
Cluster Computing 9, 101–120, 2006
C© 2006 Springer Science + Business Media, Inc. Manufactured in The United States.

GEMS: Gossip-Enabled Monitoring Service for Scalable Heterogeneous
Distributed Systems

RAJAGOPAL SUBRAMANIYAN, PIRABHU RAMAN, ALAN D. GEORGE * and MATTHEW RADLINSKI
High-performance Computing and Simulation (HCS) Research Laboratory, Department of Electrical and Computer Engineering, University of Florida,

P.O. Box 116200, Gainesville, FL 32611-6200

Abstract. Gossip protocols have proven to be effective means by which failures can be detected in large, distributed systems in an

asynchronous manner without the limitations associated with reliable multicasting for group communications. In this paper, we discuss the

development and features of a Gossip-Enabled Monitoring Service (GEMS), a highly responsive and scalable resource monitoring service,

to monitor health and performance information in heterogeneous distributed systems. GEMS has many novel and essential features such as

detection of network partitions and dynamic insertion of new nodes into the service. Easily extensible, GEMS also incorporates facilities for

distributing arbitrary system and application-specific data. We present experiments and analytical projections demonstrating scalability, fast

response times and low resource utilization requirements, making GEMS a potent solution for resource monitoring in distributed computing.

Keywords: grid, cluster, resource monitoring, fault-tolerance, gossip protocol, probabilistic dissemination

1. Introduction

Clusters built from commercial off-the-shelf (COTS) compo-
nents exhibit a level of simplicity and cost effectiveness their
conventional supercomputing brethren lack and, as such, have
seen an increase in popularity in the recent past. Regardless,
the heterogeneity and rapidly increasing size of such clusters
exacerbates the chore of maintaining them. With the increased
availability of advanced computational power, a need exists
for detecting and monitoring idle resources among identical
nodes in a homogeneous system in order to reduce computa-
tion and response times. The need is even greater and is more
difficult to satisfy in a heterogeneous environment where re-
sources vary in quantity and quality from one node to another.
Harnessing such idle resources requires the knowledge of the
health (e.g., liveness) as well as the performance (e.g., utiliza-
tion) of the resources in consideration.

Failures plague clusters designed from stand-alone work-
stations and personal computers (i.e., COTS systems), and
such systems require dedicated services to monitor nodes and
report failures, allowing self-healing and check-pointing ap-
plications to restart dead processes. Distributed applications
require a reliable, fast and scalable low-level health monitor-
ing service. Speed of such processes is critical, as low de-
tection times minimize the impact of failures on the system
and enable quick recovery from faults with strategies such as
checkpointing and process migration. However, minimizing
failure detection time is a non-trivial issue, as a system-wide
consensus on failures must be reached in a scalable fashion.

In addition to fault-free execution, cluster performance is
determined by the utilization of resources such as the CPU, in-

*Corresponding author.

E-mail: george@hcs.ufl.edu

terconnect, memory utilization, etc. Performance monitoring
provides accurate estimate of this resource utilization, which
enables time-critical services and long running applications
with process migration capabilities to distribute processes and
tasks. In summary, resource-monitoring services serve as an
information source for performance, health and available re-
source location and usage information. Thus, resource moni-
toring provides a critical low-level service for load balancing
and scheduling middleware services, apart from providing a
single system image to users and administrators.

This paper presents a reliable and scalable gossip-enabled
monitoring service called GEMS. The resource monitoring
service with gossip-style communication addresses the chal-
lenges of clustering, failure detection and performance mon-
itoring with low overhead. The service employs distributed
consensus for fast and reliable failure detection with reaction
times in the milliseconds range, even for larger systems with
hundreds and thousands of nodes. Performance information is
piggybacked on liveness information providing a distributed
health and performance monitoring service. The GEMS Ap-
plication Programming Interface (API) also allows users to
share application data and introduce user-defined aggrega-
tors into the service for easy expansion. We experimentally
analyze and mathematically model the service to provide per-
formance projections for very large systems beyond the scope
of our testbed. A node-insertion mechanism, which improves
dynamic scalability, further enhances the service.

The rest of the paper is organized as follows. The next
section discusses some relevant resource monitoring services.
Section 3 describes the failure detection mechanism employed
for health monitoring in GEMS. Resource performance mon-
itoring as well as the dissemination and retrieval of moni-
tored information are described in Section 4. Resource uti-
lization experiments and performance results, demonstrating

102 SUBRAMANIYAN ET AL.

the scalability of the service, follow in Section 5. Finally,
conclusions and directions for future research are presented
in Section 6.

2. Related research

Several resource-monitoring services have been developed for
heterogeneous clusters of workstations but few meet the scal-
ability and extensibility requirements of such clusters. None
of the services completely address the relevant issues such as
fault-tolerance, network partitions, and addition of new nodes
to the system, which are vital requirements for COTS-based
clusters. These include services such as the Network Weather
Service, Load Leveler, Cluster Probe, Parmon, Condor and
Astrolabe. We briefly discuss the architecture of these ser-
vices and present some of their shortcomings that prompted
us to develop GEMS.

The University of California at Santa Barbara developed
the Network Weather Service (NWS) [1,2], a resource mon-
itoring and forecasting service for clusters of workstations.
NWS predicts the performance of a particular node using a
time series of measurements. The service is comprised of three
parts: the name server, the persistent state processes and the
sensors. Sensors gather performance measurements and re-
port them to the local persistent state processes, which in turn
store the measurements on a permanent medium. The mea-
surements are used to generate forecasts by modules called
predictors. NWS includes a small API of two functions (Init-
Forecaster, RequestForecasts) for retrieving the performance
forecasts. Applications initially call the InitForecaster func-
tion, which initializes the predictor with a recent history of
measurements. When applications are ready to receive fore-
cast data, they call the RequestForecasts function to send the
request message. After updating with all the measurements
that have been made since the last call to either of these two
functions, the predictor generates the forecasts. Thus, appli-
cations that call the RequestForecasts function infrequently
will experience long delays due to the time spent in updating
the predictors. Another limitation is resilience, since a failure
of the persistent state process halts the storage and retrieval of
data, to and from, the permanent medium. By contrast, data is
distributed among all the processes of a group in the GEMS
service and the monitored data is intact even if only one of the
processes is alive.

ClusterProbe [3], a Java-based resource monitoring tool de-
veloped at the University of Hong Kong, has a central manager
and many proxies to improve scalability, where a subset of the
nodes report to the proxy and the proxies in turn report to the
central manager. ClusterProbe is extensible and provides for
multi-protocol communication, enabling clients with varied
communication protocols to access monitored results. Clus-
terProbe employs a central monitoring server, which acts as
the point of contact for the clients as well as the proxies. The
server receives monitoring requests from the clients and gen-
erates the appropriate monitoring sessions for each agent. This
tool also suffers from a single point of failure at the monitoring

server and is not resilient against proxy crashes. ClusterProbe
implements global event facility as an extension of the local
event facility provided by Java to assist in failure detection.
Failures are located by matching the state of the resources with
the abnormal conditions. This method of failure detection is
not robust and does not address transient failures as well as
group failures.

Parmon [4] is another resource monitoring service devel-
oped at the Centre for Development of Advanced Comput-
ing (CDAC) in India. Parmon monitors an extensive array of
system parameters using a client-server architecture and has a
graphical user interface (GUI) developed in Java. The Parmon
server should be active on all the nodes that are monitored.
The GUI-based Parmon client receives monitoring requests
from the user and polls the Parmon server on each machine
requested by the client. Thus, the service as such may not
scale beyond hundreds of nodes due to the significant network
overhead introduced by the monitoring requests along with
response messages. No information is provided regarding the
behavior of Parmon when monitoring requests are issued for
failed resources. Hence the service may not be fault-tolerant
and robust.

In Astrolabe [5], a scalable and secure resource location
service developed at Cornell University, gossip-style commu-
nication is used for data aggregation similar to GEMS. The
service uses simple timeouts for failure detection which is
unreliable and increases the probability of erroneous failure
detection. The service also does not address the issues related
to network partitions. A reliance on wall-clock time, which is
used in the service as timestamps for differentiating between
update messages, will lead to synchronization problems and
increased resource utilization. The data aggregation functions
and the API are SQL-based queries, which have their advan-
tages and disadvantages in terms of simplicity and scalability
respectively. Finally, the authors provide an analysis of the
speed of propagation of updates in the face of failures but fail
to offer a scalability analysis in terms of resource utilization.

Load Leveler [6], a job scheduling service developed by
IBM, has a central manager that stores monitored information
from all nodes in the system. The service suffers from a single
point of failure and poor scalability due to the bottleneck at
the central manager. The service may not be extensible or
fault-tolerant.

