

User’s Guide
v 1.0

Table of Contents

1. Introduction.. 4
1.1. What is XCase .. 4
1.2. XCase Overview... 4

2. XCase Installation .. 8
2.1. Installation Wizard... 8
2.2. System Requirements ... 8

3. XCase GUI Overview .. 9
3.1. Main Toolbar ... 9
3.2. PIM and PSM diagram canvases... 12
3.3. Project window .. 14
3.4. Navigator window.. 14
3.5. Properties window ... 14
3.6. Working with windows in GUI... 15
3.7. XCase editor shortcuts ... 16

4. PIM Diagrams ... 17
4.1. Creating PIM diagrams ... 17
4.2. Renaming PIM diagrams ... 17
4.3. Removing PIM diagrams ... 17

5. Packages .. 18
5.1. Creating packages ... 18
5.2. Renaming packages ... 18
5.3. Moving packages ... 18
5.4. Removing packages.. 18

6. PIM Classes.. 19
6.1. Creating PIM class .. 19
6.2. Renaming PIM class .. 19
6.3. Moving PIM class to another package... 20
6.4. Removing PIM class .. 20
6.5. PIM class attributes ... 20
6.6. PIM class operations ... 22

7. PIM Connections .. 23
7.1. PIM Associations ... 23
7.2. PIM Association Class ... 24
7.3. Creating PIM Generalizations, Aggregations and Compositions.. 24

8. PSM Diagrams... 25
8.1. Creating new empty PSM Diagram ... 25

 2

8.2. Renaming PSM Diagrams.. 25
8.3. Removing PSM Diagrams.. 26

9. PSM Classes ... 27
9.1. Creating root PSM Class from PIM Class... 27
9.2. Adding children to PSM Class ... 27
9.3. Creating Structural representatives of PSM Classes ... 29
9.4. PSM Class Attributes ... 30
9.5. Adding specializations to PSM Classes ... 31
9.6. PSM Class Grouping ... 32

10. PSM Containers ... 34
10.1. PSM Attribute Container ... 34
10.2. PSM Content Container ... 35
10.3. PSM Content Choice.. 36
10.4. PSM Class Union... 36

11. Comments... 38
11.1. Floating comments... 38
11.2. Connected comments ... 38

12. Generating XML schemas .. 39
12.1. How PSM Diagram is translated into schema ... 39
12.2. Generating XML schema in XCase .. 39
12.3. Translation table.. 40

13. Sample Diagrams .. 46
13.1. PIM Diagrams ... 46
13.2. PSM Diagrams... 48

References .. 55

XCase CD Contents... 56

XCase Folder Contents (after installation) ... 56

 3

1. Introduction

1.1. What is XCase

Conceptual modeling was successfully applied in the world of relational databases. It enables
one to describe a problem domain in a way abstracted from particular user views and
representations in various data models. Hence, it is a challenge to apply conceptual modeling
to XML data model in a similar way. Since XML has some special features in comparison to,
e.g. relational data model, current conceptual modeling approaches cannot be applied directly.
We therefore need to augment them to fit requirements of the XML community.

In this project, we have developed a case tool for conceptual modeling for XML. The tool is
called XCase and implements a new conceptual model for XML called XSEM [1]. The tool
can be used for a comfortable, visually guided design of XML schemas at the conceptual level
instead of writing these schemas by hand.

XSEM is based on the Model-Driven Architecture (MDA) [2] as it separates the conceptual
modeling process to two levels. At the first level, you create a conceptual diagram in a
Platform-Independent Model (PIM) that provides an XML-independent description of your
problem domain. At the second level, you create one or more diagrams in a Platform-Specific
Model (PSM) on the base of the PIM diagram. At this level you specify representations of
your data in target XML formats. Finally, you can derive an XML schema from each PSM
diagram. In the current version of XCase, XML Schema [3] is applied to express XML
schemas.

1.2. XCase Overview

XCase enables one to model XML data at PIM and PSM level as required by XSEM. It offers
a standard environment commonly offered by other tools for conceptual modeling such as ER
or UML class diagram editors.

 4

Platform­Independent Model Level (PIM)

PIM enables one to design conceptual diagrams describing the problem domain independently
of intended representations in various XML formats. As PIM, XSEM applies the well-known
UML class model [4,5]. A sample PIM diagram is displayed in Figure 1.

The main XCase features at the PIM level are the following:

• Designing a model of the problem domain
• Structuring the model to packages
• Visualizing the model in various PIM diagrams
• Editing the model through a model navigator or PIM diagrams
• Support of all well-known UML constructs:

o Classes (with attributes and operations), binary associations (aggregations,
compositions), n-ary associations, association classes and generalizations

Figure 1: Company PIM diagram

Platform­Specific Model Level (PSM)

PSM enables one to describe how the data modeled by PIM diagrams is represented in
various XML formats. As PSM, XSEM applies the UML class model extended with
constructs for modeling special XML features such as, e.g. representing the data as XML
elements vs. attributes, hierarchical and irregular structure, and ordering.

Each PSM diagram models a particular XML format. It contains classes from PIM diagrams
and organizes them into a hierarchy by binary associations directed from the parent to child.
Briefly, a PSM class models an XML element (its name is given by an element label
displayed above the class). Each its attribute models an XML attribute and each its child
models a child XML element. The extending constructs allow further augmenting this basic
hierarchical representation as follows:

 5

• Attribute container. Contains attributes of a PSM class and specifies that these
attributes model XML elements instead of XML attributes.

• Content choice. Models variants in the content of a PSM class.
• Content container. Models an XML element that has no semantic equivalent at the

PIM level (i.e. no equivalent PIM class)
• Class union. Models a mixture (union) of instances of two or more PSM classes.

After a PSM diagram is completed, it can be mechanically expressed in an XML schema
language that describes the XML format at the logical level. Since the problem domain is
modeled at the PIM level, PSM diagrams are derived from the PIM diagrams. Two sample
PSM diagrams are depicted in Figure 2.

The main XCase features at the PSM level are the following:

• Designing basic XML representations by derivation from PIM diagrams
• Support of the extending constructs proposed in [1] to model more complex XML

representations. In a concrete the constructs are
o Attribute container, content choice, content container and class union

• Automatic translation of PSM diagrams to a representation in XML Schema

Figure 2: Purchase and Catalogue PSM diagram

Transition from PIM level to PSM level

In addition to common features provided by UML class diagram editors, the tool puts the
accent on the transition between PIM and PSM diagrams. This transition cannot be performed
automatically as we show in [1]. It must be driven by the designer and the tool provides
assistance for the transition.

