
Zcash Protocol Speci�cation (Metastate AG MASP changes BETA)
Version [Overwinter+Sapling]

based on original spec by: Daira Hopwood†

Sean Bowe† — Taylor Hornby† — Nathan Wilcox†

July 3, 2020

Abstract. Changes to the Sapling protocol to support UDAs. Research and experimental.

Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment,
�nancial privacy, proof of work, zero knowledge.

The purpose of this document is to describe the changes made to the Sapling circuits to allow for user-de�ned
assets. Only the circuit-level changes are speci�ed; protocol-level or contract-level speci�cations must be described
as well.

The following discussions, proposals, and demos provide background and context for the development of this
speci�cation:

• https://github.com/zcash/zips/pull/269

• https://github.com/zcash/zcash/issues/830

• https://github.com/zcash/zcash/issues/2277#issuecomment-321106819

• https://github.com/str4d/librustzcash/tree/funweek-uda-demo

As well as the original Sapling speci�cation. Where possible, sections copied from the original Sapling speci�cation
have changes highlighted in purple.

0.1 Overview and Approach #overview

The Sapling circuits rely on homomorphic Pedersen commitments to represent the value of a shielded Note. The
homomorphic Pedersen commitment requires two generators of the same subgroup: one to serve as the value
base, and another as the randomness base. For security, no discrete log relationship should be known between
these two generators. In Sapling, both generators are carefully constructed and �xed outside of the circuits as
images of a Pseudo Random Function.

User-de�ned assets may be added by varying the generator used as the value base, using a custom asset generator
for each distinct asset type. However, since the value base generator is no longer a �xed constant, each asset
generator must be dynamically constructed with similar security properties to the construction of the original �xed
generator of Sapling.

† Electric Coin Company

1

https://github.com/zcash/zips/pull/269
https://github.com/zcash/zcash/issues/830
https://github.com/zcash/zcash/issues/2277#issuecomment-321106819
https://github.com/str4d/librustzcash/tree/funweek-uda-demo
https://zips.z.cash/protocol/sapling.pdf#overview


0.2 Asset Types: Notation and Nomenclature #notation

An asset type is an abstract property added to a Sapling Note, in addition to the value. Notes only have one asset
type and all transactions are balanced independently across all asset types. However, different mathematical and
computational representations of an asset type will be necessary. To ensure consistency and unambiguity, we will
use the following names and nomenclature for different representations of an asset type:

• The name of an asset is a user-de�ned bytestring of arbitrary length that uniquely represents a given asset
type. Examples of this may include a combination of:

– a smart contract address

– contract-speci�c data or �elds

– cryptographic salt

– random beacon

• The identi�er of an asset is a 32-byte string derived from the asset name in a deterministic way. The asset
identi�er differs from the asset name in three respects:

1. The asset identi�er is a compressed representation of the asset type. The name may be an arbitrary
length whereas the identi�er is always 32 bytes.

2. Only a constant fraction (approximately 45%) of 32 byte strings will be valid asset identi�ers

3. The asset identi�er is always the Blake2s preimage of the asset generator (de�ned next)

• The asset generator (also known as the value base) is a JubJub point whose compressed bit representation is
the Blake2s image of the asset identi�er

The exact contents of the asset name may be de�ned outside of the circuit speci�cations. The asset name could
include the output of a random beacon or other unpredictable randomness to prevent the possibility of precompu-
tation attacks against a particular asset type.

In all cases, the asset identi�er should be derived from the asset name in such a way that invalid identi�ers are
never generated and all generated identi�ers are the same length. The simplest way to derive such identi�ers is by
rejection sampling.

The asset generator will be derived via a Pseudo Random Function from the asset identi�er. This computation
must be ef�cient (it is computed in the Output circuit) and also be plausibly computationally infeasible to know a
discrete log relationship between the asset generators of two distinct asset types.

Asset types may also be associated with a human-readable asset name and/or a asset symbol. The human-readable
asset name and asset symbol may be used for user-facing presentations of the asset type, particularly if the asset
name is not suitable for this purpose. Assignment and use of human-readable asset names and asset symbols are
outside the scope of this document.

