-
Notifications
You must be signed in to change notification settings - Fork 506
/
Copy pathpolar-nc.cpp
560 lines (458 loc) · 16.7 KB
/
polar-nc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// Copyright (c) 2010-2024, Lawrence Livermore National Security, LLC. Produced
// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
// LICENSE and NOTICE for details. LLNL-CODE-806117.
//
// This file is part of the MFEM library. For more information and source code
// availability visit https://mfem.org.
//
// MFEM is free software; you can redistribute it and/or modify it under the
// terms of the BSD-3 license. We welcome feedback and contributions, see file
// CONTRIBUTING.md for details.
//
// ----------------------------------------------
// Polar NC: Generate polar non-conforming meshes
// ----------------------------------------------
//
// This miniapp generates a circular sector mesh that consist of quadrilaterals
// and triangles of similar sizes. The 3D version of the mesh is made of prisms
// and tetrahedra. The mesh is non-conforming by design, and can optionally be
// made curvilinear. The elements are ordered along a space-filling curve by
// default, which makes the mesh ready for parallel non-conforming AMR in MFEM.
//
// The implementation also demonstrates how to initialize a non-conforming mesh
// on the fly by marking hanging nodes with Mesh::AddVertexParents.
//
// Compile with: make polar-nc
//
// Sample runs: polar-nc --radius 1 --nsteps 10
// polar-nc --aspect 2
// polar-nc --dim 3 --order 4
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace mfem;
using namespace std;
struct Params2
{
real_t r, dr;
real_t a, da;
Params2() = default;
Params2(real_t r0, real_t r1, real_t a0, real_t a1)
: r(r0), dr(r1 - r0), a(a0), da(a1 - a0) {}
};
Mesh* Make2D(int nsteps, real_t rstep, real_t phi, real_t aspect, int order,
bool sfc)
{
Mesh *mesh = new Mesh(2, 0, 0);
int origin = mesh->AddVertex(0.0, 0.0);
// n is the number of steps in the polar direction
int n = 1;
while (phi * rstep/2 / n * aspect > rstep) { n++; }
real_t r = rstep;
int first = mesh->AddVertex(r, 0.0);
Array<Params2> params;
Array<Pair<int, int>> blocks;
// create triangles around the origin
real_t prev_alpha = 0.0;
for (int i = 0; i < n; i++)
{
real_t alpha = phi * (i+1) / n;
mesh->AddVertex(r*cos(alpha), r*sin(alpha));
mesh->AddTriangle(origin, first+i, first+i+1);
params.Append(Params2(0, r, prev_alpha, alpha));
prev_alpha = alpha;
}
mesh->AddBdrSegment(origin, first, 1);
mesh->AddBdrSegment(first+n, origin, 2);
for (int k = 1; k < nsteps; k++)
{
// m is the number of polar steps of the previous row
int m = n;
int prev_first = first;
real_t prev_r = r;
r += rstep;
if (phi * (r + prev_r)/2 / n * aspect < rstep * sqrt(2))
{
if (k == 1) { blocks.Append(Pair<int, int>(mesh->GetNE(), n)); }