 6

The main XCase PIM to PSM transition features include:

• Deriving PSM classes and PSM associations from PIM classes and paths in PIM
diagrams, respectively, on the base of designers’ requirements

• More PSM diagrams can be derived from the same part of the model
• Checks of consistency between PIM and derived PSM diagrams.

o Dynamic propagation of changes in PIM diagrams to corresponding PSM
diagrams and back

Translation of PSM diagrams to XML schemas

Each PSM diagram models an XML format that represents a particular user view on the
problem domain. The XML format is described at the logical level by an XML schema that is
mechanically generated from the PSM diagram. We describe the details of the translation later
in this documentation.

To demonstrate the power of the proposed PSM, we show two sample XML documents of the
XML formats modeled by the above sample PSM diagrams. We do not explain the XML
documents in detail since they are self-descriptive. Their structure directly conforms to the
structure of the PSM diagrams.

<purchase-request
 date=”2008/12/05” custno=”C8212”>
 <messenger no=”M211” />
 <its>
 <it prodno=”P32”>
 <amount>5</amount>
 <price>435</price>
 <tax>19</tax>
 </it>
 <it prodno=”P821”>
 <amount>1</amount>
 <price>9182</price>
 <tax>19</tax>
 </it>
 </its>
</purchase-request>

<catalogue name=”Winter 2008”>
 <cat title=”C1”>
 <cat title=”C2”>
 <product no=”P32”>
 <title>P32</title>
 <color>white</color>
 <price>435</price>
 </product>
 </cat>
 <cat title=”C3”>
 <product no=”P32”>
 <title>P32</title>
 <color>white</color>
 <price>435</price>
 </product>
 </cat>
 </cat>
</catalogue>

 7

2. XCase Installation

2.1. Installation Wizard

To install XCase editor on your PC, run setup.exe from the enclosed XCase CD. The
installation wizard then guides you through the installation process.

If you do not already have Windows Installer 3.1 and .NET Framework 3.5 SP1 installed, you
need to be connected to the Internet while installing XCase. New or missing .NET
Framework parts will be downloaded during the installation process.

1] Click Next to begin the installation process

2] Enter the name of the installation folder on
your computer

3] Click Next to complete the installation
process

4] Click Close to end the installation wizard.

2.2. System Requirements

• Microsoft Windows XP SP2 or newer
• For off-line installation: .NET Framework 3.5 SP1, Windows Installer 3.1

The installation of XCase needs about 20MB of free hard disk space. Since XCase runs on
.NET framework, your computer should meet its requirements for a proper run.

.NET Requirements:

• Processor: 400 MHz Pentium processor or equivalent (Minimum);
1,6GHz Intel Core 2 Duo processor or equivalent (Recommended)

• RAM: 96 MB (Minimum); 2 GB (Recommended)
• Hard Disk: Up to 500 MB of available space may be required

 8

3. XCase GUI Overview

XCase editor comprises the following basic components:

• Main toolbar
• PIM and PSM diagram canvases
• Project window
• Navigator window
• Properties window

3.1. Main Toolbar

Main toolbar offers tools needed for modeling at both PIM and PSM levels. These tools are
divided into several sections. Visibility of some sections depends on the type (PIM or PSM)
of the active diagram selected.

The sections available for both PIM and PSM diagrams are Project,
Diagrams, Edit and Windows.

• Project

o New Project (CTRL+N) - Creates a new XCase project with one empty PIM diagram
o Open Project (CTRL+O) - Opens a previously saved XCase project
o Save Project (CTRL+S) - Saves changes in the current XCase project
o Save As (SHIFT+S) - Saves the current XCase project as another one

 9

• Diagrams

o New PIM Diagram
 Adds a new empty PIM diagram to the project

o New PSM Diagram
 Adds a new empty PSM diagram to the project

o Delete Diagram
 Deletes an active PIM or PSM diagram from the project

• Edit

o Undo - Undoes the last executed command
o Redo - Redoes the last undone command

• Windows

o Projects - Displays the Projects window in GUI if not visible before
o Properties - Displays the Properties window in GUI if not visible before
o Navigator - Displays the Navigator window in GUI if not visible before

If a PIM diagram is active, main toolbar offers the following additional sections:

• Edit (partially)

o Delete from diagram (DELETE) - Deletes the currently selected component
from the PIM diagram (it is still present in the model after deleting)

o Delete from model (SHIFT+DELETE) - Deletes the currently selected
component from the model (it is removed from the model as well as all
diagrams)

• PIM diagram elements

o Class – Creates a new PIM class in the model and adds its visualization to the
PIM diagram

o Associate – Associates the currently selected PIM classes
o Add attribute – Adds an attribute with a default name to the currently selected

class
o Add operation – Adds an operation with a default name to the currently

selected class
o Commentary – Adds a new floating commentary to the PIM diagram
o Association class - Associates the currently selected PIM classes by an

association class

 10

o Generalization, Association, Composition, Aggregation
When toggled, these buttons enable one to create generalizations | associations
| compositions | aggregations between two classes. You click on a class in the
PIM diagram and drag a connecting line to another class in the PIM diagram.

• Derive
o Derive to new PSM diagram – Derives a new PSM class from the currently

selected PIM class. The new PSM class is inserted into a new PSM diagram.
o Derive to existing diagram – Derives a new PSM class from the currently

selected PIM class. The new PSM class is inserted into an existing PSM
diagram. If there are more existing PSM diagrams you are asked to select one.

• Alignment
 Alignment buttons become available when two or more classes in the PIM
 diagram are selected

o Align Left – Aligns the classes to the most left one
o Align Center Horizontally - Aligns the classes to the horizontal middle one
o Align Right Aligns the classes to the most right one
o Align Top - Aligns the classes to the top one
o Align Center Vertically- Aligns the classes to the vertical middle one
o Align Bottom - Aligns the classes to the bottom one

o Horizontal (Distribute Horizontally) - Uniform horizontal distribution of the

classes
o Vertical (Distribute Vertically) - Uniform vertical distribution of the classes

If a PSM diagram is active, main toolbar offers these additional sections

• Edit (partially)

o Delete subtree – Deletes the entire visual sub-tree of the currently selected
PSM class or container

o Delete container – Deletes just the currently selected PSM container (content
container, content choice, class union or attribute container) from the PSM
diagram. The content of the container is not deleted.