Condor [7], a workload management system developed
at the University of Wisconsin, is specialized for compute-
intensive jobs. Condor provides a job queuing mechanism,
scheduling policy and priority scheme. Though Condor is
among the most popular job management services that are
used presently, it is a batch system like Load Leveler and
suffers from the same limitations such as single point of fail-
ure and bottleneck at the Condor master (central manager).
However, it may be not be fair to compare the functionalities
and design of Load Leveler and Condor with GEMS because
both these two services concentrate more on job management
and scheduling, and resource monitoring is not their primary
emphasis. GEMS, on the other hand, has been specifically
designed as a robust and reliable resource monitoring service

GOSSIP ENABLED MONITORING SERVICE 103

that can provide lower-level services to tools such as Condor
and Load Leveler.

In summary, a distributed monitoring service that period-
ically disseminates the monitored data is needed for faster
response times. The service should be robust and susceptible
to failures including network partitions and any other arbitrary
failure. The service needs to be flexible, with options for mon-
itoring both individual nodes and groups of nodes, to support
system administration. Finally, large distributed applications
with long run times require the service to be scalable and
fault-tolerant. Scalability constraints limit services based on
traditional group communication mechanisms. Gossip-style
services exploit the inherent advantages of gossip commu-
nication in terms of being very responsive, having no single
point of failure, and being far more scalable and efficient than
classical group communication methods.

Research involving random gossiping to promulgate live-
ness information [8–11] has demonstrated high-speed, low-
overhead dissemination of system state information. Early on,
gossip concepts were primarily used for consistency manage-
ment of replicated databases, reliable broadcast and multicast
operations. Van Renesse et al. first investigated gossiping for
failure detection [8] at Cornell University. In their paper, they
present three protocols: a basic protocol, a hierarchical pro-
tocol and a protocol that deals with arbitrary host failures
and partitions. Researchers at the University of Florida ex-
tended the preliminary work at Cornell to build a full-fledged
failure detection service. Burns et al. performed high-fidelity,
CAD-based modeling and simulation of various gossip pro-
tocols to demonstrate the strengths and weaknesses of dif-
ferent approaches [9]. Ranganathan et al. introduced several
efficient communication patterns and simulated their perfor-
mance [10]. Also in [10], the authors proposed a distributed
consensus algorithm, which formed the basis for the exper-
imental analysis of various flat and hierarchical designs of
gossip-based failure detection by Sistla et al. in [11,12]. The
design described in [11,12] is an efficient conception of a
gossip-style failure detection service and forms the basis of
our work as well.

3. Resource health monitoring in GEMS

The basic idea behind gossip-style communication is synony-
mous with the word ‘gossip’. Personal information and opin-
ions about others are not kept a secret and are spread around to
others. The receivers of such gossip messages spread the infor-
mation to few others whom they know. Likewise in computer
systems and clusters, gossip-style protocols employ a similar
type of information dissemination mechanisms. Nodes that
are part of the system frequently exchange their perspective
of the nodes in the system with other nodes.

Three key parameters involved in health monitoring, failure
detection and consensus are the gossip time, the cleanup time,
and the consensus time. Gossip time, or Tgossip, is the time in-
terval between two consecutive gossip messages sent out by a
node. Cleanup time, or Tcleanup, is the interval between the time

liveness information was last received for a particular node and
the time it is suspected to have failed. That is, if node 1 receives
no fresh liveness information about node 2 in Tcleanup time, then
node 1 will suspect node 2 to have failed. Finally, consensus
time, or Tconsensus, is the time interval after which consensus is
reached about a failed node. The first two are input parame-
ters configured for a particular GEMS-based failure detection
system. The cleanup time is some multiple of the gossip time,
and the time required for information to reach all other nodes
sets a lower bound for Tcleanup. When gossip time and cleanup
time are relatively small, the system responds more quickly
to changes in node status. When they are relatively large, re-
sponse is slower but resource utilization decreases as fewer
messages are exchanged and processed. The third parameter,
Tconsensus, is a performance metric determining how quickly
failures are detected and consensus is reached.

3.1. Flat gossiping

The important data structures maintained in each node of the
system are the gossip list, suspect vector, suspect matrix and
live list. The gossip list is a vector containing the number
of Tgossip intervals since the last heartbeat received for each
node. The suspect vector’s i th element is set to ‘1’ if node
i is suspected to have failed, otherwise it is set to ‘0.’ The
suspect vectors of all n nodes in the system together form a
suspect matrix of size n × n. Finally, the live list is a vector
maintaining the health status of all the nodes in the system.

Every Tgossip, a node chooses another node in the system
at random and transmits a gossip message to it via UDP
sockets. Past research at the University of Florida [3,4] has
shown that random gossiping is more scalable and efficient
than other communication patterns such as round-robin and
binary round-robin. A gossip message consists of the sender’s
gossip list and suspect matrix and various headers. The sus-
pect matrix sent by node ihas the suspect vector of node i as
the i th row. On receipt of a gossip message, the local suspect
vector and suspect matrix are updated based on the heartbeat
values provided by the gossip list. Low values in the gossip
list imply recent communication.

Figure 1 illustrates how the data structures in a node are
updated upon receipt of a gossip message from another node
in the system. The Tcleanup for the 4-node system has been set
to a value of 20 (i.e., 20 × Tgossip). Initially in the figure,
node 0 suspects nodes 2 and 3 to have failed, as the heartbeat
entries in gossip list corresponding to nodes 2 and 3 indicate
values greater than Tcleanup, the suspicion time. The entries
corresponding to nodes 2 and 3 in the suspect list reflect the
suspicion. Likewise, node 1 also suspects node 3 to have failed
as indicated by a corresponding entry in the suspect list. Node
1 does not suspect node 2, as only five gossip intervals, which
is less than Tcleanup, have elapsed since the receipt of a message
from node 2. The entries in the suspect matrix of node 1 also
indicate that node 2 suspects the failure of node 3, which
would have been indicated by a gossip message from node 2
to node 1.

104 SUBRAMANIYAN ET AL.

Figure 1. Illustration of data structure updates in a 4-node system with Tcleanup = 20.

On receipt of a gossip message from a node, say node Y ,
node 0 compares the heartbeat entries in the received gossip
list with those in the local gossip list. A smaller value in the
received gossip list corresponding to a node, say node X , im-
plies more recent communication by node X with node Y .
Node 0 subsequently replaces the entry in its gossip list cor-
responding to node X with the value in the received gossip
list. A larger value in the received gossip list corresponding
to node X implies that node X has communicated with node
0 more recently than with node Y . Then, the entry in the local
gossip list is not modified. In figure 1, node 2 has commu-
nicated five gossip intervals ago with node 1, and 23 gossip
intervals ago with node 0. On receipt of a message from node
1, node 0 updates the gossip list to reflect the fact that node 2
was alive as recent as five gossip intervals ago.

The suspect vector is next updated based on the updated
gossip list. The suspicion entries are modified to reflect the
present heartbeat values. In figure 1, the suspicion on node 2
is removed, while node 3 is still suspected. The suspect matrix
is next updated, based on the modifications done to the gossip
list. A new smaller heartbeat value corresponding to any node,
say node Z , implies that the received message has node Z ’s
more recent perspective of the system. In figure 1, heartbeat
values of nodes 1, 2 and 3 have been changed in the gossip
list, implying that node 1 has a more recent version of the
perspective of other nodes (i.e., nodes 1, 2 and 3) in the system
than does node 0. Subsequently, node 0 replaces the entries in

the suspect matrix corresponding to nodes 1, 2 and 3 with those
in the received suspect matrix. The entries corresponding to
node 0 itself are also modified to reflect node 0’s present vision
of the system as given by its new suspect vector.