0.3 Derivation of Asset Generator from Asset Identifer #derivation

The asset generator associated with each asset type must be derived in such a way that plausibly no discrete log
relationship is known between every two distinct asset types (or between an asset generator and the common
randomness base generator).

In this speci�cation, the asset generator associated with a given asset identi�er is derived using a Pseudo Random
Function; speci�cally, instantiating PRFvcgMASP () with BLAKE2s similar to how other Pseudo Random Functions
are instantiated in the original Sapling speci�cation. Therefore, the asset generator associated with asset identi�er t
should be reprJ(PRFvcgMASP (t)), if it exists, and this derivation is veri�ed in at least one circuit.

One may wonder if it is necessary to verify the derivation of the asset generator from the asset identi�er in circuit.
The answer is “yes”: if the asset generator was witnessed to the circuit’s private inputs without checking its validity as

2

https://zips.z.cash/protocol/sapling.pdf#notation
https://zips.z.cash/protocol/sapling.pdf#derivation


an asset generator, then someone may witness the negation of an asset generator and produce notes with negative
value of the actual asset (and therefore, creating notes of arbitrarily positive value that homomorphically balance
with the negative value note)

One may also wonder if a Pedersen hash may be used instead (particularly as it is much more ef�cient to compute
in the circuit than a Pseudo Random Function). The answer is that it may not be used: a Pedersen hash is not a
Pseudo Random Function, and while it may offer collision resistance, it is possible to �nd related preimages easily.
For example, because the Pedersen hash generators are publicly known, given an existing asset identi�er and
asset generator, someone may derive new asset identi�ers and new asset generators that have some known �xed
relationship to the existing asset generator. This may allow unwanted conversion between valid asset types.

0.4 Rejection Sampling of Asset Identi�ers Hashing to Curve Point #rejection

The asset identi�er should be deterministically derived from the asset name. Since there is some probability of
deriving an invalid asset identi�er, one potential approach is to try potential asset identi�ers, rejecting invalid ones,
until a valid asset identi�er that properly hashes to an asset generator. We can describe such a process as rejection
sampling.

Hashing an identi�er bytestring to a group element (point on the JubJub curve) can fail in one of three ways:

1. The identi�er could hash to a small order point on the curve. Since the JubJub curve is the direct sum of a
small order subgroup with a large prime order subgroup, the BLAKE2s image of the identi�er may be the
y coordinate of a small order point on the curve, and so when multiplied by the cofactor gives the identity.
The small order subgroup contains very few elements, so the probability of hashing to one of these points is
extremely small (exponentially small).

Identi�ers whose BLAKE2s hash is a small order point are rejected.

2. The identi�er could hash to 256 bits, of which the leading 255 bits encode an integer that is at least the order
of the underlying �eld of the JubJub curve, and therefore is not a valid �eld element unless taken modulo the
order of the �eld (which we cannot do, if we desire a uniformly random curve point in the random oracle
model).

The probability of this event is approximately 9.431% and so it occurs reasonably often.

Identi�ers whose BLAKE2s hash is larger than the �eld modulus are rejected.

3. The identi�er could hash to 256 bits, of which the leading 255 bits encode a �eld element such that no point
on the curve has that �eld element as y coordinate. Then it is not possible to interpret the BLAKE2s hash
image as a compressed representation of a curve point/group element at all.

The probability of this event is approximately (but not precisely) 1/2

Identi�ers whose BLAKE2s hash is not the compressed representation of some JubJub curve point are rejected.

The overall probability that a uniformly random identi�er hashes successfully is approximately 0.5 * 0.9057 = 0.453
and so the expected number of identi�ers tried is approximately 2.2.

Some theoretical attacks against the asset identi�er generation process are noted:

1. Rejection sampling is not constant time, potentially allowing side channel attacks that leak the asset type.

2. An attacker may attempt to �nd asset names that generate long sequences of invalid asset identi�ers before
�nding a valid one. Extremely long sequences are likely infeasible to precompute but shorter sequences are
more feasible, causing the asset identi�er generation process to use more computation than average for a
certain asset.