• Diagram (partially)

o XML Schema – Generates an XML schema from the currently
active PSM diagram. The XML schema is displayed in a new
window and can be saved to a file.

 11

• PSM Diagram elements

o Add children – Adds child classes under the currently selected PSM class
o Attributes – Adds attributes to the currently selected PSM class. Only the

attributes of the related PIM class are offered to add

o Add attribute – Adds a new attribute, which has no relation to the PIM model,

to the currently selected PSM Class. We call such an attribute PIM-less.
o Content Choice – Encloses the currently selected neighboring PSM

associations to a content choice
o Class Union – Unifies two or more neighboring PSM associations
o Attribute Container – Moves some attributes from the currently selected

PSM class to a new attribute container.
o Content Container – Encloses the currently selected neighboring PSM

associations to a content container
o Add specifications – Adds specializations of the currently selected PSM class

according to specializations of the PIM class represented by the PSM class.
o Commentary – Adds a free commentary to the diagram

• Ordering

o Move Left – Swaps the selected PSM element with the component on its left-
hand side

o Move Right - Swaps the selected PSM element with the component on its
right-hand side

3.2. PIM and PSM diagram canvases

PIM diagram canvas

PIM diagram canvas provides space for modeling PIM diagrams which are in fact UML class
diagrams. The following visual components can be present on a PIM diagram canvas:

• PIM class
• Association class
• Association, aggregation, composition
• Generalization
• Comment

Hidden dependent element

If you delete an element from PIM diagrams but not from the model, you still need to find the
element somewhere and have a possibility to make it visible in a diagram again. All PIM
classes from the model are listed in the Navigator window. All other elements (e.g.

 12

associations, comments etc.) can be found among hidden elements of a PIM diagram. To
make such an element visible again, right-click on the canvas of a selected PIM diagram and
select Include hidden elements from the context menu.

From a list offered, select a previously deleted element you want to get back to the diagram.

PSM diagram canvas

PSM diagram canvas provides space for modeling PSM diagrams. They are hierarchical
diagrams that can be comprised of the following visual elements:

• PSM class
• PSM container

o Attribute container
o Content container
o Content choice
o Class union

• Association
• Specialization
• Comment

Diagram PNG exporting

XCase enables one to export PIM and PSM diagrams to PNG picture format.

1] Right-click on the canvas of a diagram you want to export as a picture
2] Select Export diagram to PNG
3] Enter the name of the PNG file in the dialog box

The content of the diagram is then saved as a PNG picture.

 13

3.3. Project window

An XCase project is composed of PIM and PSM diagrams. The
Project window lists the diagrams in an unfolding tree layout.

You can invoke a context menu by right mouse-button click on a
project name. The context menu offers the following items:

• Rename project – Changes the name of the current XCase project
• Change project’s namespace – Changes the target namespace for generated XML

schemas
• Add PIM Diagram – Adds a new empty PIM diagram to the current project
• Add PSM Diagram – Adds a new empty PSM diagram to the current project

Context menu invoked on a PIM or PSM diagram offers:

• Rename – Renames selected PIM or PSM diagram
• Remove – Removes selected PIM or PSM diagram from the project

3.4. Navigator window

The Navigator window lists all packages and PIM classes
present in the model for the current project. The listed
classes do not have to be necessarily present in any PIM
diagram, e.g. there can be classes without any
visualization.

 can contain other nested
ackages and nested classes.

 package or move an existing class to another
ackage.

ation in the current diagram, the visualization is selected.

At the top level there are model classes and model nested
packages. Nested packages
p

See the chapter 5 for how to create, rename and remove a
package in XCase and the chapter 6 for how to add a new
class to a
p

If you select a class in the Navigator window and this class

has visualiz

3.5. Properties window

The Properties window displays properties of a selected element. These properties can be
edited through this window. It displays the following properties depending on the type of the
selected element:

 14

On a PIM diagram canvas:

• PIM Class
o name, attribute list, operation list, derived classes list, appearance

• Association Class
o name, attribute list, operation list, appearance, label and multiplicity for each

association end
• Association

o name, label and multiplicity for each association
end

• Comment
o comment text, appearance

On a PSM diagram canvas:

• PSM Class
o class name, element name, attribute list,

appearance (non-editable)
• Content Container

o element name, appearance (non-editable)
• Attribute Container

o attribute list
• PSM Association

o multiplicity, nesting joins
• Comment

o comment text, appearance

3.6. Working with windows in GUI

Docking windows

Properties, Project and Navigator windows can be docked in several positions within the

GUI. If you want to dock a window, just grab it and move it to the desired
position indicated by a transparent window slot. You can also leave it
undocked.

To open again a closed docked window, click on the proper button (Projects,
Properties, Navigator) in Windows section of the main toolbar.

Auto hiding windows

To make a window auto hiding, click on symbol on its label. The window is then collapsed
to a small label stuck to the side of the editor. If you move mouse cursor over this label, the
whole window becomes visible again. To make a window persistent (not auto hiding), click
on symbol of the auto hiding window.

 15

3.7. XCase editor shortcuts

XCase editor supports some standard keyboard shortcuts which are listed in the following
table.

Action Shortcut
New Project CTRL+N
Open Project CTRL+O
Save Project CTRL+S
Save As SHIFT+S
About CTRL+F1
Close active diagram CTRL+W,

CTRL+F4
Undo CTRL+Z
Redo CTRL+Y
Delete from diagram
(PIM)
/Delete subtree(PSM)

DELETE

Delete from model SHIFT+DELETE
Rename element F2
Rename label SHIFT+F2
←↑→↓ Movement in PSM

diagrams

 16

 PIM Level Modeling

4. PIM Diagrams

After XCase start-up, en empty environment is prepared with one empty PIM diagram
opened. Its name is PIM Diagram1.

4.1. Creating PIM diagrams

There are several ways how to add a new empty PIM diagram to the project:

• Click on the New PIM Diagram button in Diagrams section in the main toolbar
or

• In the Project window, invoke a context menu on PIM Diagrams and then select
Add New PIM Diagram

New empty PIM diagram is then added and opened in the project.

4.2. Renaming PIM diagrams

When a new PIM diagram is added to the project, it gets a default name. If you want to
change this name:

1] Right-click on the PIM diagram name in the Project window
2] Select Rename from the context menu
3] Enter the desired name to the dialog box

The diagram is then renamed.

4.3. Removing PIM diagrams

There are several ways how to remove a PIM diagram from the project:

• Select the PIM diagram and press the Delete diagram button in the main toolbar

(Diagrams section)
or
• In the Project window, invoke a context menu on the PIM diagram and choose

Remove item

The PIM diagram and all its components are then removed from the project.