3.2. Layered gossiping

The layered design proposed here, a divide and conquer ap-
proach, divides the system into groups, which in turn are com-
bined to form groups in different layers, with the number of
layers dictated by performance requirements. The optimum
choice for the number of layers to use in a system is described
in Section 5.4. The notation ‘L#’ will be used hereafter to de-
note a layer with ‘L’ abbreviating layer and ‘#’ layer number.
Figure 2 illustrates the communication structure and system
configuration of the multilayered design in a sample system
having 27 nodes divided into three layers. The nodes are di-
vided into groups, with three nodes in each L2 group. L2
groups are grouped themselves to form L3 groups. The sys-
tem shown in the figure has three L2 groups in each L3 group.
Groups of nodes in the higher layers are also treated similar
to nodes in the first layer. Gossip lists, suspect vectors, and
suspect matrices are maintained for each group in each layer
similar to those for individual nodes. In a layered system, the
gossip messages sent between nodes in the same group in-
clude the gossip list and suspect matrix of the nodes in the
group, as in a flat system, along with the data structures

GOSSIP ENABLED MONITORING SERVICE 105

Figure 2. A sample multilayered system with 27 nodes and three layers.

involving the groups in all the upper layers. In general, a gos-
sip message in layer k encompasses the information of the
groups in all the layers above layer k. For example, in fig-
ure 2, a gossip message between node 0 and node 1 will in-
clude information corresponding to the nodes 0, 1 and 2 along
with information corresponding to L2 groups 0, 1, 2 and L3
groups 0, 1 and 2. In order to communicate group informa-
tion to other groups, nodes in each group loosely take turns
by applying modulo arithmetic to the iteration counter main-
tained by GEMS. The iteration counter maintains the number
of Tgossip intervals elapsed since the service has started in a
node. When the remainder that is obtained on division of the
iteration counter value by the number of nodes in the group is
equal to the node number (within the group), the node com-
municates with other groups. This scheme maintains the dis-
tributed nature of the service without the necessity to choose
group leaders and hence avoids single points of failure. An
alternative is to simply apply a random-number generator at
each node in the group so that each node has an equal proba-
bility of communication with another group, and on average
one node does so every gossip interval. Consensus about the
failure of a node is restricted to the L2 group in which the
failure occurred and is propagated to the rest of the system
by both broadcast and live list propagation, as described in
Section 3.3.1.

3.3. Consensus on health failures

Primitive failure detection services work on basic timeout
mechanisms. However, such services are vulnerable to net-
work failure, delays and message losses. Gossip-style failure
detection, though fully distributed, is not immune to false
failure detections especially with the random pattern of gos-
sip messages. In order to obtain a consistent system view and
prevent false failure detections, it is necessary for all the nodes
in the system to come to a consensus on the status of a failed
node.

3.3.1. Design of consensus algorithm
Whenever a node suspects that any other node in the system
may have failed, it checks the corresponding column of its
suspect matrix to consult the opinions of other nodes about
the suspected node. If more than half the number of presently
unsuspected (live) nodes, i.e., a majority of the live nodes,
suspect a node then the node is not included in the consensus.
The opinion of the masked node is discarded. The majority
check prevents false detections from affecting the correct-

ness of the algorithm by ensuring that only faulty nodes are
masked. Should all the other nodes agree with the suspicion,
the suspected node is declared failed and the information is
broadcasted to all the other nodes in the flat system. In the case
of layered gossiping, the consensus is localized within a group
and the failure is broadcasted to all the nodes in the system.
Figure 3 illustrates the working of the consensus algorithm in
a 4-node system with one failed node, node 0. Node 2 sends a
suspect matrix to node 1 indicating that it and node 3 suspect
node 0 may have failed based in part upon earlier messages
received from node 3. Node 1, which already suspects node
0, updates its suspect matrix on receipt of a gossip message
from node 2 and finds that every other node in the system
suspects that node 0 has failed. The suspect matrix is updated
as explained in the previous section. Thus, a consensus has
been reached on the failure of node 0 and this information
is broadcasted throughout the system. All the nodes subse-
quently update their live lists to indicate the status of node
0.

Since UDP broadcasts can be unreliable, an alternate
method of intimating the failure of a node is necessary. One
solution is to propagate the live list of a group by appending
it to inter-group gossip messages. Every node in the system
maintains the live list of the nodes within its own group, that
is, a local live list. The local live list is generally consistent
within a group, thanks to the consensus algorithm. The local
live list is propagated to other groups and is also consistent
irrespective of which node in the group sends the gossip mes-
sage. On receipt of a gossip message from a different group, a
node identifies the sender’s group and updates the live list cor-
responding to the group. So the L2 messages will now include
the live list of a group along with the gossip list and suspect
matrix of the groups. In the multilayered design, the first-layer
live list is appended to all higher-layer gossip messages.

Propagating a failure message through transmission of the
live list as described above takes much more time than a broad-
cast. However, live list transmission is done in addition to a
broadcast, so only the nodes that missed the broadcast need
to be updated. Thus, the speed with which the nodes are up-
dated with this additional method is not an important factor
here. Being an input parameter, the frequency with which sec-
ond and higher layer gossip messages are transmitted may be
set up to be the same as the frequency with which first layer
gossip messages are transmitted, thus propagating the live list
more frequently, with little increase in overhead. Ultimately,
every node will know the status of every other node in the
system, regardless of the reliability of UDP broadcasts, and

106 SUBRAMANIYAN ET AL.

Figure 3. Illustration of consensus algorithm on a 4-node system.

the system will exhibit strong completeness. Presently, we are
developing new and fast failure intimation mechanisms that
can work in grid-like systems where broadcast is not possible.

3.3.2. Network partitions
Byzantine failures like network partitions, link failures and si-
multaneous failures challenge the correctness of the service.
The majority requirement to mask faulty nodes from the con-
sensus is reasonable only in cases when no bizarre failures
occur and the system is running smoothly, except for a few
minimal failures.

When a failure divides a system into two or more parti-
tions, the partition with more than half the number of nodes
in the entire system can always use the consensus algorithm
successfully to detect the failure of the nodes in the other par-
titions. However, the nodes in smaller partitions cannot detect
the failure of nodes in larger groups due to a lack of the ma-
jority required for consensus.

Timeout, the basis behind the idea of suspicion and fail-
ure detection, can be used to modify the consensus algorithm
to overcome such Byzantine failures. Along with the normal
procedure for detecting the failure of nodes, a user-definable
timeout is used on the duration for which a node is suspected.
For any node j suspected, the j th column of the suspect ma-
trix is repeatedly checked at periodic intervals to verify if the
entries are updated. A change in any entry [i , j] of the sus-
pect matrix indicates communication with node j indirectly
via node i . By contrast, if the node is suspected even after the

timeout period and none of the entries in the j th column have
been updated, a communication failure has likely occurred.
Subsequently, the live list is updated to reflect the failure of
communication with node j . Whenever there is a failure of
any network link and henceforth a partition in the network, a
few nodes might end up in the smaller partitions. Such nodes
in the smaller partition use the enhanced consensus algorithm
to identify the other nodes in their partition without being
affected by the requirement for a majority check.

Figure 4 illustrates the consensus algorithm modified to
use timeouts. The figure depicts a system with five nodes, par-
titioned into two groups of three and two nodes. The group
with three nodes (i.e., nodes 2, 3 and 4) will use the consensus
algorithm as usual to detect the failure of the other two nodes
(i.e., nodes 0 and 1). In the other group, the majority require-
ment will not be satisfied and normal consensus will not work
with just two nodes. However, the suspect matrix in node 1
will indicate the suspicion of the other three nodes, while the
update check indicates no update. Node 0 will also indicate
through its suspect vector that it has not received any updates
for the three nodes in question. Thus node 0 and node 1 detect
the network partition and consider the other nodes as failed.
The same timeout mechanism is used by node 0, which detects
that node 1 has broken communication with the other nodes in
the system. Nodes 0 and 1 can now form a new logical system
with size two, if their services are still required.

When many links fail simultaneously creating multiple par-
titions in the network, the consensus algorithm with timeout

GOSSIP ENABLED MONITORING SERVICE 107

Figure 4. A flat 5-node system, with a broken link and using timeout-based consensus algorithm.

is used by all the nodes in the partitions that do not have the
required number of nodes to use regular consensus. When the
system is divided into two or more partitions of equal size,
the timeout mechanism will identify the partition for all the
nodes. The timeout-based algorithm is used to detect the parti-
tion of groups as well if a hierarchical failure detection service
is employed. When a failure occurs, regardless of the nature
of the failure, the modified algorithm helps the application us-
ing the service degrade gracefully or terminate, saving system
resources. The deadlock resulting from a partition is avoided,
and system-wide consistency is maintained.

3.3.3. Group failures
Failures of groups could be due to a partition in the network,
splitting the network into two or more components, or due to
the individual failures of all nodes in a group. Bulk failures
go undetected if group failures are not addressed, calling into
question the correctness and completeness of the service.

The solution is to detect such failures with a group-level
consensus in the layer corresponding to the failure. On a group
failure, the other groups with the same parent group in the next
higher layer as the failed group use the standard consensus
algorithm to detect the failure. All the subgroups and nodes
within the failed group are also declared failed. However, it
should be understood that a group is considered dead only
when all the nodes in the group die. A group with even one
live node is considered alive, since from the application’s point
of view, that one live node can share resources with the other
groups. As an example of consensus on a group failure, as
shown in figure 2, detection of failure of group 2 in L3 requires
the consensus of L3 groups 0 and 1, which involves consensus
of L2 groups 0-5, which requires the agreement of nodes 0
through 17.