3

https://zips.z.cash/protocol/sapling.pdf#rejection


0.5 Security #security

The homomorphic Pedersen value commitments are constructed similarly to the original Sapling circuit and should
be similarly value hiding (infeasible to recover the value from the commitment without knowledge of the trapdoor
randomness) and non-forgeable (infeasible to open the value commitment to another value). This requires that no
discrete log relationship is known between the value base (in this case, the asset generator) and the randomness
trapdoor generator.

When there are multiple assets, the value commitment should also be asset hiding and non-exchangeable: it
should be infeasible to recover the asset type without knowledge of the trapdoor, and it should be infeasible to
open the value commitment to another asset. This requires that no discrete log relationship is known between
every pair of asset generators. If asset generators are derived in a uniformly random way, then deriving a discrete
log relationship between asset generators should be approximately as dif�cult as �nding a discrete log relationship
between a constant value base and �xed randomness base generator.

The security of these multiple asset value commitments relies on similar assumptions underlying the security of
the homomorphic Pedersen commitments and Pedersen hashes of the original Sapling circuits.

The security of those commitments and hashes is based on the hardness of the discrete log problem over a given
elliptic curve group. For expository purposes, here is an informal argument sketch: Let G1, . . . , Gk be k uniformly
random elliptic curve points. Assume there is an algorithm that �nds a discrete log relationship between a single
pair Gi, Gj faster than �nding a discrete log relationship between two chosen points P,Q. Then by choosing 2k
uniformly random elements ai, bi of the �nite �eld of the same order as the curve, �nding a discrete log relationship
among a single pair of Ri = [ai]P + [bi]Q should reveal a discrete log relationship between P,Q. A more rigorous
proof may be found in the literature.

0.6 Multiple Asset Heterogenous Transactions #multipleassets

As in the single asset Sapling model, a transaction may consist of some number of incoming notes and some number
of outgoing notes (typically at least two of each) such that the sum of values of outgoing (created) notes minus the
sum of values of incoming (spent) notes is equal to the change in the total transparent value of the pool. In the case
of multiple assets, this sum should be balanced independently across all possible asset types. While every note
has only one asset type, it is possible that transactions may contain notes of different asset types (heterogenous
transactions). The use of homomorphic Pedersen commitments allows the sum to be balanced veri�ably outside
of the circuits even when the asset types of the notes are unknown.

CAUTION: The circuits accept the value of a Note as a 64-bit unsigned integer. In addition to this limit on the
maximum value of a given note, the external protocol or contract should be aware that issuing large value notes
may theoretically allow over�ow of the Pedersen commitment. While likely impractical, there is nothing in this
speci�cation or these circuits prohibiting transactions with total value exceeding the order of the JubJub curve.
This may be addressed outside of the circuit by the implementing protocol or contract.

0.7 Random beacon #randombeacon

Derivation of an asset identi�er from a name may include the input of a random beacon, to lower the probability
that some party did precomputation on the resulting asset generator prior to the asset name becoming public (or
some other point in time). Various preexisting random beacons can be used, or new randomness beacons can be
used for this purpose, or even dynamically used every time a new asset type is created.

0.8 Notes #notes

A note (denoted n) can be a Sprout note or a Sapling note . In either case it represents that a value v is spendable
by the recipient who holds the spending key corresponding to a given shielded payment address .

Let MAX_MONEY, `PRFSprout, `PRFnfSapling, and `d be as de�ned in the original Sapling speci�cation.

4

https://zips.z.cash/protocol/sapling.pdf#security
https://zips.z.cash/protocol/sapling.pdf#multipleassets
https://zips.z.cash/protocol/sapling.pdf#randombeacon
https://zips.z.cash/protocol/sapling.pdf#notes


Let NoteCommitSapling be as de�ned in the original Sapling speci�cation.

Let KASapling be as de�ned in the original Sapling speci�cation.

Let `t = 32 bytes be the length of the asset identi�er.

A Sapling note is a tuple (d, pkd, v, rcm, t), where:

• d ◦
◦ B[`d] is the diversi�er of the recipient’s shielded payment address ;

• pkd
◦
◦ KASapling.PublicPrimeOrder is the diversi�ed transmission key of the recipient’s shielded payment ad-

dress ;

• v ◦
◦ {0 ..MAX_MONEY} is an integer representing the value of the note in zatoshi ;

• rcm ◦
◦ NoteCommitSapling.Trapdoor is a random commitment trapdoor as de�ned in the original Sapling speci-

�cation.