 17

5. Packages

Packages allow further organization of PIM classes in an XCase project. They are handled via
context menus in the Navigator window.

5.1. Creating packages

1] In the Navigator window, right-click on Nested packages of the package/model you
want to add a new package to
2] Select Add new package from the context menu

A new package with default name Package[n] is then added to the project and visible in the
Navigator window.

5.2. Renaming packages

1] In the Navigator window, double-click on the package you want to rename
2] Enter the name of the package in the dialog box and press OK

The package is then renamed.

5.3. Moving packages

1] In the Navigator window, double-click on the package you want to move
2] Select new parent package in the combo box and press OK

The package is then moved to the selected package.

5.4. Removing packages

1] In the Navigator window, right-click on the package you want to rename
2] Select Remove from the context menu

The package and all its classes are then removed.

 18

6. PIM Classes

A PIM class represents one modeled entity. The Navigator window shows all PIM classes
present in the model. You can also see a PIM class visualized in respective PIM diagrams.

6.1. Creating PIM class

Adding PIM class to both model and diagram

If you want to create a PIM class and its visualization in a PIM diagram at once,
just click on the Class button in the main toolbar and drag the class object to the
desired place on the canvas of a PIM diagram.

The class is then present in the model as well as in the PIM diagram.

Adding PIM class to model only

1] Right-click on Model classes in the Navigator window
2] Select Add new class from the context menu

A new PIM class with default name Class[n] is then added to the model but it has no
visualization in any PIM diagram.

If you later decide to visualize this class, just select it in the Navigator window and drag it to
the desired position in a PIM or PSM diagram.

6.2. Renaming PIM class

You can rename each PIM class by following these steps:

1] Double-click on the PIM class in the Navigator window.
2] Write the desired name into the dialog box.

If a PIM class has visualization in some PIM diagram, you can also use some other ways to
rename it:

1] Select the PIM class on the canvas.
2] Edit its name in the Properties window

or
1] Right-click on the PIM class on the canvas.
2] Choose Rename from the context menu or press F2.

or
1] Double-click on the PIM class on the canvas to open the Class dialog box
2] Change class name
3] Press OK to confirm the change and close the dialog box

 19

6.3. Moving PIM class to another package

1] Double-click on the PIM class on the canvas to open the Class dialog box
2] In Package combo box select the package to move this class to
3] Press OK to confirm the change and close the dialog box

6.4. Removing PIM class

You can remove a PIM class completely or just from diagrams. In the second case the class is
still present in the model after removal. If you decide to add it to a PIM diagram back again,
you just use the same steps as when adding a PIM class without visualization to a PIM
diagram.

Removing PIM class from PIM diagram only

The class is still present in the model after removal.

1] Select the PIM class you want to remove
2] Press SHIFT+DELETE or click on the Delete from diagram button in the main toolbar

or invoke its context-menu by right-click and then select Remove
3] If the PIM class is not present in any other PIM diagram, you are offered to remove it

from the model as well. If you want to keep it in the model, uncheck the class name in
the displayed dialog window

Removing PIM class from the model

The class is removed completely from the project.

1] Right-click on the PIM class in the Navigator window
2] Select Remove from the invoked context menu

or
1] Select the PIM class you want to remove on the canvas
2] Press DELETE or click on the Delete from model button in the main toolbar

6.5. PIM class attributes

Adding PIM class attributes

1] Right-click on the PIM class on the canvas or in the Navigator window
2] Select Add new attribute from the invoked context menu

or
1] Select the PIM class on the canvas
2] Click on Add attribute in the main toolbar (PIM diagram elements section)

A new attribute with the default name Attribute[n] is then added to the class.

 20

Editing PIM class attributes

1] Unroll the class with the desired attribute in the Navigator window
2] Double-click on the attribute name

or

1] Select the PIM class with the desired attribute on the canvas.
2] Right-click on the attribute name
3] Select Properties from the context menu.

Attribute pop-up window appears.
Here you can edit:

• Attribute name
• Attribute data type
• Attribute default value
• Attribute multiplicity

You can even create and edit your own simple data

types and share them among attributes.

Creating and editing simple data types for PIM attributes

To create a new data type click New simple type in Attribute dialog box.
In the Simple data type dialog box you can fill in the following:

• Data type name – Identifier of the

newly created data type
• Parent data type – Primitive data type

this one is derived from
• Implementation – Implementation of

the data type that will be used when
creating XML schema.

Since XML Schema is used as a target
XML schema language, write here a proper XML schema code. The new type is
created by restricting existing simple type (we do not support list and union
derivation). Therefore, fill in only the facets applied for the restriction. The rest of the
code for the simple type definition will be created mechanically for you. Also do not
use a prefix for XSD namespace. It will be added automatically.

Click OK to add your new data type to the selected package.

You can then use this data type for any PIM attribute. To edit your new data type, select it in
Attribute dialog and press Edit simple type.

 21

Removing PIM class attributes

1] Select the PIM class with the desired attribute on the canvas
2] Right-click on the attribute name
3] Select Remove attribute from the context menu

6.6. PIM class operations

PIM class operations have any meaning neither in derived PSM diagrams nor in derived XML
schemas. They are present just to support PIM level’s functionality as a common UML class
editor.

Adding PIM class operations

1] Right-click on the PIM class on the canvas
2] Select Add new operation from the invoked context menu

or
1] Select the PIM class on the canvas
2] Click on Add operation in the main toolbar (PIM diagram elements section)

A new operation with the default name Operation[n] is then added to the class.

Editing PIM class operations

To change a name of an operation, select its parent class on the canvas. In the Properties
window, change its name to the new one.

Removing PIM class operations

1] Click on the PIM class with the desired operation
2] Right-click on the operation name
3] Select Remove operation from the context menu

 22

7. PIM Connections

7.1. PIM Associations

PIM associations describe relations among PIM classes. XCase supports binary as well as
general n-ary associations.

Creating binary PIM Associations

To create a binary PIM association, toggle the
Association button in the main toolbar.
Then click on the first class and drag the
association line to the second class. The classes are
then connected by a direct simple line.
You can repeat this step until untoggling the
Associate button or right-mouse clicking on the
canvas.

Creating n­ary PIM Association

To create an association among 2 or more classes,
select these classes on the canvas and click on the
Associate button in the main toolbar.