4. Resource performance monitoring in GEMS

Gossip-style health monitoring is extended in GEMS to mon-
itor the performance of various resources in the system. The

performance information is piggybacked on health informa-
tion, using the health monitoring service as a carrier to reduce
overhead. The gossip heartbeat mechanism, which is used as
part of health monitoring, is used here to maintain data con-
sistency. In this section, we discuss the basic architecture for
performance monitoring, its components, and the mechanism
by which our service guarantees data consistency.

The performance monitoring module is made up of two
main components: the Resource Monitoring Agent (RMA)
and the Gossip Agent (GA). The GA basically refers to the
resource health monitoring and failure detection part of GEMS
discussed in the previous section. The RMA and GA should be
active on each node that forms part of the resource monitoring
service. The RMA gathers performance data monitored from
the system and forms a Monitor Data Packet (MDP), which
is forwarded to the GA. The GA piggybacks the MDP onto
the gossip messages and receives MDPs from other nodes
and forwards them to the RMA. The RMA initially registers
with the gossip agent, in the absence of which the gossip
agent ignores any incoming monitor data packets and does
not forward them to the RMA. Figure 5 shows the exchange
of MDPs in the resource monitoring service.

The RMA forms the basic block of the service and is com-
posed of the sensors, the communication interface and the Ap-
plication Programming Interface (API). Figure 6 shows the
various components of the resource monitoring service with
the RMA as the middleware between the hardware resources
and user-level applications. The communication interface of
the RMA receives the system parameters measured by the
sensors and the queries from the API. The API provides a
set of functions for the dissemination and retrieval of data by
applications and middleware services.

4.1. Sensors

The sensors interact with the hardware and applications to
gather resource data, which forms the Management Informa-
tion Base (MIB). GEMS has two types of sensors: built-in

108 SUBRAMANIYAN ET AL.

Figure 5. Illustration of MDP exchange in GEMS.

Figure 6. Components of the RMA.

sensors and user-defined sensors. Built-in sensors, which are
provided with the service, actively measure the following per-
formance parameters through the operating system services
and system calls:� Load average—1/5/15 min CPU load average� Memory free—Available physical memory� Network utilization—Bandwidth utilization per node� Disk utilization—Number of blocks read and written� Swap free—Available free swap space� Paging activity—Number of pages swapped� Num. processes —Number of processes waiting for run

time� Virt. memory—Amount of virtual memory used� Num. switches—Number of context switches per second

The user-defined sensors measure new system and
application-specific parameters, which are useful for monitor-
ing resources that are not supported by the built-in sensors. For
example, a new user-defined sensor that measures the round-
trip latency between two nodes could be developed with min-
imal effort using the ping networking service. The measured
latency parameter can be disseminated through the resource
monitoring service using the API function calls. Since there
is no limit associated with the amount of user data that each
application can send, an RMA might receive several differ-
ent types of user data from various applications. These user
data are identified using unique IDs, which are numerical tags
assigned by the RMA.

Figure 7 shows an example scenario illustrating the use-
fulness of assigning IDs for identification of user data. Con-
sider a user-defined sensor developed for failure detection of
processes. Such a sensor needs to be implemented because

GOSSIP ENABLED MONITORING SERVICE 109

Figure 7. Example scenario describing the user data ID.

gossip currently supports only node-level failure detection,
but failure detection for processes is a simple extension. An
application with its processes distributed across the nodes can
contact the RMA using the API and obtain a globally unique
ID i . The application process then registers itself with the fail-
ure detection sensor providing it the local Process ID (PID)
and the application’s assigned ID i . Other instances of the
same application, running on various nodes, should do the
same with their local sensors using their local PID and the
same globally unique ID i . The sensor can be designed to
check the processes periodically for liveness and disseminate
the monitored information through the resource monitoring
service using ID i . Eventually, the applications can contact
the RMA periodically using the ID i and know which of its
processes are alive. In figure 7, A1 and A2 are two applica-
tions with processes distributed on more than one node. S, the
process failure detection sensor, checks the local processes of
applications A1 and A2 and reports their status to the RMA.
A1 and A2 might be assigned IDs 1 and 2 respectively by the
RMA. Thus, any process in any node with an active RMA can

Figure 8. Structure of performance monitoring in GEMS.

use ID 1 to determine the liveness of all processes that belong
to application A1.

4.2. Communication interface

The communication interface, which forms the heart of the
RMA, receives queries from applications through the API,
local monitored data from the sensors and external monitored
data from the gossip agent. The communication interface is
responsible for generating the MDP, updating the MIB with
newly received data and executing the aggregation functions
to generate the aggregate MIB (AMIB).

Aggregation functions use the monitored data of all nodes
in the group, to generate a single aggregate MIB representing
the whole group. The AMIB is generated and maintained in-
dependently by every node in the group. Figure 8 shows the
structure of a two-layered resource monitoring service having
three groups, each with three nodes. Sensors read the sys-
tem parameters that form the local MIB, and the local MIB
of all nodes in a group together form an AMIB. The local

110 SUBRAMANIYAN ET AL.

Figure 9. Illustration of the built-in aggregation functions.

MIB is exchanged within the group through L1 gossip com-
munication, whereas the AMIB is exchanged between groups
through higher layers of gossip communication. The aggre-
gation of monitored data reduces resource consumption while
providing information sufficient for locating resources in the
system. While the figure shows the communication for only
two layers, similar aggregation may be performed for layers
higher than L2.

4.2.1. Aggregation functions
Aggregation functions operate on the data monitored by sen-
sors to generate an AMIB. The applications can choose a par-
ticular aggregation function to suit the data type on which they
operate. Some basic aggregation functions such as the mean,
median, maximum, minimum, summation, and boolean func-
tions are provided with the service. The functions are identi-
fied by specific IDs similar to user data. Figure 9 illustrates a
situation in which these functions generate an aggregate MIB
for a two-node group. Here, three parameters are aggregated
using different aggregation functions. When the knowledge
concerning the availability of a resource is required, the pres-
ence or absence of the resource can be represented by the use
of a single bit. Thus, a Boolean aggregation that performs an
‘OR’ operation is used in this case. In the case of load average,
perhaps only the average load of the whole group would make
sense and hence a mean aggregation function is used in such
cases.

4.2.2. User-defined aggregation functions
The aggregation functions provided with the service are lim-
ited and applications might require new modes of aggregation
that are better suited for their data. Features have been added
for introducing new user-defined aggregation functions into
the system. Similar to the built-in aggregation functions, IDs
are used for identification of user-defined aggregation func-
tions. These aggregation functions are dynamically loaded

into the service without the need for recompilation or restart
of the service.

4.2.3. Monitor data packet (MDP)
The MDP contains the monitored information, which includes
data from the sensors for individual nodes in the group and the
aggregate data of the groups. Figure 10 shows the layout of L1
and L2 MDPs in a two-layered system wherein the L1 packet
contains the aggregate data of only the L2 groups. However,
in a multi-layered system with more than two layers, the L1
packet will have the aggregate data of the groups in all the
layers above L1. Thus, size of the L1 packet depends on the
number of nodes/groups in each layer while that of the layer-
n packet depends only on the number of groups in layer n
and higher. L1 packets, therefore, are the largest packets in
the system and are exchanged only within the local groups,
saving network resources.

4.2.4. Data consistency
MDPs are updated using the gossip heartbeat values similar to
the gossip list update. Whenever a new MDP is received, the

Figure 10. Structure of the MDP.

GOSSIP ENABLED MONITORING SERVICE 111

Figure 11. Example illustrating update of monitor data packets.

communication interface merges the received contents with
data previously present in the local RMA. Figure 11 illus-
trates an MIB update that occurs when node 1 receives an
MDP from node 2 for a metric called “load.” The load metrics
with lower heartbeat values in the incoming MDP of node 2
are updated into the MIB of node 1. In the figure, the heartbeat
values corresponding to node 2 and node 3 are lower in the re-
ceived MDP than the current MIB values at node 1, so the load
values of these nodes are updated. The heartbeat values corre-
sponding to node 4 and node 1 are lower at node 1, and hence
the previous load values for node 4 and node 1 are retained.

4.3. Application programming interface (API)

The API consists of a set of easy-to-use dynamic library func-
tions. The API forms the principal mode of communication be-
tween the application and the RMA. The functions are broadly
categorized into initialization, control and update functions.

4.3.1. Initialization functions
The initialization functions are used for registering the RMA
with the gossip agent as well as procuring IDs for each user
data and aggregation functions. Table 1 shows the various
monitor initialization functions, their operation and their re-
turn values.

4.3.2. Control functions
The control functions enable and disable the operation of
RMA as well as the dissemination of monitored data. Table 2
shows the various monitor control functions, their operation,
and their return values.

