZWOYOUUGUUHYNLULZIQZUUHUWNTZYKYNUUKQZRZUOZUWNUWGIQZUWNU + WGTZYNYPAUWNJUMZQZRZUOZUWLYQYOUUCUUDRUWSABCDEFGHYKYNIJKLMNWKWLYQUUDUUERUX + EABCDEFGHYNYPIJKLMNWKWLUUGUWOUWTUWRUXDUWLUUGUWOUWTRZUWHUWLUUGUUPUUQUWNGSU + WGGSUXFUWHUNUUSUVLUUGUUBGYNLUVJYJUUCUUDUUEWPZVDUUGUUBGYPLUVJUWMVDGUUHUWNU + WGIWQWRUWHUWKWSXAUUGUWRUWTRZUWLUUGUXHRZUWHUWKUXIUUHUWNUWGIUUGUWPUWQUWTXBU + UGUWRUWTWTXCXDXEUUGUWOUXDRZUWLUUGUXJRZUWHUWKUXKUUHUWNUWGIUUGUWOUXDXFUUGUW + OUXAUXCXGXHXDXEUUGUWRUXDRZUWLUUGUXLRZUWKUWHUXMUWIUWJUXMUUHUWNUWGUUGUWPUWQ + UXDXBZUUGUWRUXAUXCXGXIZUXMUWQYNYPUUKQZUWJUUGUWPUWQUXDXJUXMUXPUXCUUGUWRUXA + UXCXKUXMUUKUXBYNYPUXMAUUHUWNJUXNWDXLXMUXMUVNUVOYNUVMSYPUVMSUWQUXPRUWJUNUU + GUVNUXLUWBXNUUGUVOUXLUWEXNUXMYNAUWNHUMZUVMUUGYNUXQSZUXLUUGUVDUXROUUBYNOUB + VSZUVAYNUVCUXQUXSWBUXSAUVBUWNHUVAYNLWCWDWEUWDUXGWAXNUXMAUUHUWNHUXNWDXOUXM + YPAUWGHUMZUVMUUGYPUXTSZUXLUUGUVDUYAOUUBYPOUCVSZUVAYPUVCUXTUYBWBUYBAUVBUWG + HUVAYPLWCWDWEUWDUWMWAXNUXMAUUHUWGHUXOWDXOUVMYKYNYPUUKXPWRXQWOXRXEYBXSYSUW + FUWLRABCDEFGHYKYPIJKLMNWKXTYCWOYAUAUBUCUUBKYDYE $. + $( A strict ordering on an indexed union can be constructed from a - well-ordering on its index set and a collection of strict orderings on + well-ordering on its index class and a collection of strict orderings on its members. (Contributed by Matthew House, 23-Aug-2025.) $) weiunso $p |- ( ( R We A /\ R Se A /\ A. x e. A S Or B ) -> T Or U_ x e. A B ) $= ( vs vt wcel wa wbr wceq vq vr wwe wse wor wral w3a ciun wpo sopo weiunpo - ralimi syl3an3 cv cfv w3o csb simplrl simplrr animorrl simpl fveq2d simpr - breq12d eqeq12d csbeq1d breq123d anbi12d orbi12d brab2a syl21anbrc 3mix1d - wo wb csbeq1 soeq1 syl soeq2 simpll3 nfv nfcsb1v nfso weq csbeq1a cbvralw - bitrd sylib wf wn simpl1 simpl2 weiunlem2 syl2anc simp1d simprl ffvelcdmd - wi adantr rspcdva id fveq2 eleq12d simp2d eleqtrrd solin syl12anc simpllr - anim1i olcd sylanbrc ex idd simplr eqcomd breqdi jca 3orim123d mpd 3mix3d - weso simprr mpjao3dan issod ) GIUCZGIUDZHJUEZAGUFZUGZUAUBAGHUHZKYGYDYEHJU - IZAGUFYIKUIYFYJAGHJUJULABCDEFGHIJKLMNUKUMYHUAUNZYIQZUBUNZYIQZRZRZYKLUOZYM - LUOZISZYKYMKSZYKYMTZYMYKKSZUPZYQYRTZYRYQISZYPYSRZYTUUAUUBUUFYLYNYSUUDYKYM - AYQJUQZSZRZVMZYTYHYLYNYSURYHYLYNYSUSYPYSUUIUTBUNZLUOZCUNZLUOZISZUULUUNTZU - UKUUMAUULJUQZSZRZVMZUUJBCYKYMYIYIKUUKYKTZUUMYMTZRZUUOYSUUSUUIUVCUULYQUUNY - RIUVCUUKYKLUVAUVBVAZVBZUVCUUMYMLUVAUVBVCZVBZVDUVCUUPUUDUURUUHUVCUULYQUUNY - RUVEUVGVEUVCUUKYKUUMYMUUQUUGUVDUVCAUULYQJUVEVFUVFVGVHVINVJZVKVLYPUUDRZUUH - UUAYMYKUUGSZUPZUUCUVIAYQHUQZUUGUEZYKUVLQZYMUVLQUVKUVIAOUNZHUQZAUVOJUQZUEZ - UVMOGYQUVOYQTZUVRUVPUUGUEZUVMUVSUVQUUGTUVRUVTVNAUVOYQJVOUVPUVQUUGVPVQUVSU - VPUVLTUVTUVMVNAUVOYQHVOUVPUVLUUGVRVQWFUVIYGUVROGUFYDYEYGYOUUDVSYFUVRAOGYF - OVTAUVPUVQAUVOJWAAUVOHWAWBAOWCZYFHUVQUEZUVRUWAJUVQTYFUWBVNAUVOJWDHJUVQVPV - QUWAHUVPTUWBUVRVNAUVOHWDHUVPUVQVRVQWFWEWGYPYQGQZUUDYPYIGYKLYPYIGLWHZPUNZA - UWELUOZHUQZQZPYIUFZUWEUVPQUVOUWFISWIWQOGUFPYIUFZYPYDYEUWDUWIUWJUGYDYEYGYO - WJZYDYEYGYOWKADEFPGHILOMWLWMZWNZYHYLYNWOWPZWRWSUVIUWHUVNPYIYKPUAWCZUWEYKU - WGUVLUWOWTUWOAUWFYQHUWEYKLXAVFXBYPUWIUUDYPUWDUWIUWJUWLXCWRZYHYLYNUUDURZWS - UVIYMAYRHUQZUVLUVIUWHYMUWRQPYIYMPUBWCZUWEYMUWGUWRUWSWTUWSAUWFYRHUWEYMLXAV - FXBUWPYHYLYNUUDUSZWSUVIAYQYRHYPUUDVCZVFXDUVLYKYMUUGXEXFUVIUUHYTUUAUUAUVJU - UBUVIUUHYTUVIUUHRZYOUUJYTYHYOUUDUUHXGUXBUUIYSUVIUUDUUHUXAXHXIUVHXJXKUVIUU - AXLUVIUVJUUBUVIUVJRZYNYLUUEYRYQTZYMYKAYRJUQZSZRZVMZUUBUVIYNUVJUWTWRUVIYLU - VJUWQWRUXCUXGUUEUXCUXDUXFUXCYQYRYPUUDUVJXMZXNUXCUUGUXEYMYKUXCAYQYRJUXIVFU - VIUVJVCXOXPXIUUTUXHBCYMYKYIYIKUUKYMTZUUMYKTZRZUUOUUEUUSUXGUXLUULYRUUNYQIU - XLUUKYMLUXJUXKVAZVBZUXLUUMYKLUXJUXKVCZVBZVDUXLUUPUXDUURUXFUXLUULYRUUNYQUX - NUXPVEUXLUUKYMUUMYKUUQUXEUXMUXLAUULYRJUXNVFUXOVGVHVINVJZVKXKXQXRYPUUERZUU - BYTUUAUXRYNYLUXHUUBYHYLYNUUEUSYHYLYNUUEURYPUUEUXGUTUXQVKXSYPGIUEZUWCYRGQY - SUUDUUEUPYPYDUXSUWKGIXTVQUWNYPYIGYMLUWMYHYLYNYAWPGYQYRIXEXFYBYC $. - $} - - ${ - $d s x $. $d r s t w $. $d A s t w $. $d A u v w x $. $d B s $. - $d B u v w $. $d C w $. $d R u v $. $d R s t w $. $d F s t w $. - weiunfrlem1.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunfrlem1.2 $e |- C = ( iota_ s e. ( F " r ) - A. t e. ( F " r ) -. t R s ) $. - $( Lemma for ~ weiunfr . (Contributed by Matthew House, 23-Aug-2025.) $) - weiunfrlem1 $p |- ( ( ( R We A /\ R Se A ) /\ ( r C_ U_ x e. A B /\ - r =/= (/) ) ) -> ( C e. ( F " r ) /\ A. w e. r -. ( F ` w ) R C ) ) $= - ( wa cv wbr wn wral wcel wwe wse ciun wss c0 wne cfv cima crab crio simpl - wreu csb w3a weiunlem1 adantr simp1d fimassd cdm cin wceq simprl sseqtrrd - wf wi fdmd sseqin2 simprr eqnetrd imadisjlnd wereu2 syl12anc riotacl2 syl - sylib eqeltrid ffnd notbid ralima rabbidv syl2anc eleqtrd nfriota1 nfcxfr - wfn breq1 nfcv nfbr nfn nfralw breq2 ralbidv elrabf ) FIUAFIUBOZLPZAFGUCZ - UDZWOUEUFZOZOZHBPZJUGZKPZIQZRZBWOSZKJWOUHZUIZTHXGTXBHIQZRZBWOSZOWTHEPZXCI - QZRZEXGSZKXGUIZXHWTHXOKXGUJZXPNWTXOKXGULZXQXPTWTWNXGFUDXGUEUFXRWNWSUKWTWP - FJWOWTWPFJVDZXAAXBGUMTBWPSZXAACPZGUMTYAXBIQRVECFSBWPSZWNXSXTYBUNWSABCDFGI - JMUOUPUQZURWTJWOWTJUSZWOUTZWOUEWTWOYDUDYEWOVAWTWOWPYDWNWQWRVBZWTWPFJYCVFV - CWOYDVGVOWNWQWRVHVIVJKEFXGIVKVLXOKXGVMVNVPWTJWPWEZWQXPXHVAWTWPFJYCVQYFYGW - QOXOXFKXGXNXEEBWPWOJXLXBVAXMXDXLXBXCIWFVRVSVTWAWBXFXKKHXGKHXQNXOKXGWCWDZK - XGWGXJKBWOKWOWGXIKKXBHIKXBWGKIWGYHWHWIWJXCHVAZXEXJBWOYIXDXIXCHXBIWKVRWLWM - VO $. - $} + ralimi syl3an3 cv cfv weq w3o csb wo simplrl simplrr weiunlem1 syl21anbrc + animorrl 3mix1d csbeq1 soeq1 syl soeq2 bitrd simpll3 nfcsb1v nfso csbeq1a + wb nfv sylib wf wn simpl1 simpl2 weiunlem2 simp1d simprl ffvelcdmd adantr + cbvralw rspcdva fveq2 csbeq1d eleq12d simp2d simpr eleqtrrd solin simpllr + id syl12anc anim1i sylanbrc ex idd simplr eqcomd breqdi jca 3orim123d mpd + olcd 3mix3d weso simprr mpjao3dan issod ) GIUCZGIUDZHJUEZAGUFZUGZUAUBAGHU + HZKXRXOXPHJUIZAGUFXTKUIXQYAAGHJUJULABCDEFGHIJKLMNUKUMXSUAUNZXTQZUBUNZXTQZ + RZRZYBLUOZYDLUOZISZYBYDKSZUAUBUPZYDYBKSZUQZYHYITZYIYHISZYGYJRZYKYLYMYQYCY + EYJYOYBYDAYHJURZSZRZUSZYKXSYCYEYJUTXSYCYEYJVAYGYJYTVDABCDEFGHYBYDIJKLMNVB + ZVCVEYGYORZYSYLYDYBYRSZUQZYNUUCAYHHURZYRUEZYBUUFQZYDUUFQUUEUUCAOUNZHURZAU + UIJURZUEZUUGOGYHUUIYHTZUULUUJYRUEZUUGUUMUUKYRTUULUUNVOAUUIYHJVFUUJUUKYRVG + VHUUMUUJUUFTUUNUUGVOAUUIYHHVFUUJUUFYRVIVHVJUUCXRUULOGUFXOXPXRYFYOVKXQUULA + OGXQOVPAUUJUUKAUUIJVLAUUIHVLVMAOUPZXQHUUKUEZUULUUOJUUKTXQUUPVOAUUIJVNHJUU + KVGVHUUOHUUJTUUPUULVOAUUIHVNHUUJUUKVIVHVJWGVQYGYHGQZYOYGXTGYBLYGXTGLVRZPU + NZAUUSLUOZHURZQZPXTUFZUUIUUTISVSPUUJUFOGUFZYGABCDEFPGHIJKLOMNXOXPXRYFVTZX + OXPXRYFWAWBZWCZXSYCYEWDWEZWFWHUUCUVBUUHPXTYBPUAUPZUUSYBUVAUUFUVIWQUVIAUUT + YHHUUSYBLWIWJWKYGUVCYOYGUURUVCUVDUVFWLWFZXSYCYEYOUTZWHUUCYDAYIHURZUUFUUCU + VBYDUVLQPXTYDPUBUPZUUSYDUVAUVLUVMWQUVMAUUTYIHUUSYDLWIWJWKUVJXSYCYEYOVAZWH + UUCAYHYIHYGYOWMZWJWNUUFYBYDYRWOWRUUCYSYKYLYLUUDYMUUCYSYKUUCYSRZYFUUAYKXSY + FYOYSWPUVPYTYJUUCYOYSUVOWSXIUUBWTXAUUCYLXBUUCUUDYMUUCUUDRZYEYCYPYIYHTZYDY + BAYIJURZSZRZUSZYMUUCYEUUDUVNWFUUCYCUUDUVKWFUVQUWAYPUVQUVRUVTUVQYHYIYGYOUU + DXCZXDUVQYRUVSYDYBUVQAYHYIJUWCWJUUCUUDWMXEXFXIABCDEFGHYDYBIJKLMNVBZVCXAXG + XHYGYPRZYMYKYLUWEYEYCUWBYMXSYCYEYPVAXSYCYEYPUTYGYPUWAVDUWDVCXJYGGIUEZUUQY + IGQYJYOYPUQYGXOUWFUVEGIXKVHUVHYGXTGYDLUVGXSYCYEXLWEGYHYIIWOWRXMXN $. - ${ - $d q x $. $d A u v w x $. $d A o r w x $. $d A r s t w x $. - $d A p t x y z $. $d B s $. $d B q $. $d B o r $. $d B u v w $. - $d B p t y z $. $d C o $. $d C p v w $. $d C p q t $. $d F v $. - $d F s $. $d F o w $. $d F t y z $. $d R s $. $d R u v $. - $d R o r w $. $d R p t x y z $. $d S o r $. $d S q r $. $d S p t y z $. - $d T p r t $. - weiunfrlem2.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunfrlem2.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ - z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ - ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. - weiunfrlem2.3 $e |- C = ( iota_ s e. ( F " r ) - A. t e. ( F " r ) -. t R s ) $. - $( Lemma for ~ weiunfr . (Contributed by Matthew House, 23-Aug-2025.) $) - weiunfrlem2 $p |- ( ( R We A /\ R Se A /\ A. x e. A S Fr B ) -> - T Fr U_ x e. A B ) $= - ( wcel vp vq vo wwe wse wfr wral w3a cv ciun wss c0 wne wa wbr wn wrex wi - wal csb cin cvv vex inex1 a1i cima wf cfv weiunlem1 adantr simp1d fimassd - 3adantl3 weiunfrlem1 simpld sseldd simpl3 crio crab cmpt nfiu1 nfrab1 nfv - nfralw nfriota nfmpt nfcxfr nfcv nfima nfra1 nffr nfim wceq csbeq1a freq1 - nfcsb1 wb syl freq2 bitrd imbi2d rsp com12 vtoclgaf sylc inss2 wfun ffund - fvelima syl2anc simprl simplrl simp2d fveq2 csbeq1d rspcv csbeq1 ad2antll - id eleq12d eleqtrd elind ne0d rexlimddv fri syl22anc elin1d wo simprd weq - breq1d notbid mpan9 simp3d simpl simpr fveq2d breq12d ad2antrr ex imbi12d - rspc2gv mp2d wor simpll1 weso ffvelcdmd sotrieq2 syl12anc mpbir2and breq2 - elin2d mpbird simplr sselda eqtrd simprr breq1 breqd mtbird pm4.56 biimpi - imnan intnand eqeq12d breq123d anbi12d orbi12d brab2a ralrimiva reximssdv - sylib sylnibr alrimiv df-fr sylibr ) HKUDZHKUEZILUFZAHUGZUHZPUIZAHIUJZUKZ - UWBULUMZUNZGUIZUAUIZMUOZUPZGUWBUGZUAUWBUQZURZPUSUWCMUFUWAUWMPUWAUWFUWLUWA - UWFUNZUBUIZUWHAJLUTZUOZUPZUBUWBAJIUTZVAZUGZUWKUAUWBUWTUWNUWTVBTZUWSUWPUFZ - UWTUWSUKZUWTULUMZUXAUAUWTUQUXBUWNUWBUWSPVCVDVEUWNJHTZUVTUXCUWNNUWBVFZHJUW - NUWCHNUWBUWNUWCHNVGZDUIZAUXINVHZIUTZTZDUWCUGZUXIAEUIZIUTZTZUXNUXJKUOZUPZU - RZEHUGDUWCUGZUVQUVRUWFUXHUXMUXTUHZUVTUVQUVRUNUYAUWFADEFHIKNQVIVJVMZVKZVLU - WNJUXGTZUXJJKUOZUPZDUWBUGZUVQUVRUWFUYDUYGUNZUVTADEFGHIJKNOPQSVNVMZVOZVPZU - VQUVRUVTUWFVQUVTUVSURUVTUXCURAJHAJUWGOUIKUOUPZGUXGUGZOUXGVRSUYMAOUXGUYLAG - UXGANUWBANDUWCUXNFUIKUOUPZEUXIITZAHVSZUGZFUYPVRZVTQADUWCUYRAHIWAUYQAFUYPU - YNAEUYPUYOAHWBZUYNAWCWDUYSWEWFWGAUWBWHWIZUYLAWCWDUYTWEWGZUVTUXCAUVSAHWJAU - WSUWPAJLVUAWPAJIVUAWPWKWLAUIZJWMZUVSUXCUVTVUCUVSIUWPUFZUXCVUCLUWPWMUVSVUD - WQAJLWNILUWPWOWRVUCIUWSWMVUDUXCWQAJIWNIUWSUWPWSWRWTXAUVTVUBHTUVSUVSAHXBXC - XDXEUXDUWNUWBUWSXFVEUWNUCUIZNVHZJWMZUXEUCUWBUWNNXGUYDVUGUCUWBUQUWNUWCHNUY - CXHUYJUCJUWBNXIXJUWNVUEUWBTZVUGUNZUNZUWTVUEVUJUWBUWSVUEUWNVUHVUGXKZVUJVUE - AVUFIUTZUWSVUJVUEUWCTUXMVUEVULTZVUJUWBUWCVUEUWAUWDUWEVUIXLVUKVPUWNUXMVUIU - WNUXHUXMUXTUYBXMZVJUXLVUMDVUEUWCUXIVUEWMZUXIVUEUXKVULVUOXSVUOAUXJVUFIUXIV - UENXNXOXTXPXEVUGVULUWSWMUWNVUHAVUFJIXQXRYAYBYCYDUAUBUWSUWTVBUWPYEYFUWNUWH - UWTTZUXAUNZUNZUWBUWSUWHUWNVUPUXAXKZYGZVURUWJGUWBVURUWGUWBTZUNZUWGUWCTZUWH - UWCTZUNZUWGNVHZUWHNVHZKUOZVVFVVGWMZUWGUWHAVVFLUTZUOZUNZYHZUNUWIVVBVVMVVEV - VBVVHUPZVVLUPZVVMUPZVVBVVNVVFJKUOZUPZVURUYGVVAVVRVURUYDUYGUWNUYHVUQUYIVJY - IZUYFVVRDUWGUWBDGYJZUYEVVQVVTUXJVVFJKUXIUWGNXNZYKYLXPYMVVBVVGJWMZVVNVVRWQ - VURVWBVVAVURVWBVVGJKUOZUPZJVVGKUOZUPZVURUWHUWBTUYGVWDVUTVVSUYFVWDDUWHUWBU - XIUWHWMZUYEVWCVWGUXJVVGJKUXIUWHNXNYKYLXPXEVURUXTUWHUWSTZVWFVURUXHUXMUXTUW - NUYAVUQUYBVJYNVURUWBUWSUWHVUSUULVURVVDUXFUXTVWHVWFURZURVURUWBUWCUWHUWAUWD - UWEVUQXLZVUTVPZUWNUXFVUQUYKVJZUXSVWIDEUWHJUWCHVWGUXNJWMZUNZUXPVWHUXRVWFVW - NUXIUWHUXOUWSVWGVWMYOZVWNAUXNJIVWGVWMYPZXOXTVWNUXQVWEVWNUXNJUXJVVGKVWPVWN - UXIUWHNVWOYQYRYLUUAUUBXJUUCVURHKUUDZVVGHTUXFVWBVWDVWFUNWQVURUVQVWQUVQUVRU - VTUWFVUQUUEHKUUFWRVURUWCHUWHNUWNUXHVUQUYCVJVWKUUGVWLHVVGJKUUHUUIUUJVJZVWB - VVHVVQVVGJVVFKUUKYLWRUUMVVBVVIVVKUPZURVVOVVBVVIVWSVVBVVIUNZVVKUWGUWHUWPUO - ZVWTUWGUWTTUXAVXAUPZVWTUWBUWSUWGVURVVAVVIUUNVWTUWGAVVFIUTZUWSVVBUWGVXCTZV - VIVVBVVCUXMVXDVURUWBUWCUWGVWJUUOUWNUXMVUQVVAVUNYSUXLVXDDUWGUWCVVTUXIUWGUX - KVXCVVTXSVVTAUXJVVFIVWAXOXTXPXEVJVWTAVVFJIVWTVVFVVGJVVBVVIYPVVBVWBVVIVWRV - JUUPZXOYAYBVURUXAVVAVVIUWNVUPUXAUUQYSUWRVXBUBUWGUWTUWOUWGWMUWQVXAUWOUWGUW - HUWPUURYLXPXEVWTVVJUWPUWGUWHVWTAVVFJLVXEXOUUSUUTYTVVIVVKUVCUVLVVNVVOUNVVP - VVHVVLUVAUVBXJUVDBUIZNVHZCUIZNVHZKUOZVXGVXIWMZVXFVXHAVXGLUTZUOZUNZYHVVMBC - UWGUWHUWCUWCMBGYJZCUAYJZUNZVXJVVHVXNVVLVXQVXGVVFVXIVVGKVXQVXFUWGNVXOVXPYO - ZYQZVXQVXHUWHNVXOVXPYPZYQZYRVXQVXKVVIVXMVVKVXQVXGVVFVXIVVGVXSVYAUVEVXQVXF - UWGVXHUWHVXLVVJVXRVXQAVXGVVFLVXSXOVXTUVFUVGUVHRUVIUVMUVJUVKYTUVNPUAGUWCMU - VOUVP $. - $} - - ${ - $d A n r s x $. $d A l o p t x $. $d A k m u v w x $. - $d A l o p x y z $. $d A k l m n v w x $. $d B n $. $d B m u v w $. - $d B k l r s t $. $d B l o p y z $. $d F n $. $d F k q s t $. - $d F o p y z $. $d R n q $. $d R m u v w $. $d R k q r s t $. - $d R l o p y z $. $d S l r t $. $d S l o p y z $. $d T r t $. - weiunfr.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunfr.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ - z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ - ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. $( A well-founded relation on an indexed union can be constructed from a - well-ordering on its index set and a collection of well-founded + well-ordering on its index class and a collection of well-founded relations on its members. (Contributed by Matthew House, 23-Aug-2025.) $) weiunfr $p |- ( ( R We A /\ R Se A /\ A. x e. A S Fr B ) -> T Fr U_ x e. A B ) $= - ( vl vk vm cv wbr wcel vo vp vn vt vq vs vr wwe wse csb wfr wral w3a ciun - wn cima crio crab cmpt weq breq2 notbid ralbidv cbvriotavw nfcv nfv nfcri - nfcsb1v csbeq1a eleq2d cbvrabw eleq1w rabbidv eqtrid wb breq1 adantl wceq - adantr cbvraldva2 riotaeqbidv cbvmptv cbviun 3eqtri wa cfv wo copab simpl - mpteq1i a1i eleq12d anbi12d fveq2d breq12d eqeq12d csbeq1d csbcow eqtr4di - simpr breq123d orbi12d cbvopabv eqtri cbvralvw riotabiia weiunfrlem2 nffr - freq1 syl freq2 bitrd cbvralw 3anbi3i ax-mp 3imtr4i ) GIUHZGIUIZAORZHUJZA - XSJUJZUKZOGULZUMOGXTUNZKUKZXQXRHJUKZAGULZUMAGHUNZKUKZOUAUBPUCQUDGXTUERZUF - RZISZUOZUELUGRUPZULZUFYNUQIYAKLUFUGLDYHERZFRZISZUOZEDRZHTZAGURZULZFUUBUQZ - USPYHUCRZQRZISZUOZUCPRXTTZOGURZULZQUUJUQZUSPYDUULUSMDPYHUUDUULDPUTZUUDYPU - UFISZUOZEUUBULZQUUBUQUULUUCUUPFQUUBFQUTZYSUUOEUUBUUQYRUUNYQUUFYPIVAVBVCVD - UUMUUPUUKQUUBUUJUUMUUBYTXTTZOGURUUJUUAUURAOGAGVEOGVEUUAOVFADXTAXSHVHZVGAO - UTZHXTYTAXSHVIZVJVKUUMUURUUIOGDPXTVLVMVNZUUMUUOUUHEUCUUBUUJEUCUTZUUOUUHVO - UUMUVCUUNUUGYPUUEUUFIVPVBVQUUMUUBUUJVRUVCUVBVSVTWAVNWBPYHYDUULAOGHXTOHVEU - USUVAWCZWJWDKBRZYHTZCRZYHTZWEZUVELWFZUVGLWFZISZUVJUVKVRZUVEUVGAUVJJUJZSZW - EZWGZWEZBCWHUARZYDTZUBRZYDTZWEZUVSLWFZUWALWFZISZUWDUWEVRZUVSUWAOUWDYAUJZS - ZWEZWGZWEZUAUBWHNUVRUWLBCUAUBBUAUTZCUBUTZWEZUVIUWCUVQUWKUWOUVFUVTUVHUWBUW - OUVEUVSYHYDUWMUWNWIZYHYDVRZUWOUVDWKZWLUWOUVGUWAYHYDUWMUWNWTZUWRWLWMUWOUVL - UWFUVPUWJUWOUVJUWDUVKUWEIUWOUVEUVSLUWPWNZUWOUVGUWALUWSWNZWOUWOUVMUWGUVOUW - IUWOUVJUWDUVKUWEUWTUXAWPUWOUVEUVSUVGUWAUVNUWHUWPUWOUVNAUWDJUJUWHUWOAUVJUW - DJUWTWQAOUWDJWRWSUWSXAWMXBWMXCXDYOUDRZYKISZUOZUDYNULZUFYNYOUXEVOYKYNTYMUX - DUEUDYNUEUDUTYLUXCYJUXBYKIVPVBXEWKXFXGYGYCXQXRYFYBAOGYFOVFAXTYAAXSJVHUUSX - HUUTYFHYAUKZYBUUTJYAVRYFUXFVOAXSJVIHJYAXIXJUUTHXTVRUXFYBVOUVAHXTYAXKXJXLX - MXNUWQYIYEVOUVDYHYDKXKXOXP $. - $} - - ${ - $d A u v w x $. $d A q s t x $. $d A p q r s $. $d A p q x y z $. - $d B u $. $d B s t v w $. $d B p q y z $. $d F r $. $d F s t $. - $d F q y z $. $d R u $. $d R r $. $d R s t v w $. $d R p q y z $. - $d S y z $. $d T p q $. $d V p q $. - weiunse.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunse.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ - z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ - ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. + ( vr vt wral wa wbr wn vo vn vm vq vp vs wwe wse wfr w3a cv ciun wss wrex + c0 wne wi wal cima crio csb cin cvv wceq wb csbeq1 freq1 syl freq2 simpl3 + bitrd nfv nfcsb1v nffr weq csbeq1a cbvralw sylib wf wcel simpl1 weiunlem2 + cfv simpl2 simp1d fimassd eqid simprl simprr weiunfrlem rspcdva inss2 a1i + sseldd vex inex1 ffund fvelima syl2anc wel simplrl simp2d r19.21bi syldan + wfun csbeq1d eleqtrd elind ne0d rexlimddv elin1d wo fveq2 breq1d ad2antrr + frd notbid simpr fveqeq2 simp3d breq2d mtbird simplr id eleq12d ad3antrrr + breq1 adantr eqtrd breqd ex imnan pm4.56 biimpi intnand weiunlem1 sylnibr + ralrimiva reximssdv alrimiv df-fr sylibr ) GIUGZGIUHZHJUIZAGQZUJZOUKZAGHU + LZUMZUUHUOUPZRZUAUKZUBUKZKSZTZUAUUHQZUBUUHUNZUQZOURUUIKUIUUGUUSOUUGUULUUR + UUGUULRZUCUKZUUNAUDUKUEUKISTUDLUUHUSZQUEUVBUTZJVAZSZTZUCUUHAUVCHVAZVBZQZU + UQUBUUHUVHUUTUBUCUVGUVHUVDVCUUTAUFUKZHVAZAUVJJVAZUIZUVGUVDUIZUFGUVCUVJUVC + VDZUVMUVKUVDUIZUVNUVOUVLUVDVDUVMUVPVEAUVJUVCJVFUVKUVLUVDVGVHUVOUVKUVGVDUV + PUVNVEAUVJUVCHVFUVKUVGUVDVIVHVKUUTUUFUVMUFGQUUCUUDUUFUULVJUUEUVMAUFGUUEUF + VLAUVKUVLAUVJJVMAUVJHVMVNAUFVOZUUEHUVLUIZUVMUVQJUVLVDUUEUVRVEAUVJJVPHJUVL + VGVHUVQHUVKVDUVRUVMVEAUVJHVPHUVKUVLVIVHVKVQVRUUTUVBGUVCUUTUUIGLUUHUUTUUIG + LVSZPUKZAUVTLWCZHVAZVTZPUUIQZUVJUWAISTPUVKQUFGQZUUTABCDEFPGHIJKLUFMNUUCUU + DUUFUULWAZUUCUUDUUFUULWDZWBZWEZWFUUTUVCUVBVTZUWAUVCISZTZPUUHQZUWAUVCVDZPU + VHQZUUTABCDEFPGHIJKUVCLOUDUEMNUWFUWGUVCWGUUGUUJUUKWHZUUGUUJUUKWIWJZWEZWNW + KUVHUVGUMUUTUUHUVGWLWMUVHVCVTUUTUUHUVGOWOWPWMUUTUWNUVHUOUPPUUHUUTLXEUWJUW + NPUUHUNUUTUUIGLUWIWQUWRPUVCUUHLWRWSUUTPOWTZUWNRZRZUVHUVTUXAUUHUVGUVTUUTUW + SUWNWHZUXAUVTUWBUVGUUTUWTUVTUUIVTUWCUXAUUHUUIUVTUUGUUJUUKUWTXAUXBWNUUTUWC + PUUIUUTUVSUWDUWEUWHXBZXCXDUXAAUWAUVCHUUTUWSUWNWIXFXGXHXIXJXPUUTUUNUVHVTZU + VIRZRZUUHUVGUUNUUTUXDUVIWHXKUXFUUPUAUUHUXFUAOWTZRZUUMUUIVTZUUNUUIVTRZUUML + WCZUUNLWCZISZUXKUXLVDZUUMUUNAUXKJVAZSZRZXLZRUUOUXHUXRUXJUXHUXMTZUXQTZUXRT + ZUXHUXMUXKUVCISZUXHUWLUYBTPUUHUUMPUAVOZUWKUYBUYCUWAUXKUVCIUVTUUMLXMZXNXQU + XHUWJUWMUWOUUTUWJUWMUWOUJUXEUXGUWQXOZXBUXFUXGXRZWKUXHUXLUVCUXKIUXHUWNUXLU + VCVDZPUVHUUNUVTUUNUVCLXSUXHUWJUWMUWOUYEXTUUTUXDUVIUXGXAWKZYAYBUXHUXNUXPTZ + UQUXTUXHUXNUYIUXHUXNRZUXPUUMUUNUVDSZUYJUVFUYKTUCUVHUUMUCUAVOUVEUYKUVAUUMU + UNUVDYGXQUXFUVIUXGUXNUUTUXDUVIWIXOUYJUUHUVGUUMUXFUXGUXNYCUYJUUMAUXKHVAZUV + GUYJUWCUUMUYLVTPUUIUUMUYCUVTUUMUWBUYLUYCYDUYCAUWAUXKHUYDXFYEUUTUWDUXEUXGU + XNUXCYFUXHUXIUXNUXHUUHUUIUUMUUTUUJUXEUXGUWPXOUYFWNYHWKUYJAUXKUVCHUYJUXKUX + LUVCUXHUXNXRUXHUYGUXNUYHYHYIZXFXGXHWKUYJUXOUVDUUMUUNUYJAUXKUVCJUYMXFYJYBY + KUXNUXPYLVRUXSUXTRUYAUXMUXQYMYNWSYOABCDEFGHUUMUUNIJKLMNYPYQYRYSYKYTOUBUAU + UIKUUAUUB $. + $( The relation constructed in ~ weiunpo , ~ weiunso , ~ weiunfr , and ~ weiunwe is set-like if all members of the indexed union are sets. (Contributed by Matthew House, 23-Aug-2025.) $) weiunse $p |- ( ( R We A /\ R Se A /\ A. x e. A B e. V ) -> T Se U_ x e. A B ) $= - ( vs wcel wral cv cvv vq vp vr vt wwe wse w3a wbr ciun wa cfv csn cun csb - crab simpl2 wf wn wi simpl1 weiunlem2 syl2anc simp1d simpr ffvelcdmd seex - snex unexg sylancl wss ssrab2 a1i snssd unssd simpl3 elex syl nfv nfcsb1v - ralimi nfel1 weq csbeq1a eleq1d cbvralw sylib ssralv sylc iunexg 3ad2ant1 - wceq simp2 breq1 elrab elun1 sylbir sylan fvex elsn elun2 ad2antrl fveq2d - wo simpl breq12d eqeq12d csbeq1d breq123d anbi12d orbi12d brab2a 3ad2ant3 - simprbi mpjaodan fveq2 eleq12d simp2d rspcdva csbeq1 eliuni rabssdv ssexd - id ralrimiva df-se sylibr ) GIUEZGIUFZHMQZAGRZUGZUASZUBSZKUHZUAAGHUIZUOZT - QZUBYORYOKUFYKYQUBYOYKYMYOQZUJZYPPUCSZYMLUKZIUHZUCGUOZUUAULZUMZAPSZHUNZUI - ZTYSUUETQZUUGTQZPUUERZUUHTQYSUUCTQZUUDTQUUIYSYHUUAGQUULYGYHYJYRUPZYSYOGYM - LYSYOGLUQZUDSZAUUOLUKZHUNZQZUDYORZUUOUUGQUUFUUPIUHURUSPGRUDYORZYSYGYHUUNU - USUUTUGYGYHYJYRUTUUMADEFUDGHILPNVAVBZVCZYKYRVDVEZUCGUUAIVFVBUUAVGUUCUUDTT - VHVIYSUUEGVJUUJPGRZUUKYSUUCUUDGUUCGVJYSUUBUCGVKVLYSUUAGUVCVMVNYSHTQZAGRZU - VDYSYJUVFYGYHYJYRVOYIUVEAGHMVPVTVQUVEUUJAPGUVEPVRAUUGTAUUFHVSWAAPWBHUUGTA - UUFHWCWDWEWFUUJPUUEGWGWHPUUEUUGTTWIVBYSYNUAYOUUHYSYLYOQZYNUGZYLLUKZUUEQZY - LAUVIHUNZQZYLUUHQUVHUVIUUAIUHZUVJUVIUUAWKZYLYMAUVIJUNZUHZUJZUVHUVIGQZUVMU - VJUVHYOGYLLYSUVGUUNYNUVBWJYSUVGYNWLZVEUVRUVMUJUVIUUCQUVJUUBUVMUCUVIGYTUVI - UUAIWMWNUVIUUCUUDWOWPWQUVNUVJUVHUVPUVNUVIUUDQUVJUVIUUAYLLWRWSUVIUUDUUCWTW - PXAYNYSUVMUVQXCZUVGYNUVGYRUJUVTBSZLUKZCSZLUKZIUHZUWBUWDWKZUWAUWCAUWBJUNZU - HZUJZXCUVTBCYLYMYOYOKBUAWBZCUBWBZUJZUWEUVMUWIUVQUWLUWBUVIUWDUUAIUWLUWAYLL - UWJUWKXDZXBZUWLUWCYMLUWJUWKVDZXBZXEUWLUWFUVNUWHUVPUWLUWBUVIUWDUUAUWNUWPXF - UWLUWAYLUWCYMUWGUVOUWMUWLAUWBUVIJUWNXGUWOXHXIXJOXKXMXLXNUVHUURUVLUDYOYLUU - OYLWKZUUOYLUUQUVKUWQYCUWQAUUPUVIHUUOYLLXOXGXPYSUVGUUSYNYSUUNUUSUUTUVAXQWJ - UVSXRPUVIUUGUVKUUEYLAUUFUVIHXSXTVBYAYBYDUBUAYOKYEYF $. - $} - - ${ - $d A x y z $. $d A u v w x $. $d B y z $. $d B u v w $. $d F y z $. - $d R y z $. $d R u v w $. $d S y z $. - weiunwe.1 $e |- F = ( w e. U_ x e. A B |-> ( iota_ u e. - { x e. A | w e. B } A. v e. { x e. A | w e. B } -. v R u ) ) $. - weiunwe.2 $e |- T = { <. y , z >. | ( ( y e. U_ x e. A B /\ - z e. U_ x e. A B ) /\ ( ( F ` y ) R ( F ` z ) \/ - ( ( F ` y ) = ( F ` z ) /\ y [_ ( F ` y ) / x ]_ S z ) ) ) } $. + ( vs vt wcel wral cvv vq vp vr wwe wse w3a cv wbr ciun wa cfv csn cun csb + crab simpl2 wf simpl1 weiunlem2 simp1d simpr ffvelcdmd seex syl2anc unexg + wn snex sylancl wss ssrab2 a1i snssd unssd simpl3 elex ralimi syl nfcsb1v + nfv nfel1 weq csbeq1a eleq1d sylib ssralv sylc iunexg wceq 3ad2ant1 simp2 + cbvralw breq1 elrab elun1 sylbir sylan fvex elsn elun2 ad2antrl weiunlem1 + wo simprbi 3ad2ant3 mpjaodan csbeq1d eleq12d simp2d rspcdva csbeq1 eliuni + id fveq2 rabssdv ssexd ralrimiva df-se sylibr ) GIUDZGIUEZHMRZAGSZUFZUAUG + ZUBUGZKUHZUAAGHUIZUOZTRZUBYGSYGKUEYCYIUBYGYCYEYGRZUJZYHPUCUGZYELUKZIUHZUC + GUOZYMULZUMZAPUGZHUNZUIZTYKYQTRZYSTRZPYQSZYTTRYKYOTRZYPTRUUAYKXTYMGRUUDXS + XTYBYJUPZYKYGGYELYKYGGLUQZQUGZAUUGLUKZHUNZRZQYGSZYRUUHIUHVFQYSSPGSZYKABCD + EFQGHIJKLPNOXSXTYBYJURUUEUSZUTZYCYJVAVBZUCGYMIVCVDYMVGYOYPTTVEVHYKYQGVIUU + BPGSZUUCYKYOYPGYOGVIYKYNUCGVJVKYKYMGUUOVLVMYKHTRZAGSZUUPYKYBUURXSXTYBYJVN + YAUUQAGHMVOVPVQUUQUUBAPGUUQPVSAYSTAYRHVRVTAPWAHYSTAYRHWBWCWKWDUUBPYQGWEWF + PYQYSTTWGVDYKYFUAYGYTYKYDYGRZYFUFZYDLUKZYQRZYDAUVAHUNZRZYDYTRUUTUVAYMIUHZ + UVBUVAYMWHZYDYEAUVAJUNUHZUJZUUTUVAGRZUVEUVBUUTYGGYDLYKUUSUUFYFUUNWIYKUUSY + FWJZVBUVIUVEUJUVAYORUVBYNUVEUCUVAGYLUVAYMIWLWMUVAYOYPWNWOWPUVFUVBUUTUVGUV + FUVAYPRUVBUVAYMYDLWQWRUVAYPYOWSWOWTYFYKUVEUVHXBZUUSYFUUSYJUJUVKABCDEFGHYD + YEIJKLNOXAXCXDXEUUTUUJUVDQYGYDQUAWAZUUGYDUUIUVCUVLXLUVLAUUHUVAHUUGYDLXMXF + XGYKUUSUUKYFYKUUFUUKUULUUMXHWIUVJXIPUVAYSUVCYQYDAYRUVAHXJXKVDXNXOXPUBUAYG + KXQXR $. + $( A well-ordering on an indexed union can be constructed from a - well-ordering on its index set and a collection of well-orderings on its - members. (Contributed by Matthew House, 23-Aug-2025.) $) + well-ordering on its index class and a collection of well-orderings on + its members. (Contributed by Matthew House, 23-Aug-2025.) $) weiunwe $p |- ( ( R We A /\ R Se A /\ A. x e. A S We B ) -> T We U_ x e. A B ) $= ( wwe wral wfr wor ralimi syl3an3 wse w3a ciun wefr weiunfr weiunso df-we