Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
418 lines (358 sloc)
12 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// MFEM Example 23 | |
// | |
// Compile with: make ex23 | |
// | |
// Sample runs: ex23 | |
// ex23 -o 4 -tf 5 | |
// ex23 -m ../data/square-disc.mesh -o 2 -tf 2 --neumann | |
// ex23 -m ../data/disc-nurbs.mesh -r 3 -o 4 -tf 2 | |
// ex23 -m ../data/inline-hex.mesh -o 1 -tf 2 --neumann | |
// ex23 -m ../data/inline-tet.mesh -o 1 -tf 2 --neumann | |
// | |
// Description: This example solves the wave equation problem of the form: | |
// | |
// d^2u/dt^2 = c^2 \Delta u. | |
// | |
// The example demonstrates the use of time dependent operators, | |
// implicit solvers and second order time integration. | |
// | |
// We recommend viewing examples 9 and 10 before viewing this | |
// example. | |
#include "mfem.hpp" | |
#include <fstream> | |
#include <iostream> | |
using namespace std; | |
using namespace mfem; | |
/** After spatial discretization, the conduction model can be written as: | |
* | |
* d^2u/dt^2 = M^{-1}(-Ku) | |
* | |
* where u is the vector representing the temperature, M is the mass matrix, | |
* and K is the diffusion operator with diffusivity depending on u: | |
* (\kappa + \alpha u). | |
* | |
* Class WaveOperator represents the right-hand side of the above ODE. | |
*/ | |
class WaveOperator : public SecondOrderTimeDependentOperator | |
{ | |
protected: | |
FiniteElementSpace &fespace; | |
Array<int> ess_tdof_list; // this list remains empty for pure Neumann b.c. | |
BilinearForm *M; | |
BilinearForm *K; | |
SparseMatrix Mmat, Kmat, Kmat0; | |
SparseMatrix *T; // T = M + dt K | |
double current_dt; | |
CGSolver M_solver; // Krylov solver for inverting the mass matrix M | |
DSmoother M_prec; // Preconditioner for the mass matrix M | |
CGSolver T_solver; // Implicit solver for T = M + fac0*K | |
DSmoother T_prec; // Preconditioner for the implicit solver | |
Coefficient *c2; | |
mutable Vector z; // auxiliary vector | |
public: | |
WaveOperator(FiniteElementSpace &f, Array<int> &ess_bdr,double speed); | |
using SecondOrderTimeDependentOperator::Mult; | |
virtual void Mult(const Vector &u, const Vector &du_dt, | |
Vector &d2udt2) const; | |
/** Solve the Backward-Euler equation: | |
d2udt2 = f(u + fac0*d2udt2,dudt + fac1*d2udt2, t), | |
for the unknown d2udt2. */ | |
using SecondOrderTimeDependentOperator::ImplicitSolve; | |
virtual void ImplicitSolve(const double fac0, const double fac1, | |
const Vector &u, const Vector &dudt, Vector &d2udt2); | |
/// | |
void SetParameters(const Vector &u); | |
virtual ~WaveOperator(); | |
}; | |
WaveOperator::WaveOperator(FiniteElementSpace &f, | |
Array<int> &ess_bdr, double speed) | |
: SecondOrderTimeDependentOperator(f.GetTrueVSize(), 0.0), fespace(f), M(NULL), | |
K(NULL), | |
T(NULL), current_dt(0.0), z(height) | |
{ | |
const double rel_tol = 1e-8; | |
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); | |
c2 = new ConstantCoefficient(speed*speed); | |
K = new BilinearForm(&fespace); | |
K->AddDomainIntegrator(new DiffusionIntegrator(*c2)); | |
K->Assemble(); | |
Array<int> dummy; | |
K->FormSystemMatrix(dummy, Kmat0); | |
K->FormSystemMatrix(ess_tdof_list, Kmat); | |
M = new BilinearForm(&fespace); | |
M->AddDomainIntegrator(new MassIntegrator()); | |
M->Assemble(); | |
M->FormSystemMatrix(ess_tdof_list, Mmat); | |
M_solver.iterative_mode = false; | |
M_solver.SetRelTol(rel_tol); | |
M_solver.SetAbsTol(0.0); | |
M_solver.SetMaxIter(30); | |
M_solver.SetPrintLevel(0); | |
M_solver.SetPreconditioner(M_prec); | |
M_solver.SetOperator(Mmat); | |
T_solver.iterative_mode = false; | |
T_solver.SetRelTol(rel_tol); | |
T_solver.SetAbsTol(0.0); | |
T_solver.SetMaxIter(100); | |
T_solver.SetPrintLevel(0); | |
T_solver.SetPreconditioner(T_prec); | |
T = NULL; | |
} | |
void WaveOperator::Mult(const Vector &u, const Vector &du_dt, | |
Vector &d2udt2) const | |
{ | |
// Compute: | |
// d2udt2 = M^{-1}*-K(u) | |