4.3.3. Update functions
These functions update applications with built-in sen-
sor data and user data from the RMA. The users can

Table 1

Initialization functions.

API function name Operation Return values

gems init Gems init Success/failure

gems userdata init gems userdata init New ID for user data

gems aggfn init gems aggfn init New ID for

aggregation functions

Table 2

Control functions.

API function name Operation Return values

gems start Starts RMA Success/failure

gems end Stops MDP dissemination Success/failure

gems userdata stopall Stops dissemination of all

user data

Success/failure

gems userdata stop Stops dissemination of

data identified by ID

Success/failure

choose to receive all the application data disseminated by
GEMS using the gems update w userdata function or se-
lectively receive data of specific applications using the
gems update w nuserdata function. In the latter function, data
of specific applications are received by providing the cor-
responding user data IDs, with ‘n’ referring to the number
of such data requested by the client. Finally, the functions
gems senduserdata and gems recvuserdata are used for dis-
semination of user data using GEMS. Table 3 shows the vari-
ous monitor update functions, their operation and their return
values.

4.4. Steps in user data dissemination

The dissemination of user data involves the following steps:
procuring an ID for the user data, procuring an ID for

Table 3

Update functions.

API function name Operation Return values

gems update RMA query

function

Built-in sensor data

gems update w userdata RMA query

function

Built-in sensor and

user data

gems update w nuserdata RMA query

function

Built-in sensor and ‘n’

user data

gems senduserdata Sends user data to

RMA

Success/failure

gems recvuserdata Receives user data

from RMA

User data of nodes

and aggregate data of

group

112 SUBRAMANIYAN ET AL.

the aggregation function if the data employs a user-defined
aggregation function, and the selection of an aggregation func-
tion. The application has to first confirm whether an RMA is
active at the node and, if not, spawn a new RMA process.
If a new user-defined aggregation function is required, then a
request for a unique ID is sent to the RMA, along with the file-
name containing the aggregation function. The RMA assigns
the unique ID to the new function after dynamically loading it
into the service, and propagates it throughout the system. The
application then requests an ID for the user’s data, and upon
receipt the application sends the user data, the data ID, and
the aggregation function ID to the RMA. Henceforth, the ap-
plication disseminates the data using this ID, until such time
that it notifies the RMA to discontinue service for this piece
of user data. Listed below is the pseudo-code detailing the
procedure for the dissemination of user data with appropriate
API functions.

1. userdata id = gems userdata init(); //get IDs from RMA — only one
2. aggfn id = gems aggfn init(); //of the nodes should do this
3. while (1)
4. {
5. data = sensor (); //update my local data
6. gems senduserdata (userdata id, aggfn id, data); //send my local data
7. gems recvuserdata (userdata id); //receive data of all hosts from RMA
8. sleep (1);
9. if(condition)
10. gems userdata stop (userdata id); //stop dissemination
11. }

4.5. Dynamic system reconfiguration

The scalability and efficiency of any service might depend on
the reconfiguration facilities that are part of the service. Like-
wise, the dynamic scalability of the gossip service depends
on the ability to join a new node into the system on the fly.
Without dynamic reconfiguration facilities, the service would
be unable to support applications which may require or benefit
from an incremental allocation of resources.

Dynamic scalability of a service, the ability to expand the
size of the system without a restart of the application is largely
dependent on the abilities and performance of the reconfig-
uration software embedded in the service. This requires the
expansion of the GEMS service as well to support the addi-
tion of new nodes into the system dynamically without any
hindrance to regular services. Support for node-insertion also
enables the service to be easily used with load balancing and
scheduling services, wherein new nodes frequently join and
leave the system. The remainder of this section discusses the
mechanism to insert nodes into the system during execution.

4.5.1. Node re-initialization
Node insertion can be coarsely defined as the addition of a
new node into the cluster or inclusion of a node already part
of a cluster into another group of nodes running a specific

application. The node insertion mechanism is used to add a
new node into the system, or to re-initialize a node which
previously failed and has since recovered. Re-initialization is
faster compared to inserting a new node, as no data structures
need to be rebuilt.

To re-initialize a node, the gossip service must be restarted
on the node after it has recovered. The node starts to commu-
nicate gossip messages with other nodes as usual. The node
which receives the first gossip message from the restarted node
is called the broker node. The broker node realizes from its
live list that a failed node has come back to life again, and it
takes the responsibility of broadcasting the information to all
the other nodes in the system. On receipt of the broadcast, each
node’s gossip list is modified to indicate recent communica-
tion. Their suspect vectors and suspect matrices are modified
to remove suspicion, and the live lists are changed to show the
live status of the node. The broadcast avoids inconsistency in

the system when two or more dead nodes come back alive
simultaneously. The restarted node determines the status of
all other nodes through normal gossiping.

4.5.2. Design of the node-insertion mechanism
Many general node-insertion and reconfiguration mechanisms
relevant to gossip-style service designed in the past were con-
sidered to provide deadlock-free and consistent node-insertion
software. Approaches used in mobile ad-hoc networks were
also studied as they involve very frequent reconfiguration. Re-
alizing an insertion time as short as possible and leaving the
system uninterrupted is critical. We have developed a fully
distributed approach with low insertion times. The rest of this
section discusses the design of the node-insertion mechanism
built for GEMS.

The joining algorithm involves six different phases. During
phase 1, the joiner node tries to identify a sponsor node. The
new node can choose any node in the group in which it wants
to join as its sponsor. Multiple requests to a sponsor may be
done sequentially, should the first attempt fail due to timeout
or a negative response. Steps 1 and 2 in figure 12 form the
first phase. During the second phase, the joiner requests the
sponsor to allow it to join the sponsor’s group and goes into a
wait state. During the third phase, the sponsor acquires a global
lock to ensure that only a single join is in progress at any instant

GOSSIP ENABLED MONITORING SERVICE 113

Figure 12. Sequence of steps illustrating the join of a new node.

of time. The locking mechanism is inspired by the global-
update (GUP) lock of the Microsoft Cluster Service (MSCS)
[13]. One node in the system plays the role of a lock manager,
with its identity known system wide. The sponsor node queries
the lock manager for the lock, and proceeds to insert the new
node after obtaining the lock. The lock manager reclaims the
lock after the insertion of the new node. When multiple nodes
attempt to join the system simultaneously, the lock requests
are maintained in a queue at the lock manager, and the lock
is released to the sponsors in the order in which their requests
were received. Should the lock manager fail, the next node in
the system takes up the role, providing fault tolerance. There
could be speculations that the hot spot at the lock manager
will limit the scalability of the mechanism. Considering the
fact that node insertions are infrequent, and the chances of
simultaneous insertions of large number of nodes which create
the hot spot are very low, the locking mechanism is scalable.
However, the locking mechanism suffers from one limitation
in that the sponsor nodes that are waiting to acquire the lock
have to resubmit their lock request to the new lock manager
when the present lock manager fails.

During the fourth phase, the sponsor broadcasts the identity
of the new node to all the nodes in the system. The various
data structures are modified in all the nodes to include the
recent addition. The sponsor also takes the responsibility of
modifying the shared configuration file to reflect the inclusion
of the new node. Steps 5, 6 and 7 in the figure form the fourth
phase. During the fifth phase, the sponsor sends current system

information to the joiner and waits for the joiner’s acknowl-
edgement. On receipt of an acknowledgement, the sponsor
broadcasts restart instructions to all nodes including the new
node and releases the lock in the sixth phase. Whenever a spon-
sor node fails during the process of insertion, another node in
the system takes up the responsibility of sponsoring the join.
This step avoids deadlocks during the join. The choice of the
new sponsor is made based on the order of nodes in the con-
figuration file, which avoids unnecessary contention and race
conditions. The design has been tested to be robust under all
critical conditions.

It is worth noting here the reasons why we require a special
mechanism to insert nodes into the system rather than letting
nodes join asynchronously by sending gossip messages. The
GEMS service is designed with fixed array data structures with
the order of the nodes represented in the arrays remaining the
same in each node throughout the system. The service relies
on a common configuration file shared by all the nodes for this
order. The advantage of this approach is that the size of the
gossip messages is kept small as the messages merely contain
the information (opinions) about the nodes in a specific order
rather than explicitly storing and equating information be-
longing to each node. We are presently developing techniques
to asynchronously join nodes in the service while keeping the
size of the gossip messages small.

5. Experiments and results

We conducted a series of experiments involving the measure-
ment of failure detection times, network and CPU utiliza-
tion, and node insertion times to study the failure detection
speed, scalability and performance of the service. The exper-
iments were conducted on a PC cluster of 150 nodes running
the Linux RedHat v7.1 or v7.2 operating system and ker-
nel version 2.4. All the experiments illustrated below used
Fast/Gigabit Ethernet for communication with UDP as the
network transport protocol. The primary focus of the exper-
iments was to determine the configuration that yields mini-
mum resource utilization for a given system size, as well as
ascertaining the scalability of the service.