The classes are then connected via a connecting
diamond if they are 3 or more.

Editing PIM Associations

The following properties can be edited for each PIM association:

• Name
o Describes more precisely the meaning of the association

• Role name for each association end
o Specifies the specific role of each class involved in the association

• Cardinality for each association end
o Lower and upper limit for presence of each class involved in the

association
• Aggregation type for each association type

o None, shared or composite

You can edit these properties in the dialog window invoked by double clicking on the desired
association on the canvas. Name, role and cardinality can be edited directly via the Properties
window.

 23

7.2. PIM Association Class

Creating PIM association class

An Association class can be seen as an association that also has class properties, or as a class
that also has association properties. Typically, it is used when you need to provide some more
information for an association (by adding attributes to its class part). We refer to [4,5] for
details.

To associate two or more classes with an association class, select these classes on the canvas
and click on the Association class button in the main toolbar.

Like with a simple association, the selected classes
are then either connected by a direct simple line if
they are just 2, or connected via a connecting
diamond if they are 3 or more. There is also the
class part attached to the association by a thin
dotted line.

In general, you can use association class as a usual

PIM class. You can add attributes and operations to it and connect it to some other classes.

Editing PIM association class

Association properties of an association class can be edited in the same way as properties of
an association. To learn more, see the chapter 7.1

Class properties of an association class can be edited in the same way as properties of a PIM
class. To learn more about it, see the chapter 6.5.

7.3. Creating PIM Generalizations, Aggregations and Compositions

XCase also allows you to work with more specific kinds of UML connections, namely
generalizations, aggregations and compositions.

To create the above mentioned relations
between 2 classes, follow these steps:

1] Toggle the appropriate
[Generalization, Aggregation,
Composition] button in the main
toolbar

2] Select the first (child, specific,
derived) class on the canvas a drag
the connecting line to the second
(parent, general) one.

You can continue to connect classes by Generalization | Aggregation | Composition line until
untoggling the button in the main toolbar or right-clicking on the canvas.

 24

Modeling on PSM Level

8. PSM Diagrams

A PSM diagram models a particular XML format in terms of PIM diagrams in the project. Its
components represent components of the PIM diagrams and organize them to the required
hierarchical structure of the XML format. XCase supports all PSM constructs proposed in [1].

8.1. Creating new empty PSM Diagram

There are several ways how to add a new empty PSM diagram to the project:

• Click on the New PSM Diagram button in the main toolbar (Diagrams section)

 or
• In the Project window, invoke a context menu on PSM Diagrams and then select
 Add new PSM Diagram

A new empty PSM diagram is then added and opened in the project.

8.2. Renaming PSM Diagrams

When a new PSM diagram is added to the project, it gets a default name. If you want to
change this name:

1] Right-click on the appropriate diagram in the Project window
2] Select Rename from the context menu
3] Enter the desired name in the dialog box

The selected PSM diagram is then renamed.

 25

8.3. Removing PSM Diagrams

There are several ways how to remove a PSM diagram from the project:

• Select the PSM diagram, you want to delete, so it becomes the active one. Then
press the Delete diagram button in the main toolbar (Diagrams section)

• In the Project window, invoke a context menu on the PSM diagram, you want to
delete. Then choose Remove item.

PSM diagram and all its elements are then removed from the project.

 26

9. PSM Classes

Each PSM class in a PSM diagram must be derived from a PIM class. We say that the PSM
class represents this PIM class. A PSM class models how instances of the represented PIM
class are expressed in the corresponding XML format.

The PSM class has a name and element label as depicted in the following picture. When
translating the PSM class to an XML schema representation, the name is used as a name of
the generated XML type, while the element label is used as a name of the generated XML
element. If the PSM class name differs from PIM class name, the PIM class name is displayed
together with the PSM class as well.

9.1. Creating root PSM Class from PIM Class

A root PSM class can be derived from a PIM class to a new or existing PSM diagram as
follows:

 1] Select the PIM class in the PIM diagram
 2] Click on Derive to new PSM Diagram or on Derive to existing Diagram in the main
 toolbar

9.2. Adding children to PSM Class

You can add children under an existing PSM class to model the requested XML tree
hierarchy.

1] Click on the PSM class in the PSM diagram.
2] Click on the Add children button in the main toolbar.

A new dialog box appears where you select one or more PIM classes. The tool then
automatically creates for each selected PIM class a new PSM class, which represents the
selected PIM class, and inserts it as a child of the actual PSM class.

PIM classes offered in the dialog box are organized according to the association paths
connecting them with the PIM class represented by the actual PSM class. Just associations
(aggregations, compositions) are considered to form the paths, not generalizations.

At the first level, there are neighbors of the PIM class, e.g. there are all PIM classes directly
associated with the PIM class. At the second level, there are PIM classes which are in distance
2 from the PIM class and so on.

 27

After specifying the requested PIM classes to insert as children of the actual PSM class, the
following dialog box appears. You can then choose from three possibilities for each specified
PIM class.

• The first possibility allows creating a completely new PSM class that represents the
PIM class.

• The second possibility enables one to create so called structural representative. This
possibility is explained in the chapter 9.3.

• The last possibility is designed for connecting an existing root PSM class, which
represents the PIM class, as a child of the actual PSM class.

Nesting joins

The resulting child PSM class is connected with the parent PSM class by a PSM association.
As each PSM class represents a corresponding PIM class, there is also a binding of each PSM
association to the PIM level. This binding is called nesting join. We say that the PSM
association represents the nesting join.

In a basic version, nesting join comprises two parts called parent and child. Parent is the path
of PIM associations used to construct the PSM association. Child is empty. You can see the
parent and child for each PSM association in the Properties window. An appropriate nesting
join is constructed mechanically by the tool when creating the PSM association (i.e. as a
result of Add child operation). Nesting joins can be more complex as we show later in the
chapter 9.6. For a detailed description of nesting joins, we refer to [1].

 28

Association classes as children in PSM diagrams

There can also be an association class on a path instead of a simple association. In that case it
must be possible to somehow insert not only an endpoint of that association class into the
PSM diagram but also the association class itself. For this purpose, we suppose the
association class to be a normal class connected with the original endpoints by two simple
associations.

As a consequence, there is no difference between the two situations displayed in the
following self-describing figure.

9.3. Creating Structural representatives of PSM Classes

You can insert a PIM class into a PSM diagram
not only as an ordinary PSM class but also as so
called structural representative. You are offered
this possibility when you are deriving a PSM
class from a PIM class that is already represented

in the actual PSM diagram.