first = mesh->AddVertex(r, 0.0);
mesh->AddBdrSegment(prev_first, first, 1);
// create a row of quads, same number as in previous row
prev_alpha = 0.0;
for (int i = 0; i < n; i++)
{
real_t alpha = phi * (i+1) / n;
mesh->AddVertex(r*cos(alpha), r*sin(alpha));
mesh->AddQuad(prev_first+i, first+i, first+i+1, prev_first+i+1);
params.Append(Params2(prev_r, r, prev_alpha, alpha));
prev_alpha = alpha;
}
mesh->AddBdrSegment(first+n, prev_first+n, 2);
}
else // we need to double the number of elements per row
{
n *= 2;
blocks.Append(Pair<int, int>(mesh->GetNE(), n));
// first create hanging vertices
int hang = 0; // init to suppress gcc warning
for (int i = 0; i < m; i++)
{
real_t alpha = phi * (2*i+1) / n;
int index = mesh->AddVertex(prev_r*cos(alpha), prev_r*sin(alpha));
mesh->AddVertexParents(index, prev_first+i, prev_first+i+1);
if (!i) { hang = index; }
}
first = mesh->AddVertex(r, 0.0);
int a = prev_first, b = first;
mesh->AddBdrSegment(a, b, 1);
// create a row of quad pairs
prev_alpha = 0.0;
for (int i = 0; i < m; i++)
{
int c = hang+i, e = a+1;
real_t alpha_half = phi * (2*i+1) / n;
int d = mesh->AddVertex(r*cos(alpha_half), r*sin(alpha_half));
real_t alpha = phi * (2*i+2) / n;
int f = mesh->AddVertex(r*cos(alpha), r*sin(alpha));
mesh->AddQuad(a, b, d, c);
mesh->AddQuad(c, d, f, e);
a = e, b = f;
params.Append(Params2(prev_r, r, prev_alpha, alpha_half));
params.Append(Params2(prev_r, r, alpha_half, alpha));
prev_alpha = alpha;
}
mesh->AddBdrSegment(b, a, 2);
}
}
for (int i = 0; i < n; i++)
{
mesh->AddBdrSegment(first+i, first+i+1, 3);
}
// reorder blocks of elements with Grid SFC ordering
if (sfc)
{
blocks.Append(Pair<int, int>(mesh->GetNE(), 0));
Array<Params2> new_params(params.Size());
Array<int> ordering(mesh->GetNE());
for (int i = 0; i < blocks[0].one; i++)
{
ordering[i] = i;
new_params[i] = params[i];
}
Array<int> coords;
for (int i = 0; i < blocks.Size()-1; i++)
{
int beg = blocks[i].one;
int width = blocks[i].two;
int height = (blocks[i+1].one - blocks[i].one) / width;
NCMesh::GridSfcOrdering2D(width, height, coords);
for (int j = 0, k = 0; j < coords.Size(); k++, j += 2)
{
int sfc_index = ((i & 1) ? coords[j] : (width-1 - coords[j]))
+ coords[j+1]*width;
int old_index = beg + sfc_index;
ordering[old_index] = beg + k;
new_params[beg + k] = params[old_index];
}
}
mesh->ReorderElements(ordering, false);
mfem::Swap(params, new_params);
}
mesh->FinalizeMesh();
// create high-order curvature
if (order > 1)
{
mesh->SetCurvature(order);
GridFunction *nodes = mesh->GetNodes();
const FiniteElementSpace *fes = mesh->GetNodalFESpace();
Array<int> dofs;
MFEM_ASSERT(params.Size() == mesh->GetNE(), "");
for (int i = 0; i < mesh->GetNE(); i++)
{
const Params2 &par = params[i];
const IntegrationRule &ir = fes->GetFE(i)->GetNodes();
Geometry::Type geom = mesh->GetElementBaseGeometry(i);