5.1. Failure detection time experiments

Figure 13 illustrates the dependence of failure detection and
consensus time on the size of a group in a two-layered sys-
tem. The figure validates the results provided in [12], as well
as extends the experiments for larger systems sizes. For a
given system, the best consensus time is achieved by setting
the Tcleanupparameter to the lowest possible value, called op-
timal cleanup time [12], below which true consensus cannot
be reached. Selecting a value below this minimum for Tcleanup

will increase false failure detections and make consensus im-
possible. For a fixed group size, consensus time is entirely
independent of system size. Large group sizes result in long
consensus times, while small group sizes yield lower con-
sensus times. The smaller the group size, the faster the failure

114 SUBRAMANIYAN ET AL.

Figure 13. Detection time of node failures in a two-layered system.

detection, since fewer nodes are required for consensus. How-
ever, the size of L2 gossip messages increases with the number
of groups (i.e. smaller group size implies more groups for a
fixed system size), so a tradeoff exists between overhead and
failure detection time when dealing with two-level gossiping.
Rather than increasing the number of groups, the number of
layers may be increased, thereby mitigating this effect. Using
a multilayered design, the group size can be kept small with-
out overhead constraints by increasing the number of layers.
Thus with a multilayered setup, GEMS can detect node fail-
ures in as little as 130 ms irrespective of system size while
most of the other existing services described in Section 2 take
seconds to detect failure of a node.

Failure detection of groups is similar to that of nodes, ex-
cept that subgroups participate in consensus instead of indi-
vidual nodes. Figure 14 compares the detection time of a L2
group in two-layered and three-layered systems of the same
size. Increasing the number of layers can keep detection time
for group failures low. With the L2 group size fixed at four,
the number of L2 groups must increase with system size. This
increase in the number of L2 groups increases the detection
time of a group failure in a two-layered system, as more groups
participate in consensus. In the case of a three-layered system

Figure 14. Comparison of detection time of group failures in layered sys-

tems.

with a L3 group size of three, every three L2 groups form a
L3 group. When a L2 group fails, only two other groups must
come to a consensus, speeding up the process.

5.2. Network utilization experiments

What are the performance costs of using this service, and is
this service scalable? We measured the required network band-
width using a packet-capturing tool called Ethereal available
under the GNU public license. The network utilization mea-
surements discussed here are only for the basic resource health
monitoring module unless otherwise specified. Since the per-
formance data that is piggybacked on health data is variable,
the size of the data representing the monitored performance
information is also not a constant and hence it would not be
appropriate to include them in the general network utilization
measurements.

Figure 15(a) shows the variation of bandwidth requirement
per node for various group sizes. With a fixed L2 group size,
an increase in system size increases the number of groups, in-
creasing the L2 component of network utilization while the L1
component remains constant. The L1 network utilization com-
ponent dominates the L2 component for small systems, while
network use due to L2 traffic stands out for larger systems.
With larger group sizes, the L2 component remains small,
even for larger systems. Note the sharp increase in required
bandwidth whenever the number of groups (system size ÷
group size) crosses a multiple of eight. Steep increases can
be seen when system size moves from 64 to 72 and 128 to
136 for a group size of eight, and 128 to 144 for a group size
of 16. Since gossip data is a sequence of bits, and packets
are transmitted as bytes, an entire additional byte is required
whenever the number of bits required crosses a multiple of
eight.

Figure 15(b) illustrates the same behavior in a three-layered
system for various L2 group sizes. When the number of L3
groups is fixed at two, each L3 group contains half the L2
groups. For example, with group size eight, a system with
128 nodes will have 16 L2 groups and two L3 groups, each
of size eight. In a three-layered system, the L2 component
also remains constant for a fixed L3 group size. When the
system size increases from 128 to 144, while the L2 group
size remains fixed at eight, the L3 group size increases from
eight to nine with a steep rise in required bandwidth.

Results in figure 16 demonstrate the improved scalability
of the three-layered system over the two-layered system, jus-
tifying the development of a layered service supporting any
number of layers. In figure 16(a), the bandwidth requirement
per node is compared for two- and three-layered systems with
L2 group size fixed at eight.

For smaller systems (<64 = 8 × 8, here), additional layers
increase bandwidth due to necessary but extraneous commu-
nication in the higher layers. For larger systems (>64 here),
bandwidth required per node in a three-layered system is less
than that in a two-layered system, since fewer L2 groups com-
municate frequently. Reducing the size of a L3 group further

GOSSIP ENABLED MONITORING SERVICE 115

Figure 15. Variation of bandwidth requirement per node with group size in (a) two-layered system and (b) three-layered system.

Figure 16. Comparison of bandwidth requirement per node in two and three-layered systems with (a) L2 group size = 8 (b) L2 group size =
16.

reduces the bandwidth, resulting in an even greater improve-
ment over a two-layered system. Figure 16(b) illustrates the
situation when the L2 group size fixed at 16. Here, the three-
layered system performs better than the two-layered system
for system sizes greater than 128, when the number of L2
groups increases beyond eight.

5.3. Processor utilization experiments

Processor utilization of the service is computed by measuring
the number of CPU cycles consumed per Tgossip. The same
150-node PC cluster that was used for failure detection time
and network utilization experiments was used for processor
utilization experiments as well. The number of nodes used for
the experiments was varied from 8 to 144. Processor utilization
was measured in several nodes, each equipped with a 733 MHz
Intel Pentium-III and 256 MB of memory.

Results in figure 17 demonstrate the scalability of three-
layered systems over two-layered systems for larger system
sizes. From the figure, it is seen that CPU utilization results
follow the same trend as network utilization results with steep
increases when the number of nodes or groups in a layer (that
form a group in the next higher layer) crosses a multiple of
eight. For example, in a two-layered system with L2 group
size of eight, steep increases can be seen when system size

increases from 64 to 72 and 128 to 136 because the number
of L2 groups increases from 8 to 9 and 16 to 17 respectively.
Figure 17(a) compares the CPU utilization of two- and three-
layered systems with L2 group sizes fixed at eight. For smaller
systems (<64=8×8, here), additional layers increase the CPU
utilization due to necessary but extraneous computations for
the higher layers. For larger systems (>64 here), CPU uti-
lization per node in a three-layered system is less than that
in a two-layered system, since computation involves fewer
L2 groups. For a 144-node system, three-layered gossiping
requires only about half of the CPU utilization required by
two-layered gossiping with a L2 group size of eight. Simi-
lar to the network utilization case, reducing the size of a L3
group further reduces the CPU utilization, resulting in an even
greater improvement over a two-layered system. Figure 17(b)
illustrates the same situation when the L2 group size is fixed at
16. The crossover can be seen when system size crosses 128
and the number of L2 groups increases from eight to nine.
In general, as L2 group size increases, the crossover shifts to
the right (i.e., the curves cross at a larger system size). In any
case, the curves diverge from each other after the crossover.

Here again, the utilization measurements do not involve
the resource performance data of GEMS for the same reasons
mentioned in the network utilization experiments. However,
though not presented here, it was experimentally found that

116 SUBRAMANIYAN ET AL.

Figure 17. Comparison of CPU utilization in two and three-layered systems with (a) L2 group size = 8 and (b) L2 group size = 16.

the CPU utilization is not more than 2% when the module
monitoring the performance of basic system parameters is
included.

It can be seen from the utilization results in figure 17 that
GEMS uses less than 2% of the CPU. It should be noted that
when machines with faster processors are used, the processor
utilization will be even lower since the execution time is lower
in faster machines for the same workload. Hence, GEMS is
shown to be highly efficient in terms of processor utilization.

5.4. Timing results and projections for node insertion

During the insertion of a node, gossip communication is
stopped between nodes to avoid inconsistency, when a few
nodes in the system will use the newly modified configuration
file while others use the older unmodified version of the con-
figuration file. If a failure occurs during this time, it will be
detected and reported throughout the system only after com-
munication resumes. Thus, minimizing this communication
stoppage time, which depends on node-insertion time, is crit-
ical to maintain faster failure detection. The time to insert a
new node was measured under various setups to demonstrate
the efficiency of the mechanism designed.

Figure 18. Node-insertion time for various system size and group size with node inserted into (a) first group of the system and (b) last group

of the system.