A structural representative is a specific kind of PSM class that refers to another PSM class
and obtains automatically its attributes and content. The structural representative extends
these obtained components by its own attributes and content. Only these extending
components are displayed for the representative. However, the obtained components are taken
into account during the translation to the final XML schema.

 29

Therefore, structural representatives allow reusing an already modeled content at more places
in a PSM diagram at once. Since PSM diagrams must have a tree structure, we also use
structural representatives for modeling recursive structures.

Visualization of structural representatives differs in color
(powder blue) from visualization of ordinary PSM classes. The
picture shows a PSM class Class2 (on the left) and its structural
representative Class2 (on the right). The structural representative
inherits Attribute1 of Class2.

9.4. PSM Class Attributes

Adding PSM class attributes related to PIM class attributes

A PSM class can receive attributes of its PIM class.

1] Click on the PSM class
2] Click on the Attributes button in the main toolbar

In the dialog box select which attributes you want to add. There are all the attributes of the
original PIM classes listed. You cannot change their names but you can use different aliases
for them to be displayed in the PSM class. These aliases are then used when generating XML
schema.

Adding independent (‘PIM­less’) PSM class attributes

A PSM class can have completely new attributes which have no associated counterparts in the
appropriate PIM class. To add such a PIM-less attribute, do the following:

1] Click on the PSM class
2] Click on the Add attribute button in the main toolbar

Editing PSM class attributes

1] Select the PSM class with the desired PSM attribute on the canvas.
2] Right-click on the attribute’s name
3] Select Properties from the context
menu.

An Attribute pop-up window appears.

 Here you can edit:

• Attribute data type
• Attribute default value
• Attribute multiplicity
• Attribute alias

The initial values of all these properties are taken right from its PIM attribute counterpart. The
name and data type are received as well, but they are non editable.

 30

If you change a multiplicity of a PIM attribute, you can decide if you want to propagate this
change also to related PSM attributes. A change in a data type and default value is propagated
automatically.

Another way how to edit a PSM class attribute is via the Properties window. There are all the
attributes listed. You can change an alias for a PSM attribute directly. If you click on the
button next to its name, the previously mentioned PSM Attribute dialog box is displayed.

Removing PIM class attributes

1] Select the PIM class with the desired attribute on the canvas.
2] Right-click on the attribute’s name
3] Select Remove attribute from the context menu.

9.5. Adding specializations to PSM Classes

Correspondingly to specializations at the PIM level, you can specialize given PSM class by
PSM classes that represent specializations of the corresponding PIM class. To add a
specialization of a PSM class:

1] Click on the PSM class
2] Click on the Add specialization button in the main toolbar.
 Note: If this button is not enabled, there are no available specializations for this
class.
3] The dialog box shows a list of specializations of the corresponding PIM class. You
 can select one or more specializations that will be represented in the PSM diagram
 as specializations of the PSM class.

A PSM class with specializations specifies that instances of the PSM class are represented in
the XML format at the corresponding location. Moreover, instances of the specializations are
represented at this location. These specialized representations comprise of a part described by
the PSM class and a part described by a corresponding specialization.

 31

Abstract PSM class

It is also possible to denote a PSM class as abstract. In that case only instances of non-abstract
specializations of the PSM class can be represented at the given location. The details of the
corresponding XML structures modeled by PSM classes and their specializations are
explained in the chapter 12.3.

A PSM class can be denoted as abstract as follows:

 1] Right-click on the PSM class on the canvas
 2] Tick Abstract class in the invoked context menu

The PSM Class name is then displayed in italics to express that it is an abstract class.

9.6. PSM Class Grouping

Due to a hierarchical nature of XML, it is quite easy to represent grouping of given objects
according to some criteria. To model such grouping, XCase allows grouping of a given root
PSM class by one or more of its children. Other than root PSM classes can not be grouped.

After the grouping, the children are represented as direct ancestors of the grouped PSM class.
At the instance level, the grouping specifies that two instances of the grouped PSM class are
in the same group if they are related to the same instances of the grouping ancestors.

The formal semantics of the grouping is specified by nesting joins represented by the PSM
classes connecting the ancestors. Each such PSM class represents a nesting join composed of
the following:

• parent: corresponding PIM path (i.e. a path composed of PIM associations) going
from the PIM class represented by the grouped PSM class to the PIM class represented
by the parent of the PSM association

• child: corresponding PIM path going from the PIM class represented by the grouped
PSM class to the PIM class represented by the child of the PSM association

• context: a set containing for each ancestor of the PSM association in the grouping a
corresponding PIM path going from the PIM class represented by the grouped PSM
class to the PIM class represented by this ancestor

Corresponding nesting joins are created by the tool mechanically. You can see the nesting
joins in the Properties window.

To group a root PSM class by one or more its children, follow these steps.

1] Right-click on the root PSM class in the PSM diagram
2] Select Group by from its context menu
3] Choose descendants to group by

 32

 33

10. PSM Containers

The following PSM containers are available in PSM diagrams to help to model the tree
structure and specify the output XML:

• PSM attribute container
• PSM class union
• PSM content container
• PSM content choice

10.1. PSM Attribute Container

Basically, a PSM attribute of a PSM class is expressed in XML
documents as an XML attribute. To specify that it is expressed as
an XML element we use attribute containers.

An attribute container is assigned to a PSM class and takes one
or more of its attributes. It is displayed as a box connected to the
parent class by a solid line. It is considered as a component of the
content of the parent class and specifies the location of the
modeled XML elements.

A PSM class can have more PSM attribute containers.

Moving PSM class attributes to PSM attribute container

1] Click on the PSM class with some PSM attributes
2] Click on the Attribute container button in the main toolbar (PSM diagram elements
section)
3] In the dialog box, check which attributes to move to the attribute container

Attribute container with the selected attributes is then created and connected to the PSM class.

Moving PSM attributes from PSM attribute container back to PSM class

1] Right-click on the PSM attribute in PSM attribute container
2] Select Move back to class in the context menu

PSM attributes are then moved back to the PSM class.

Editing PSM attributes in PSM attribute container

PSM attributes displayed in a PSM attribute container are edited the same way as PSM
attributes displayed directly in a PSM class. To edit a PSM attribute directly, right-click on it
in a PSM attribute container and select Properties from its context menu.

 34

Removing PSM attribute container

1] Select a PSM attribute container on the canvas
2] Click on the Delete container button in the main toolbar.

PSM attribute container is then deleted from the diagram and its attributes are returned back
to the original PSM class.