• t ◦
◦ B[`t] is a bytestring representing the asset identi�er of the note

Let NoteSapling be the type of a Sapling note , i.e.

NoteSapling := B[`d] × KASapling.PublicPrimeOrder × {0 ..MAX_MONEY} × NoteCommitSapling.Trapdoor × B[`t].

Creation of new notes is as described in the original Sapling speci�cation. When notes are sent, only a commitment
to the above values is disclosed publically, and added to a data structure called the note commitment tree . This
allows the value and recipient to be kept private, while the commitment is used by the zero-knowledge proof
when the note is spent, to check that it exists on the block chain.

Let DiversifyHash be as de�ned in the original Sapling speci�cation.

A Sapling note commitment on a noten = (d, pkd, v, rcm, t) is computed as

gd := DiversifyHash(d)

NoteCommitmentSapling(n) :=
{
⊥, if gd = ⊥
NoteCommitSapling

rcm (reprJ(gd), reprJ(pkd), v, reprJ(PRFvcgMASP (t))), otherwise.

where NoteCommitSapling is instantiated as in the original Sapling speci�cation.

Notice that the above de�nition of a Sapling note does not have a ρ �eld. There is in fact a ρ value associated with
each Sapling note , but this can only be computed once its position in the note commitment tree is known. We
refer to the combination of a note and its note position pos, as a positioned note .

For a positioned note , we can compute the value ρ as described in the original Sapling speci�cation.

A nulli�er (denoted nf) is derived from the ρ value of a note and the recipient’s spending key ask or nulli�er deriving
key nk. This computation uses a Pseudo Random Function, as described in the original Sapling speci�cation.

A note is spent by proving knowledge of (ρ, ask) or (ρ, ak, nsk) in zero knowledge while publically disclosing its
nulli�er nf , allowing nf to be used to prevent double-spending. In the case of Sapling, a spend authorization
signature is also required, in order to demonstrate knowledge of ask.

0.8.1 Sending Notes (Sapling) #saplingsend

This section describes potential outside of circuit implementation details.

In order to send Sapling shielded value, the sender constructs a transaction containing one or more Output
descriptions .

Let ValueCommit, NoteCommitSapling, KASapling, DiversifyHash, reprJ, rJ, and hJ be as de�ned in the original Sapling
speci�cation.

Let ovk be an outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:

5

https://zips.z.cash/protocol/sapling.pdf#saplingsend


• the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;

• the outgoing viewing key for all payments associated with an “account ”, to be de�ned in [ZIP-32];

• ⊥, if the sender should not be able to decrypt the payment once it has deleted its own copy.

Note: Choosing ovk = ⊥ is useful if the sender prefers to obtain forward secrecy of the payment information with
respect to compromise of its own secrets.

For each Output description, the sender selects a value vnew ◦
◦ {0 ..MAX_MONEY} and a destination Sapling shielded

payment address (d, pkd), and then performs the following steps:

• Check that pkd is of type KASapling.PublicPrimeOrder, i.e. it is a valid ctEdwards curve point on the Jubjub curve
(as de�ned in the original Sapling speci�cation) not equal to OJ, and [rJ] pkd = OJ.

• Calculate gd = DiversifyHash(d) and check that gd 6= ⊥.

• Choose independent uniformly random commitment trapdoors:

rcvnew ←R ValueCommit.GenTrapdoor()
rcmnew ←R NoteCommitSapling.GenTrapdoor()

• Check that [hJ] PRFvcgMASP (t) is of type KASapling.PublicPrimeOrder, i.e. it is a valid ctEdwards curve point on
the Jubjub curve (as de�ned in the original Sapling speci�cation) not equal to OJ. If it is equal to OJ, t is an
invalid asset identi�er.

• Calculate

vb := reprJ(PRFvcgMASP (t))

cvnew := [vnewhJ] vb + [rcvnew] GroupHashJ(r)∗

URS (“tzMASP_r”, “r”)

cmnew := NoteCommitSapling
rcmnew (reprJ(gd), reprJ(pkd), vnew, vb)

• Let np = (d, vnew, rcm,memo, t), where rcm = LEBS2OSP256(I2LEBSP256(rcmnew)).