Figure 18 gives the time to insert a new node in a system
with two layers for various group sizes. The time to insert a
node is the time from when the sponsor receives the request
to insert the node until the moment when the communication
is restarted after the node is inserted. The insertion time is
simply the time taken at the sponsor node to execute the func-
tion for inserting a node. Due to the limitations in the size of
the testbed, the insertion time is measured by simulating the
insertion function to study the efficiency of the mechanism in
large systems. The data structures are initialized to provide
the impact of any required system size. The time taken to ex-
ecute the function is measured by changing the system size
and group size. The same nodes that were used for processor
utilization measurements were used here as well. Each point
in the plot represents an average of 10 different trials.

Insertion times are in the microseconds even for very large
systems as compared to other similar schemes addressed
earlier, where insertion times are on the order of tens of
seconds. We observe that insertion times decrease with an
increase in group size, because the number of groups de-
creases as the group size increases. Figure 18(b) illustrates
that the pattern followed by the insertion time is the same
irrespective of the group in which the node is inserted.

GOSSIP ENABLED MONITORING SERVICE 117

From figures 18(a) and (b), it can also be seen that node
insertion time is higher when a node is inserted into the last
group as compared to that when a node is inserted into the
first group. Changes in data structure and memory reallocation
involved with global lists take up a major part of the insertion
time, as do those related to groups when the number of groups
outnumber the group size for large systems. A node inserted
into the first group requires large modifications to the group
structures and global lists like the global live list and global
name list, increasing the insertion time. Inserting a node into
the last group would require only minor changes, and only in
the group structure.

5.5. Optimizing GEMS

This section presents an analytical model for GEMS which
will enable resource utilization projections for system sizes
not available in the testbed. The projections and analytical
model are subsequently used to determine the optimum con-
figuration and setup of the service for use in large, real-world
systems.

5.5.1. Analytical formula
We have extended the formulae provided in [12] to model a
service using an arbitrary number of layers. The parameters
involved in the model are described below, where B is the
bandwidth requirement per node,Lk is the length of the kth-
layer gossip packet, λ is the number of layers used in the
service, fk is the frequency of the kth-layer gossip message,
Mk is the size of monitored performance data in layer k, and
gk is the number of nodes or groups in layer k that together
form a group in layer k+1; i.e.,gk is the size of a group at layer
k+1 (e.g., g1 is L2 group size).

The bandwidth requirement per node (B) is a function of
the gossip message size (L) and the message transmission
frequency (f) as described by Eq. (1). A gossip message in-
cludes a gossip header, a bit-set vector, gossip lists and suspect
matrix as mentioned in Section 3 along with monitored per-
formance data. The gossip header field is 4 bytes in size and
it specifies the type of the gossip packet and the length of
the packet. Assuming the gossip communication is in the j th
layer, the bit-set vector is a bit vector whose i th bit is set to
‘1’ if the i th group in the j th layer is alive, otherwise it is
set to ‘0’. The length of the bit-set vector field is adjusted to
an integral multiple of 8 to fit the byte-oriented structure of
the UDP packet. The gossip list field is a sequence of bytes,
with each byte containing ‘heartbeat’ data for each group in
the j th layer. The suspect matrix field contains the j th-layer
suspect matrix encoded into a bit sequence. The length of the
suspect matrix is also adjusted to fit into an integer number
of bytes. However, the physical length of the gossip packet
in the transmission frame is obtained by adding the overhead
contributed by the UDP and Ethernet protocols (42 bytes) to
the payload length as shown in Eq. (2).

The number of gossip lists and suspect matrices depends
upon the layer in which the gossip message is communicated.

For example, a L1 gossip message would include the gossip
lists and suspect matrices of all the layers above L1 while
a L2 gossip message would include these data structures for
all the layers above L2. The same description is applied in
Eq. 2 to represent the size of a L1 gossip message in a λ-
layered system.

B =
λ∑

i=1

Li × fi (1)

L1 = 42 + 4 +
λ∑

k=1

[⌈
gk

8

⌉
+ gk + gk ×

⌈
gk

8

⌉
+ Mk

]

= 46 − λ +
λ∑

k=1

[(
gk + 1

)(⌈
gk

8

⌉
+ 1

)
+ Mk

]
(2)

In systems that rely only on broadcast to intimate failures
and do not append the local live lists of groups to the messages
between groups, inter-group gossip messages are similar to
those messages that are exchanged between nodes in L1 but
with fewer gossip lists and suspect matrices. In such systems,
the size of gossip messages communicated in any layer above
L1 is calculated using Eq. (3).

L j = 46 − (λ − j + 1) +
λ∑

k= j

[
(gk + 1)

(⌈
gk

8

⌉
+ 1

)
+ Mk

]
2 ≤ j ≤ λ (3)

In systems that append the local live list of groups to inter-
group messages, the size of a gossip message communicated in
any layer above L1 is calculated using Eq. 4. The size of every
inter-group message is now increased by a factor dependent
on the size of the local live list which in turn depends on the
number of nodes in the group (g1). The length of the live list
field is adjusted to an integral multiple of 8 to fit the byte-
oriented structure of the UDP packet.

L j = 46 − (λ − j + 1) +
⌈

g1

8

⌉

+
λ∑

k= j

[
(gk + 1)

(⌈
gk

8

⌉
+ 1

)
+ Mk

]
2 ≤ j ≤ λ (4)

5.5.2. Optimizing system configuration
The formula to calculate the bandwidth can be used to op-
timally configure the service for a given system size. The
number of layers and the group size at each layer required to
achieve minimum bandwidth utilization may be calculated for
any system size. However, this effort requires the formula be
differentiated to find the minima, but an equation with a ceiling
function is discrete and not easily differentiable. As such, it
is not practical to provide a single formula which produces
an optimum system configuration. Instead, using Matlab, we
determined the optimum group size given the system size and
number of layers by calculating the bandwidth required for
each possible group size and selecting the value which re-
sults in minimum bandwidth utilization. For simplicity, we
assume that no performance data is measured and thus Mk is

118 SUBRAMANIYAN ET AL.

set to zero. From the patterns followed by the results, we de-
veloped generalizations (heuristics) for calculating the group
size which result in minimum bandwidth for a system with λ

layers and a total of n nodes. Listed below is the algorithm to
determine the optimum configuration.

For systems with two or more layers:

1. If λ = 2 then

a. Set x to n1/2

b. Set g1 to the multiple of eight closest to x
c. If two multiples of eight are equidistant from x , select

the smaller one

e.g. n =144 ⇒ x =12 ⇒ g1 = 8 L1 nodes per L2 group

2. If λ = 3 then

a. Set x to n1/3

b. Set g1 to the smallest multiple of eight that equals or

exceeds x
e.g. n =144 ⇒ x =12 ⇒ g1 = 16 L1 nodes per L2

group

c. Set g2 to (n ÷ g1)1/2 rounded to the nearest integer

e.g. n =512 ⇒ g1 = 8 L1 nodes per L2 group,

g2 = 8 L2 groups per L3 group

3. If λ = 4 then

a. Set x to n1/4

b. Set g1 to the smallest multiple of eight that equals or

exceeds x
c. Set g2 to (n ÷ g1)1/3 rounded to the nearest integer

e.g. n =512 ⇒ g1 = 8, g2 = 4

d. Set g3 to (n÷ (g1 × g2))1/2 rounded to the nearest

integer

e.g. n =512 ⇒ g1 = 8, g2 = 4, g3 = 4

4. In general,

a. Set x to n1/λ

b. Set g1 to the smallest multiple of eight that equals or

exceeds x
c. Set g2 to (n ÷ g1)1/(λ−1) rounded to the nearest integer

d. Set g3 to (n ÷ (g1 × g2))1/(λ−2) rounded to the nearest

integer

e. Set g4 to (n÷ (g1 × g2 × g3))1/(λ−3) rounded to the

nearest integer

f. . . .

As an example to illustrate the algorithm, consider a system
with 4096 nodes. Assuming that the system is divided into 4
layers, g1 should be set to 8 (smallest multiple of 8 that equals
or exceeds 4096(1/4) = 8), g2 should be set to 8 {(4096÷8)(1/3)

= 8} and g3 should be set to 8 {(4096 ÷ (8 × 8))1/2 = 8}.
Figure 19 shows the bandwidth requirement per node cal-

culated for a system configuration based on both the heuristic
and actual minima calculated using the Matlab. The results
validate the heuristic, as bandwidth calculations based on gen-
eralized group sizes closely match the actual minima. The
figure also illustrates the bandwidth overhead for two-layered
and three-layered services for systems with fewer than 400

Figure 19. Verification of the heuristic for determining minimum bandwidth

utilization.

nodes. For systems with 64 or more nodes, a three-layered
service is better than a two-layered service in terms of band-
width overhead.