fes->GetElementDofs(i, dofs);
for (int j = 0; j < dofs.Size(); j++)
{
real_t a;
if (geom == Geometry::SQUARE)
{
r = par.r + ir[j].x * par.dr;
a = par.a + ir[j].y * par.da;
}
else
{
real_t rr = ir[j].x + ir[j].y;
if (std::abs(rr) < 1e-12) { continue; }
r = par.r + rr * par.dr;
a = par.a + ir[j].y/rr * par.da;
}
(*nodes)(fes->DofToVDof(dofs[j], 0)) = r*cos(a);
(*nodes)(fes->DofToVDof(dofs[j], 1)) = r*sin(a);
}
}
nodes->RestrictConforming();
}
return mesh;
}
const real_t pi2 = M_PI / 2;
struct Params3
{
real_t r, dr;
real_t u1, u2, u3;
real_t v1, v2, v3;
Params3() = default;
Params3(real_t r0, real_t r1,
real_t u1, real_t v1, real_t u2, real_t v2, real_t u3, real_t v3)
: r(r0), dr(r1 - r0), u1(u1), u2(u2), u3(u3), v1(v1), v2(v2), v3(v3) {}
};
struct Vert : public Hashed2
{
int id;
};
int GetMidVertex(int v1, int v2, real_t r, real_t u, real_t v, bool hanging,
Mesh *mesh, HashTable<Vert> &hash)
{
int vmid = hash.FindId(v1, v2);
if (vmid < 0)
{
vmid = hash.GetId(v1, v2);
real_t w = 1.0 - u - v;
real_t q = r / sqrt(u*u + v*v + w*w);
int index = mesh->AddVertex(u*q, v*q, w*q);
if (hanging) { mesh->AddVertexParents(index, v1, v2); }
hash[vmid].id = index;
}
return hash[vmid].id;
}
void MakeLayer(int vx1, int vy1, int vz1, int vx2, int vy2, int vz2, int level,
real_t r1, real_t r2, real_t u1, real_t v1, real_t u2, real_t v2,
real_t u3, real_t v3, bool bnd1, bool bnd2, bool bnd3, bool bnd4,
Mesh *mesh, HashTable<Vert> &hash, Array<Params3> ¶ms)
{
if (!level)
{
mesh->AddWedge(vx1, vy1, vz1, vx2, vy2, vz2);
if (bnd1) { mesh->AddBdrQuad(vx1, vy1, vy2, vx2, 1); }
if (bnd2) { mesh->AddBdrQuad(vy1, vz1, vz2, vy2, 2); }
if (bnd3) { mesh->AddBdrQuad(vz1, vx1, vx2, vz2, 3); }
if (bnd4) { mesh->AddBdrTriangle(vx2, vy2, vz2, 4); }
params.Append(Params3(r1, r2, u1, v1, u2, v2, u3, v3));
}
else
{
real_t u12 = (u1+u2)/2, v12 = (v1+v2)/2;
real_t u23 = (u2+u3)/2, v23 = (v2+v3)/2;
real_t u31 = (u3+u1)/2, v31 = (v3+v1)/2;
bool hang = (level == 1);
int vxy1 = GetMidVertex(vx1, vy1, r1, u12, v12, hang, mesh, hash);
int vyz1 = GetMidVertex(vy1, vz1, r1, u23, v23, hang, mesh, hash);
int vxz1 = GetMidVertex(vx1, vz1, r1, u31, v31, hang, mesh, hash);
int vxy2 = GetMidVertex(vx2, vy2, r2, u12, v12, false, mesh, hash);
int vyz2 = GetMidVertex(vy2, vz2, r2, u23, v23, false, mesh, hash);
int vxz2 = GetMidVertex(vx2, vz2, r2, u31, v31, false, mesh, hash);
MakeLayer(vx1, vxy1, vxz1, vx2, vxy2, vxz2, level-1,
r1, r2, u1, v1, u12, v12, u31, v31,
bnd1, false, bnd3, bnd4, mesh, hash, params);
MakeLayer(vxy1, vy1, vyz1, vxy2, vy2, vyz2, level-1,
r1, r2, u12, v12, u2, v2, u23, v23,
bnd1, bnd2, false, bnd4, mesh, hash, params);
MakeLayer(vxz1, vyz1, vz1, vxz2, vyz2, vz2, level-1,
r1, r2, u31, v31, u23, v23, u3, v3,
false, bnd2, bnd3, bnd4, mesh, hash, params);
MakeLayer(vyz1, vxz1, vxy1, vyz2, vxz2, vxy2, level-1,