// for d2udt2 | |
Kmat.Mult(u, z); | |
z.Neg(); // z = -z | |
M_solver.Mult(z, d2udt2); | |
} | |
void WaveOperator::ImplicitSolve(const double fac0, const double fac1, | |
const Vector &u, const Vector &dudt, Vector &d2udt2) | |
{ | |
// Solve the equation: | |
// d2udt2 = M^{-1}*[-K(u + fac0*d2udt2)] | |
// for d2udt2 | |
if (!T) | |
{ | |
T = Add(1.0, Mmat, fac0, Kmat); | |
T_solver.SetOperator(*T); | |
} | |
Kmat0.Mult(u, z); | |
z.Neg(); | |
for (int i = 0; i < ess_tdof_list.Size(); i++) | |
{ | |
z[ess_tdof_list[i]] = 0.0; | |
} | |
T_solver.Mult(z, d2udt2); | |
} | |
void WaveOperator::SetParameters(const Vector &u) | |
{ | |
delete T; | |
T = NULL; // re-compute T on the next ImplicitSolve | |
} | |
WaveOperator::~WaveOperator() | |
{ | |
delete T; | |
delete M; | |
delete K; | |
delete c2; | |
} | |
double InitialSolution(const Vector &x) | |
{ | |
return exp(-x.Norml2()*x.Norml2()*30); | |
} | |
double InitialRate(const Vector &x) | |
{ | |
return 0.0; | |
} | |
int main(int argc, char *argv[]) | |
{ | |
// 1. Parse command-line options. | |
const char *mesh_file = "../data/star.mesh"; | |
const char *ref_dir = ""; | |
int ref_levels = 2; | |
int order = 2; | |
int ode_solver_type = 10; | |
double t_final = 0.5; | |
double dt = 1.0e-2; | |
double speed = 1.0; | |
bool visualization = true; | |
bool visit = true; | |
bool dirichlet = true; | |
int vis_steps = 5; | |
int precision = 8; | |
cout.precision(precision); | |
OptionsParser args(argc, argv); | |
args.AddOption(&mesh_file, "-m", "--mesh", | |
"Mesh file to use."); | |
args.AddOption(&ref_levels, "-r", "--refine", | |
"Number of times to refine the mesh uniformly."); | |
args.AddOption(&order, "-o", "--order", | |
"Order (degree) of the finite elements."); | |
args.AddOption(&ode_solver_type, "-s", "--ode-solver", | |
"ODE solver: [0--10] - GeneralizedAlpha(0.1 * s),\n\t" | |
"\t 11 - Average Acceleration, 12 - Linear Acceleration\n" | |
"\t 13 - CentralDifference, 14 - FoxGoodwin"); | |
args.AddOption(&t_final, "-tf", "--t-final", | |
"Final time; start time is 0."); | |
args.AddOption(&dt, "-dt", "--time-step", | |
"Time step."); | |
args.AddOption(&speed, "-c", "--speed", | |
"Wave speed."); | |
args.AddOption(&dirichlet, "-dir", "--dirichlet", "-neu", | |
"--neumann", | |
"BC switch."); | |
args.AddOption(&ref_dir, "-r", "--ref", | |
"Reference directory for checking final solution."); | |
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", | |
"--no-visualization", | |
"Enable or disable GLVis visualization."); | |
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit", | |
"--no-visit-datafiles", | |
"Save data files for VisIt (visit.llnl.gov) visualization."); | |
args.AddOption(&vis_steps, "-vs", "--visualization-steps", | |
"Visualize every n-th timestep."); | |
args.Parse(); | |
if (!args.Good()) | |
{ | |
args.PrintUsage(cout); | |
return 1; | |
} | |
args.PrintOptions(cout); | |
// 2. Read the mesh from the given mesh file. We can handle triangular, | |
// quadrilateral, tetrahedral and hexahedral meshes with the same code. | |
Mesh *mesh = new Mesh(mesh_file, 1, 1); | |
int dim = mesh->Dimension(); | |
// 3. Define the ODE solver used for time integration. Several second order | |
// time integrators are available. | |
SecondOrderODESolver *ode_solver; | |
switch (ode_solver_type) | |
{ | |
// Implicit methods | |
case 0: ode_solver = new GeneralizedAlpha2Solver(0.0); break; | |
case 1: ode_solver = new GeneralizedAlpha2Solver(0.1); break; | |
case 2: ode_solver = new GeneralizedAlpha2Solver(0.2); break; | |
case 3: ode_solver = new GeneralizedAlpha2Solver(0.3); break; | |
case 4: ode_solver = new GeneralizedAlpha2Solver(0.4); break; | |
case 5: ode_solver = new GeneralizedAlpha2Solver(0.5); break; | |
case 6: ode_solver = new GeneralizedAlpha2Solver(0.6); break; | |
case 7: ode_solver = new GeneralizedAlpha2Solver(0.7); break; | |
case 8: ode_solver = new GeneralizedAlpha2Solver(0.8); break; | |