Unlike the exhaustive Matlab approach, the heuristic may
be easily used to determine the bandwidth requirements per
node for very large systems with various numbers of layers.
Figure 20 illustrates the minimum bandwidth for systems up
to 6,000 nodes with different numbers of layers. These re-
sults may be used to determine the optimum configuration to
achieve the best performance with minimum cost in terms of
resource utilization. Based on these results, Table 4. speci-
fies the number of layers (λ) that should be used to achieve
minimum bandwidth utilization for various ranges of system

Table 4

Optimum system configuration for minimum resource utilization.

System size

Lower bound Upper bound Number of

layers

L2 group

size (g1)

8 63 2 8

64 511 3 8

512 4,095 4 8

4,096 32,767 5 8

Figure 20. Projection of minimum bandwidth requirement per node for large

systems.

GOSSIP ENABLED MONITORING SERVICE 119

sizes. With λ fixed, the number of groups that the system
should have in each layer can then be determined using the
algorithm listed earlier.

Projections also demonstrate improvement in network uti-
lization provided by a multilayered gossip service. For ex-
ample, the minimum bandwidth consumption per node in a
6,000-node system is 1392 Kbps with a two-layered service
while it is just 101 Kbps with a five-layered service.

Although not shown here, CPU utilization measurements
have been observed to follow the same pattern as network
utilization measurements. It stands to reason that CPU uti-
lization should scale with network utilization, as the CPU
must perform work whenever a gossip packet is transmitted
or received. Therefore, minimum network utilization breeds
minimum CPU utilization, and the general rules of figure 19
yield minimum overall resource utilization. The service de-
veloped here has thus been demonstrated to be scalable to
systems of any arbitrarily large size.

6. Conclusions

In this paper, we have presented an efficient and scalable
gossip-style resource monitoring service to address the needs
of high-performance applications and high-availability sys-
tems. The gossip-based dissemination of the resource moni-
toring data including liveness and performance information is
highly robust providing fault tolerance and reduced overhead.
Data consistency is also maintained, at no extra cost using the
heartbeat mechanism. Scalability is greatly improved by hier-
archical design of the service, confining local data within the
group while providing aggregate data outside the group. The
service is extensible, with provisions for adding new sensors
and disseminating application-specific data. We also provide
provisions for dynamic inclusion of new aggregation func-
tions, helping applications in generating a customized aggre-
gate view of each group. Finally, a node-insertion mechanism
has been embedded into the service to enable dynamic system
reconfiguration.

The performance of GEMS was comprehensively analyzed
in terms of resource utilization and failure detection times on
a cluster testbed of 150 nodes. The efficiency of the node-
insertion mechanism has been analyzed based on experiments
measuring and projecting node-insertion delay. Performance
projections and optimal system configuration have been pre-
sented through an analytical model to promote efficient use
of the service in real-world systems of any arbitrary size in-
cluding terascale clusters.

Increasing the number of layers with system size increases
the efficiency of the service. Optimum use of the service is
achieved when a flat service is used for systems with fewer
than eight nodes, a two-layered service is used for systems
with fewer than 64 nodes, a three-layered service for those
with fewer than 512 nodes, a four-layered for those with
fewer than 4,096 nodes, and a five-layered for those with
fewer than 32,768 nodes. Failure detection time can be as
low as 130 ms for systems of any size with a L2 group size of

eight. Per-node bandwidth used by the service can be kept as
low as 101 Kbps even for systems as large as 25,000 nodes
with a five-layered service.

Directions for future research include the investigation of
issues that must be solved to move the service from clus-
ters to grids, including security and policy management. The
dynamic reconfiguration facilities provided also need to be
improved to provide a plug-and-play kind of system, which
implies that the system can be reconfigured at the request
of the application using the service. Another direction of in-
terest is a feasibility analysis on how best to couple GEMS
with application middleware such as MPI or PVM for clus-
ter computing. Services such as dynamic load balancing and
scheduling can be provided over GEMS, with an analysis to
study the improvement over presently existing mechanisms.
The sensors currently use system calls and user commands to
measure system parameters, which incur delay. The sensors
can be redesigned to read system parameters directly from the
kernel table for faster response. Another interesting research
topic would be to use GEMS in virtual computing to mon-
itor virtual resources. Presently, GEMS is being adapted to
monitor complex heterogeneous hardware resources in sup-
port of FPGA-based Reconfigurable Computing (RC) clus-
ters. As part of this effort, GEMS is being integrated with
CARMA (Comprehensive Approach to Reconfigurable Man-
agement Architecture), an RC cluster management framework
being developed at the University of Florida. GEMS is also
being integrated with MonALISA, a grid-monitoring service
developed by Caltech and CERN to efficiently monitor grids
comprised of thousands of nodes across multiple computa-
tional sites. Finally, GEMS is being augmented with sensors
to measure network parameters such as bandwidth and latency
to build a robust, scalable network monitoring service.

References

[1] R. Wolski, Dynamically forecasting network performance to support

dynamic scheduling using the network weather service, Cluster Com-

puting, 1 (1) (1998) 119–131.

[2] R. Wolski, N. Spring, and J. Hayes, The network weather service: A

distributed resource performance forecasting service for metacomput-

ing, Journal of Future Generation Computing Systems, 15 (5/6) (1999)

757–768 .

[3] Z. Liang, Y. Sun, and C. Wang, Clusterprobe: An open, flexible and

scalable cluster monitoring tool, in:Proceedings of 1st IEEE Computer

Society International Workshop on Cluster Computing, Melbourne,

Australia, (1999) 261–268.

[4] R. Buyya, PARMON: A portable and scalable monitoring system for

clusters, International Journal on Software: Practice & Experience, 30

(7) (2000) 723–739.

[5] R. Van Renesse, K. Birman, and W. Vogels, Astrolabe: A robust and

scalable technology for distributed systems monitoring, management,

and data mining, ACM Transactions on Computer Systems 21 (3)

(2003).

[6] International Business Machines Corporation, IBM LoadLeveler:

User’s Guide (September, 1993).

[7] J. Basney and M. Livny, Managing network resources in condor,

in:Proceedings of the Ninth IEEE Symposium on High Performance
Distributed Computing (HPDC9), Pittsburgh, Pennsylvania (2000) pp.

298–299.

120 SUBRAMANIYAN ET AL.

[8] R. Van Renesse, R. Minsky and M. Hayden, A gossip-style failure

detection service, in: Proc. of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing Mid-
dleware, England, (1998) pp. 55–70.

[9] M. Burns, A. George, and B. Wallace, Simulative performance analy-

sis of gossip failure detection for scalable distributed systems, Cluster

Computing, 2 (3) (1999) 207–217.

[10] S. Ranganathan, A. George, R. Todd, and M. Chidester, Gossip-style

failure detection and distributed consensus for scalable heterogeneous

clusters, Cluster Computing, 4 (3) (2001) 197–209.

[11] K. Sistla, A. George, R. Todd and R. Tilak, Performance analysis of

flat and layered gossip services for failure detection and consensus

in scalable heterogeneous clusters, in: Proc. of IEEE Heterogeneous
Computing Workshop at IPDPS, San Francisco, CA, (2001) pp. 23–

27.

[12] K. Sistla, A. George and R. Todd, experimental analysis of a gossip-

based service for scalable, distributed failure detection and consensus,

Cluster Computing, 6 (3) (2003) 237–251.

[13] W. Vogels, D. Dumitriu, A. Agarwal, T. Chia and K. Guo, Scal-

ability of microsoft cluster service, in: Proceedings of the 2nd

USENIX Windows NT Symposium, Seattle, Washington, August 3–4

(1998).

[14] H. C. Lin and C. S. Raghavendra, A dynamic load balancing policy

with a central job dispatcher (LBC), IEEE Transactions on Software

Engineering 18 (2) (1992) 148–158.

[15] S. Zhou, A trace-driven simulation study of dynamic load balanc-

ing, IEEE Transactions on Software Engineering 14 (9) (1988) 1327–

1341.

[16] M. Zaki, W. Li and S. Parthasarathy, Customized dynamic load balanc-

ing for a network of workstations, Journal of Parallel and Distributed

Computing 43 (2) (1997) 156–162.

[17] M. Willebeek-LeMair and A. Reeves, Strategies for dynamic load bal-

ancing on highly parallel computers, IEEE Transactions on Parallel and

Distributed Systems 4 (9) (1993) 979–993.

[18] C. Xu, B. Monien, and R. Luling, Nearest neighbor algorithms for load

balancing in parallel computers, Concurrency: Practice and Experience

7 (7) (1995) 707–736.

[19] I. Ahmed, Semi-distributed load balancing for massively parallel mul-

ticomputer systems, IEEE Transactions on Software Engineering, 17

(10) (1991) 987–1004.