• Encrypt np to the recipient diversi�ed transmission key pkd with diversi�ed transmission base gd, and to the
outgoing viewing key ovk, giving the transmitted note ciphertext (epk,Cenc,Cout) as described in the original
Sapling speci�cation. This procedure also uses cvnew and cmnew to derive the outgoing cipher key.

• Generate a proof πZKOutput for the Output statement in § 0.9.3 ‘Output Statement (Sapling)’ on p. 8.

• Return (cvnew, cmnew, epk,Cenc,Cout, πZKOutput).

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this speci�cation. The encoded transaction is submitted to the network.

0.9 Dummy Notes #dummynotes

6

https://zips.z.cash/protocol/sapling.pdf#dummynotes


0.9.1 Dummy Notes (Sapling) #saplingdummynotes

In Sapling there is no need to use dummy notes simply in order to �ll otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes .

Let `sk , rJ, reprJ,H, PRFnfSapling, NoteCommitSapling be as de�ned in the original Sapling speci�cation.

A dummy Sapling input note is constructed as follows:

• Choose uniformly random sk ←R B[`sk].

• Generate a new diversi�ed payment address (d, pkd) for sk as described in the original Sapling speci�cation.

• Set vold = 0, and set pos = 0.

• Choose uniformly random rcm ←R NoteCommitSapling.GenTrapdoor(). and nsk ←R FrJ
.

• Compute nk = [nsk]H and nk? = reprJ(nk).

• Compute ρ = cmold = NoteCommitSapling
rcm (reprJ(gd), reprJ(pkd), vold,GroupHashJ(r)∗

URS (“tzMASP_r”, “r”)).

• Compute nfold = PRFnfSapling
nk? (reprJ(ρ)).

• Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because vold = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address .

0.9.2 Spend Statement (Sapling) #spendstatement

The new Spend circuit has 100637 constraints. The original Sapling Output circuit has 98777 constraints.

Let `MerkleSapling, `PRFnfSapling, `scalar, ValueCommit, NoteCommitSapling, SpendAuthSig, J, J(r), reprJ, qJ, rJ, hJ,

ExtractJ(r)
◦
◦ J(r) → B[`MerkleSapling] ,H be as de�ned in the original Sapling speci�cation.

A valid instance of πZKSpend assures that given a primary input :(
rt ◦

◦ B[`MerkleSapling],

cvold ◦
◦ ValueCommit.Output,

nfold ◦
◦ B[`PRFnfSapling],

rk ◦
◦ SpendAuthSig.Public

)
,

the prover knows an auxiliary input :(
path ◦

◦ B[`Merkle][MerkleDepthSapling],

pos ◦
◦ {0 .. 2MerkleDepthSapling

−1},
gd

◦
◦ J,

pkd
◦
◦ J,

vold ◦
◦ {0 .. 2`value−1},

rcvold ◦
◦ {0 .. 2`scalar−1},

cmold ◦
◦ J,

rcmold ◦
◦ {0 .. 2`scalar−1},

α ◦
◦ {0 .. 2`scalar−1},

ak ◦
◦ SpendAuthSig.Public,

nsk ◦
◦ {0 .. 2`scalar−1},

vb ◦
◦ J
)

7

https://zips.z.cash/protocol/sapling.pdf#saplingdummynotes
https://zips.z.cash/protocol/sapling.pdf#spendstatement


such that the following conditions hold:

Note commitment integrity cmold = NoteCommitSapling
rcmold (reprJ(gd), reprJ(pkd), vold, vb).

Merkle path validity Either vold = 0; or (path, pos) is a valid Merkle path of depth MerkleDepthSapling, as de�ned in
the original Sapling speci�cation, from cmu = ExtractJ(r)(cmold) to the anchor rt.

Value commitment integrity cvold = [vnewhJ] vb + [rcvnew] GroupHashJ(r)∗

URS (“tzMASP_r”, “r”)

Small order checks gd and ak and vb are not of small order, i.e. [hJ] gd 6= OJ and [hJ] ak 6= OJ and [hJ] vb 6= OJ.