case 9: ode_solver = new GeneralizedAlpha2Solver(0.9); break; | |
case 10: ode_solver = new GeneralizedAlpha2Solver(1.0); break; | |
case 11: ode_solver = new AverageAccelerationSolver(); break; | |
case 12: ode_solver = new LinearAccelerationSolver(); break; | |
case 13: ode_solver = new CentralDifferenceSolver(); break; | |
case 14: ode_solver = new FoxGoodwinSolver(); break; | |
default: | |
cout << "Unknown ODE solver type: " << ode_solver_type << '\n'; | |
delete mesh; | |
return 3; | |
} | |
// 4. Refine the mesh to increase the resolution. In this example we do | |
// 'ref_levels' of uniform refinement, where 'ref_levels' is a | |
// command-line parameter. | |
for (int lev = 0; lev < ref_levels; lev++) | |
{ | |
mesh->UniformRefinement(); | |
} | |
// 5. Define the vector finite element space representing the current and the | |
// initial temperature, u_ref. | |
H1_FECollection fe_coll(order, dim); | |
FiniteElementSpace fespace(mesh, &fe_coll); | |
int fe_size = fespace.GetTrueVSize(); | |
cout << "Number of temperature unknowns: " << fe_size << endl; | |
GridFunction u_gf(&fespace); | |
GridFunction dudt_gf(&fespace); | |
// 6. Set the initial conditions for u. All boundaries are considered | |
// natural. | |
FunctionCoefficient u_0(InitialSolution); | |
u_gf.ProjectCoefficient(u_0); | |
Vector u; | |
u_gf.GetTrueDofs(u); | |
FunctionCoefficient dudt_0(InitialRate); | |
dudt_gf.ProjectCoefficient(dudt_0); | |
Vector dudt; | |
dudt_gf.GetTrueDofs(dudt); | |
// 7. Initialize the conduction operator and the visualization. | |
Array<int> ess_bdr; | |
if (mesh->bdr_attributes.Size()) | |
{ | |
ess_bdr.SetSize(mesh->bdr_attributes.Max()); | |
if (dirichlet) | |
{ | |
ess_bdr = 1; | |
} | |
else | |
{ | |
ess_bdr = 0; | |
} | |
} | |
WaveOperator oper(fespace, ess_bdr, speed); | |
u_gf.SetFromTrueDofs(u); | |
{ | |
ofstream omesh("ex23.mesh"); | |
omesh.precision(precision); | |
mesh->Print(omesh); | |
ofstream osol("ex23-init.gf"); | |
osol.precision(precision); | |
u_gf.Save(osol); | |
dudt_gf.Save(osol); | |
} | |
VisItDataCollection visit_dc("Example23", mesh); | |
visit_dc.RegisterField("solution", &u_gf); | |
visit_dc.RegisterField("rate", &dudt_gf); | |
if (visit) | |
{ | |
visit_dc.SetCycle(0); | |
visit_dc.SetTime(0.0); | |
visit_dc.Save(); | |
} | |
socketstream sout; | |
if (visualization) | |
{ | |
char vishost[] = "localhost"; | |
int visport = 19916; | |
sout.open(vishost, visport); | |
if (!sout) | |
{ | |
cout << "Unable to connect to GLVis server at " | |
<< vishost << ':' << visport << endl; | |
visualization = false; | |
cout << "GLVis visualization disabled.\n"; | |
} | |
else | |
{ | |
sout.precision(precision); | |
sout << "solution\n" << *mesh << dudt_gf; | |
sout << "pause\n"; | |
sout << flush; | |
cout << "GLVis visualization paused." | |
<< " Press space (in the GLVis window) to resume it.\n"; | |
} | |
} | |
// 8. Perform time-integration (looping over the time iterations, ti, with a | |
// time-step dt). | |
ode_solver->Init(oper); | |
double t = 0.0; | |
bool last_step = false; | |
for (int ti = 1; !last_step; ti++) | |
{ | |
if (t + dt >= t_final - dt/2) | |
{ | |
last_step = true; | |
} | |
ode_solver->Step(u, dudt, t, dt); | |
if (last_step || (ti % vis_steps) == 0) | |
{ | |
cout << "step " << ti << ", t = " << t << endl; | |
u_gf.SetFromTrueDofs(u); | |
dudt_gf.SetFromTrueDofs(dudt); | |
if (visualization) | |
{ | |
sout << "solution\n" << *mesh << u_gf << flush; | |
} | |
if (visit) | |
{ | |
visit_dc.SetCycle(ti); | |
visit_dc.SetTime(t); | |
visit_dc.Save(); | |
} | |
} | |
oper.SetParameters(u); | |
} | |
// 9. Save the final solution. This output can be viewed later using GLVis: | |
// "glvis -m ex23.mesh -g ex23-final.gf". | |
{ | |
ofstream osol("ex23-final.gf"); | |
osol.precision(precision); | |
u_gf.Save(osol); | |
dudt_gf.Save(osol); | |
} | |
// 10. Free the used memory. | |
delete ode_solver; | |
delete mesh; | |
return 0; | |
} |