r1, r2, u23, v23, u31, v31, u12, v12,
false, false, false, bnd4, mesh, hash, params);
}
}
void MakeCenter(int origin, int vx, int vy, int vz, int level, real_t r,
real_t u1, real_t v1, real_t u2, real_t v2, real_t u3, real_t v3,
bool bnd1, bool bnd2, bool bnd3, bool bnd4,
Mesh *mesh, HashTable<Vert> &hash, Array<Params3> ¶ms)
{
if (!level)
{
mesh->AddTet(origin, vx, vy, vz);
if (bnd1) { mesh->AddBdrTriangle(0, vy, vx, 1); }
if (bnd2) { mesh->AddBdrTriangle(0, vz, vy, 2); }
if (bnd3) { mesh->AddBdrTriangle(0, vx, vz, 3); }
if (bnd4) { mesh->AddBdrTriangle(vx, vy, vz, 4); }
params.Append(Params3(0, r, u1, v1, u2, v2, u3, v3));
}
else
{
real_t u12 = (u1+u2)/2, v12 = (v1+v2)/2;
real_t u23 = (u2+u3)/2, v23 = (v2+v3)/2;
real_t u31 = (u3+u1)/2, v31 = (v3+v1)/2;
int vxy = GetMidVertex(vx, vy, r, u12, v12, false, mesh, hash);
int vyz = GetMidVertex(vy, vz, r, u23, v23, false, mesh, hash);
int vxz = GetMidVertex(vx, vz, r, u31, v31, false, mesh, hash);
MakeCenter(origin, vx, vxy, vxz, level-1, r, u1, v1, u12, v12, u31, v31,
bnd1, false, bnd3, bnd4, mesh, hash, params);
MakeCenter(origin, vxy, vy, vyz, level-1, r, u12, v12, u2, v2, u23, v23,
bnd1, bnd2, false, bnd4, mesh, hash, params);
MakeCenter(origin, vxz, vyz, vz, level-1, r, u31, v31, u23, v23, u3, v3,
false, bnd2, bnd3, bnd4, mesh, hash, params);
MakeCenter(origin, vyz, vxz, vxy, level-1, r, u23, v23, u31, v31, u12, v12,
false, false, false, bnd4, mesh, hash, params);
}
}
Mesh* Make3D(int nsteps, real_t rstep, real_t aspect, int order, bool sfc)
{
Mesh *mesh = new Mesh(3, 0, 0);
HashTable<Vert> hash;
Array<Params3> params;
int origin = mesh->AddVertex(0, 0, 0);
real_t r = rstep;
int a = mesh->AddVertex(r, 0, 0);
int b = mesh->AddVertex(0, r, 0);
int c = mesh->AddVertex(0, 0, r);
int levels = 0;
while (pi2 * rstep / (1 << levels) * aspect > rstep) { levels++; }
MakeCenter(origin, a, b, c, levels, r, 1, 0, 0, 1, 0, 0,
true, true, true, (nsteps == 1), mesh, hash, params);
for (int k = 1; k < nsteps; k++)
{
real_t prev_r = r;
r += rstep;
if ((prev_r + rstep/2) * pi2 * aspect / (1 << levels) > rstep * sqrt(2))
{
levels++;
}
int d = mesh->AddVertex(r, 0, 0);
int e = mesh->AddVertex(0, r, 0);
int f = mesh->AddVertex(0, 0, r);
MakeLayer(a, b, c, d, e, f, levels, prev_r, r,
1, 0, 0, 1, 0, 0, true, true, true, (k == nsteps-1),
mesh, hash, params);
a = d;
b = e;
c = f;
}
// reorder mesh with Hilbert spatial sort
if (sfc)
{
Array<int> ordering;
mesh->GetHilbertElementOrdering(ordering);
mesh->ReorderElements(ordering, false);
Array<Params3> new_params(params.Size());
for (int i = 0; i < ordering.Size(); i++)
{
new_params[ordering[i]] = params[i];
}
mfem::Swap(params, new_params);
}
mesh->FinalizeMesh();
// create high-order curvature
if (order > 1)
{
mesh->SetCurvature(order);
GridFunction *nodes = mesh->GetNodes();