Nulli�er integrity nfold = PRFnfSapling
nk? (ρ?) where

nk? = reprJ([nsk]H)
ρ? = reprJ

(
MixingPedersenHash(cmold, pos)

)
.

Spend authority rk = SpendAuthSig.RandomizePublic(α, ak).

Diversi�ed address integrity pkd = [ivk] gd where

ivk = CRHivk(ak?, nk?)
ak? = reprJ(ak).

The form and encoding of Spend statement proofs may be Groth16 as in the original Sapling speci�cation.

Notes:

• Public and auxiliary inputs MUST be constrained to have the types speci�ed. In particular, see the original
Sapling specifcation, for required validity checks on compressed representations of Jubjub curve points.

The ValueCommit.Output and SpendAuthSig.Public types also represent points, i.e. J.

• In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0 .. rS − 1}) of the integer from the previous layer.

• It is not checked in the Spend statement that rk is not of small order. However, this is checked outside the
Spend statement , as speci�ed in the original Sapling specifcation.

• It is not checked that rcvold < rJ or that rcmold < rJ.

• SpendAuthSig.RandomizePublic(α, ak) = ak + [α]G. (G is as de�ned in the original Sapling specifcation.)

• Note that the asset identi�er is not witnessed in the Spend Statement. Since the validity of vb is witnessed
in the Output Statementand included in the Notecommitment, the asset generator is validated when the
Notecommitment is validated.

0.9.3 Output Statement (Sapling) #outputstatement

The new Output circuit has 31205 constraints. The original Sapling Output circuit has 7827 constraints. Most of the
extra cost comes from computing one Blake2s hash in the circuit.

Let `MerkleSapling, `PRFnfSapling, `scalar, ValueCommit, NoteCommitSapling, J, reprJ, and hJ be as de�ned in the original Sapling
speci�cation.

A valid instance of πZKOutput assures that given a primary input :(
cvnew ◦

◦ ValueCommit.Output,
cmu

◦
◦ B[`MerkleSapling],

epk ◦
◦ J
)
,

8

https://zips.z.cash/protocol/sapling.pdf#outputstatement


the prover knows an auxiliary input :

(gd
◦
◦ J,

pk?d
◦
◦ B[`J],

vnew ◦
◦ {0 .. 2`value−1},

rcvnew ◦
◦ {0 .. 2`scalar−1},

rcmnew ◦
◦ {0 .. 2`scalar−1},

esk ◦
◦ {0 .. 2`scalar−1},

vb ◦
◦ J,

t ◦
◦ B[`t]

)
such that the following conditions hold:

Note commitment integrity cmu = ExtractJ(r)
(
NoteCommitSapling

rcmnew (g?d, pk?d, vnew, vb)
)
, where g?d = reprJ(gd).

Value commitment integrity cvnew = [vnewhJ] vb + [rcvnew] GroupHashJ(r)∗

URS (“tzMASP_r”, “r”)

Value base integrity vb = reprJ(PRFvcgMASP (t))

Small order check gd and vb are not of small order, i.e. [hJ] gd 6= OJ.

Ephemeral public key integrity epk = [esk] gd.

The form and encoding of Output statement proofs may be Groth16 as in the original Sapling speci�cation.

Notes:

• Public and auxiliary inputs MUST be constrained to have the types speci�ed. In particular, see the original
Sapling speci�cation, for required validity checks on compressed representations of Jubjub curve points.

The ValueCommit.Output type also represents points, i.e. J.

• The validity of pk?d is not checked in this circuit.

• It is not checked that rcvold < rJ or that rcmold < rJ.

9


	0.1 Overview and Approach
	0.2 Asset Types: Notation and Nomenclature
	0.3 Derivation of Asset Generator from Asset Identifer
	0.4 Rejection Sampling of Asset Identifiers Hashing to Curve Point
	0.5 Security
	0.6 Multiple Asset Heterogenous Transactions
	0.7 Random beacon
	0.8 Notes
	0.8.1 Sending Notes (Sapling)

	0.9 Dummy Notes
	0.9.1 Dummy Notes (Sapling)
	0.9.2 Spend Statement (Sapling)
	0.9.3 Output Statement (Sapling)