10.2. PSM Content Container

A content container allows modeling an XML element that does not have any semantics in
terms of PIM diagrams.

PSM content container has a name and is assigned to a PSM class. It contains a part of the
content of this class. It is displayed by a narrow rounded rectangle with the name inside and
is connected to the parent class by a solid line. The content container models that for each
instance of the PSM class, the XML code modeled by the components of the container is
enclosed in a separate XML element named by the name of the container.

Adding PSM content container

1] Select the PSM association coming from a PSM class or a PSM container
2] Click on the Content container button in the main toolbar

A new unnamed PSM content container is added.

Editing PSM content container

PSM content container has no name by default. To enter a name (further denoted as XML
element name), right-click on it and select Rename content container. You can also edit this
name via the Properties window.

Deleting PSM content container (Revert)

1] Select the PSM content container
2] Click on the Delete container button in the main toolbar

PSM content container is then removed, so the diagram looks exactly the same as before it
was added.

 35

10.3. PSM Content Choice

A PSM content choice models variants in the content of a PSM class. It is assigned to a PSM
class and contains two or more PSM associations coming from it.

It is displayed by a circle with an inner | and is connected to the PSM Class by a solid line. It
models that for each instance of the PSM class, only one of the associations is instantiated.

Creating PSM content choice

1] Select two or more neighboring PSM associations
2] Click on the Content choice button in the main toolbar

Selected associations are then joined into a content choice

Deleting PSM content choice (Revert)

1] Select the PSM content choice
2] Click on the Delete container button in the main toolbar

Content choice is removed, so the diagram looks exactly the same as before it was added.

10.4. PSM Class Union

A PSM class union is an endpoint of a PSM association and contains one or more PSM
classes.

It is displayed by a circle with an inner + at the end of a PSM association. The PSM classes in
the union are displayed beneath the circle and are connected to the circle by solid lines. It
models a mixture (i.e. union) of contained PSM classes. At the instance level, it models a
mixture of their instances.

Creating PSM class union

1] Select the PSM association
2] Click on the Class union button in the main toolbar

A new PSM class union is the added.

 36

Removing PSM class union (Revert)

 1] Select the PSM class union you want to delete
 2] Click on the Delete container button in the main toolbar

The PSM class union is removed, so the diagram looks exactly the same as before it was
added.

 37

11. Comments

Comment elements can contain additional information about whole modeled diagrams or
specific elements. There are two types of comments: floating and connected.

11.1. Floating comments

Floating comments can be placed freely on a PIM or PSM
diagram. They are not connected to any elements and they
can carry general information. To add such a comment to
the current diagram, unselect all elements on the canvas
and click on the Comment button in the main toolbar.

11.2. Connected comments

Connected comments are connected to some elements on the canvas. Elements that can be
commented this way are the following:

In a PIM diagram:
• PIM class
• Association class
• Association
• Generalization

In a PSM diagram:

• PSM class
• Class union
• Content container
• Content choice
• Attribute container

To add a comment to any of these elements, right-click on it and select Add commentary from
its context menu. If you drag a new comment to the canvas, the new comment is
automatically connected to the selected element.

Both types of comments can be edited via the Properties window or directly by right-clicking
on it and selecting Change. If you want to remove it, select Remove from diagram.

 38

12. Generating XML schemas

12.1. How PSM Diagram is translated into schema

Each PSM diagram can be translated to a representation in XML Schema [3]. Currently, we
support a fully mechanical translation. It is not possible to customize the translation by any
parameters.

The translation starts in root PSM classes and proceeds recursively to their descendants.
Details of the translation of each separate PSM construct are depicted in Section 11.3. Briefly,
a PSM class is translated to a sequence of element declarations (element construct) and a
set of attribute declarations (attribute construct). The element declarations result from the
content of the class. The attribute declarations result from its attributes. If the class has an
element label, the declarations are inserted into the resulting XML schema as a complex type
(complexType construct). Otherwise, they are inserted as a model and attribute group
(group and attributeGroup construct, respectively).

This basic translation is further influenced by PSM structural constructs, i.e. attribute
container, content container, content choice and class union as demonstrated by the table. The
table also explains how structural representatives and specializations in PSM diagrams are
expressed in XML Schema.

12.2. Generating XML schema in XCase

To generate an XML schema for a current PSM diagram, click on the
XML schema button in the main toolbar (Diagrams section).

XML Schema window with generated XML schema is then opened. Generated
schema is written in W3C XML Schema language [3].

XML Schema window tabs

• Default view - Editable text
of generated XML schema

• Browser view - Non editable
collapsible text of generated
schema

XML Schema window buttons

• Save to file - Saves text
content of Default view to a
named *.xsd file

• Validate XML schema –

Checks whether the XML
schema is a valid XML
Schema document

 39

12.3. Translation table

XCase PSM element

XML Schema element

Class with an element label

 <xs:complexType name="Class1">
 <xs:sequence>
 <xs:element name="Class2" type="Class2" />
 …
 </xs:sequence>
 <xs:attribute name="Attribute1"… />
 <xs:attribute name="Attribute2" .. />
 </xs:complexType>

• If it is a root and is not abstract or is abstract, but has

non-abstract specialization without an element label,
then (additionally to the previous complex type):

<xs:element name="Class1Element" type="Class1"/>

Class without an element

label

<xs:group name=”Class1-c”>
 <xs:sequence>
 <xs:element name=”Class2” type=”Class2” />
 ..
 </xs:sequence>
 </xs:group>

 <xs:attributeGroup name=”Class1-a”>
 <xs:attribute name=”Attribute1”… />
 <xs:attribute name=”Attribute2” … />
 </xs:attributeGroup>

 <xs:attributeGroup name=”Class1-a-opt”>
 <xs:attribute name=”Attribute1” use=”optional”/>
 <xs:attribute name=”Attribute2” use=”optional”/>
 </xs:attributeGroup>

Attribute of a class

(type t, default value dv,
multiplicity m…n)

• If m > 0 (minimal multiplicity is 1 or higher):
<xs:attribute name="Attribute1" type="t"

 default="dv" />

• If m=0 (minimal multiplicity is 0):
<xs:attribute name="Attribute1" type="t"

 default="dv" use="optional" />

A maximal multiplicity > 1 is ignored.