const FiniteElementSpace *fes = mesh->GetNodalFESpace();
Array<int> dofs;
MFEM_ASSERT(params.Size() == mesh->GetNE(), "");
for (int i = 0; i < mesh->GetNE(); i++)
{
const Params3 &par = params[i];
const IntegrationRule &ir = fes->GetFE(i)->GetNodes();
Geometry::Type geom = mesh->GetElementBaseGeometry(i);
fes->GetElementDofs(i, dofs);
for (int j = 0; j < dofs.Size(); j++)
{
const IntegrationPoint &ip = ir[j];
real_t u, v, w;
if (geom == Geometry::PRISM)
{
real_t l1 = 1.0 - ip.x - ip.y;
real_t l2 = ip.x, l3 = ip.y;
u = l1 * par.u1 + l2 * par.u2 + l3 * par.u3;
v = l1 * par.v1 + l2 * par.v2 + l3 * par.v3;
w = 1.0 - u - v;
r = par.r + ip.z * par.dr;
}
else
{
u = ip.x * par.u1 + ip.y * par.u2 + ip.z * par.u3;
v = ip.x * par.v1 + ip.y * par.v2 + ip.z * par.v3;
real_t rr = ip.x + ip.y + ip.z;
if (std::abs(rr) < 1e-12) { continue; }
w = rr - u - v;
r = par.r + rr * par.dr;
}
real_t q = r / sqrt(u*u + v*v + w*w);
(*nodes)(fes->DofToVDof(dofs[j], 0)) = u*q;
(*nodes)(fes->DofToVDof(dofs[j], 1)) = v*q;
(*nodes)(fes->DofToVDof(dofs[j], 2)) = w*q;
}
}
nodes->RestrictConforming();
}
return mesh;
}
int main(int argc, char *argv[])
{
int dim = 2;
real_t radius = 1.0;
int nsteps = 10;
real_t angle = 90;
real_t aspect = 1.0;
int order = 2;
bool sfc = true;
bool visualization = true;
int visport = 19916;
// parse command line
OptionsParser args(argc, argv);
args.AddOption(&dim, "-d", "--dim", "Mesh dimension (2 or 3).");
args.AddOption(&radius, "-r", "--radius", "Radius of the domain.");
args.AddOption(&nsteps, "-n", "--nsteps",
"Number of elements along the radial direction");
args.AddOption(&aspect, "-a", "--aspect",
"Target aspect ratio of the elements.");
args.AddOption(&angle, "-phi", "--phi", "Angular range (2D only).");
args.AddOption(&order, "-o", "--order",
"Polynomial degree of mesh curvature.");
args.AddOption(&sfc, "-sfc", "--sfc", "-no-sfc", "--no-sfc",
"Try to order elements along a space-filling curve.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visport, "-p", "--send-port", "Socket for GLVis.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return EXIT_FAILURE;
}
args.PrintOptions(cout);
// validate options
MFEM_VERIFY(radius > 0, "");
MFEM_VERIFY(aspect > 0, "");
MFEM_VERIFY(dim >= 2 && dim <= 3, "");
MFEM_VERIFY(angle > 0 && angle < 360, "");
MFEM_VERIFY(nsteps > 0, "");
real_t phi = angle * M_PI / 180;
// generate
Mesh *mesh;
if (dim == 2)
{
mesh = Make2D(nsteps, radius/nsteps, phi, aspect, order, sfc);
}
else
{
mesh = Make3D(nsteps, radius/nsteps, aspect, order, sfc);
}
// save the final mesh
ofstream ofs("polar-nc.mesh");
ofs.precision(8);
mesh->Print(ofs);
// output the mesh to GLVis
if (visualization)
{
char vishost[] = "localhost";
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "mesh\n" << *mesh << flush;
}
delete mesh;
return EXIT_SUCCESS;
}