 40

XCase PSM element

XML Schema element

Attribute in an attribute

container
(type t, default value dv,

multiplicity m..n)

<xs:element name="Attribute1" type="xs:t"
default="dv" minOccurs="0" maxOccurs="2" />

• minOccurs/maxOccurs attributes are generated

according to Attribute1 multiplicity

Association going to a node

with an element label

<xs:element name="Class2Element"

type="Class2"
 minOccurs=“0“/>

• minOccurs/maxOccurs attributes are generated

according to Class2 multiplicity

Association going to a class

without an element label
(multiplicity m..n)

 <xs:complexType name="Class1">
 <xs:sequence>
 <xs:group ref="Class2-c" minOccurs=”0” />
 </xs:sequence>

If m=0:
 <xs:attributeGroup ref="Class2-a-opt" />
otherwise
 <xs:attributeGroup ref="Class2-a " />

 </xs:complexType>

• minOccurs/maxOccurs attributes of the group are

generated according to the multiplicity

 41

XCase PSM element

XML Schema element

Assoc. going to a class union

<xs:choice minOccurs=“0“ maxOccur=“1“/>
 …
 </xs:choice>

• minOccurs/maxOccurs attributes of the choice are

generated according to the class union multiplicity

Content choice

 <xs:choice>

 …
 </xs:choice>
 <-- for each PSM class Class2 without an element
label in the content of the container -->

 <xs:attributeGroup ref=”Class2-a-opt”>

Content container

 <xs:element name="content">
 <xs:complexType>
 <xs:sequence>
 …
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Attribute container

<xs:complexType name="Class1">
 <xs:sequence>
 <xs:element name="Attribute1" … />
 <xs:element name="Attribute2" … />
 <xs:element name="Attribute3" … />
 </xs:sequence>
</xs:complexType>

 42

XCase PSM element

XML Schema element

Structural representative of a

PSM class Class1’ with an
element label

 <xs:complexType name="Class1">
 <xs:sequence>
 <xs:group ref="Class1‘-c" />
 ...
 </xs:sequence>
 <xs:attributeGroup ref="Class1‘-a" />
 <xs:attribute name=“Attribute1“ ... />
 <xs:attribute name=“Attribute2“ ... />
 </xs:complexType>

Structural representative of a
PSM class Class1’ without an

element label

 <xs:group name="Class1">
 <xs:sequence>
 <xs:group ref="Class1‘-c" />
 ...
 </xs:sequence>
 </xs:group>

 <xs:attributeGroup name="Class1">
 <xs:attributeGroup ref="Class1‘-a" />
 <xs:attribute name=“Attribute1“ ... />
 <xs:attribute name=“Attribute2“ ... />
 </xs:attributeGroup>

Specialization V of a class U
where U has an element label

 <xs:complexType name="V">
 <xs:complexContent>
 <xs:extension base="U">
 <xs:sequence>
 …
 </xs:sequence>
 <xs:attribute name="Attribute1" … />
 <xs:attribute name="Attribute2" … />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

• if U is a root and V has a different element label

from V then
<xs:element name="Label V" type="V" />

 43

Specialization V of a class U

where U does not have an
element label and V does

 <xs:complexType name="V">
 <xs:sequence>
 <!-- if the content of U is not empty -->
 <xs:group ref=“U-c“ />
 …
 </xs:sequence>
 <!-- if U has attributes -->
 <xs:attributeGroup ref=“U-a“ />
 <xs:attribute name="Attribute1" … />
 <xs:attribute name="Attribute2" … />
 </xs:complexType>

• if U is a root then
<xs:element name="Label V" type="V" />

Specialization V of a class U
where neither U nor V have

an element label

 <xs:group name="V-c">
 <xs:sequence>
 <!-- if the content of U is not empty -->
 <xs:group ref=“U-c“ />
 …
 </xs:sequence>
 </xs:group>
 <xs:attributeGroup name="V-a">

<!-- if U has attributes -->
<xs:attributeGroup ref=“U-a“ />

 <xs:attribute name="Attribute1" … />
 <xs:attribute name="Attribute2" … />
 </xs:attributeGroup>

XCase PSM element

XML Schema element

 44

XCase PSM element

XML Schema element

An association E going to a

specialized class with an
element label

 <xs:choice>
 <xs:element name="Class1Element" type="Class1" />
 <xs:element name="Class2" type="Class2" />
 </xs:choice>

• If Class1 is abstract:

 <xs:choice>
 <xs:element name="Class1Element" type="Class1" />
 <xs:element name="Class2" type="Class2" />
 </xs:choice>
+
 <xs:complexType name="Class1" abstract="true">

An association E going to a
specialized class without an

element label

 <xs:choice>
 <xs:group ref="Class1-c" />
 <xs:element name="Class2" type="Class2" />
 <xs:group ref="Class3-c" />
 </xs:choice>

 <!-- if Class3 has attributes -->
 <xs:attributeGroup ref=“Class1-a“ />

• If Class1 is an abstract class:

 <xs:choice>
 <xs:element name="Class2" type="Class2" />
 <xs:group ref="Class3-c" />
 </xs:choice>

 45

13. Sample Diagrams

In this section, we provide sample PIM and PSM diagrams modeling a company that
produces and sells products. PIM diagrams provide a conceptual description of the domain.
PSM diagrams provide description of XML formats applied by the company to communicate
with its suppliers and customers.

All the diagrams can be found in the project ABCCompany.XCase on XCase CD.

13.1. PIM Diagrams

Persons. Figure 3 depicts a PIM diagram modeling hierarchy of persons. It demonstrates
how XCase allows modeling classes and their specializations using generalization
connections. E.g., there is class Person modeling persons in general. It is specialized by
classes Customer and Employee modeling customers and employees, respectively. Employee
is further specialized to more specific types.

Figure 3

Sales. Figure 4 depicts a PIM diagram modeling product sales. It demonstrates modeling
associations in XCase. The core class is Purchase modeling purchase orders. It is composed
of items as modeled by a composition connecting Purchase and Item. Each item is related to
the purchased product.

Production. The last PIM diagram, which is depicted in Figure 5, models supplies of parts for
production. It demonstrates modeling n-ary association classes. An association class Supply
has three endpoints, i.e. connects three classes. It models that parts are supplied by suppliers
to product sets.

 46

Figure 4

Figure 5

 47

13.2. PSM Diagrams

Purchase Request and Response XML Formats. Figures 6 and 7 depict two PSM diagrams
modeling XML formats for purchase requests and responses, respectively. PurchaseRequest-
Format has two PSM classes representing Customer. NewCustomer is applied by non-
registered customers while RegCustomer is applied by the others. Further, it contains two
representations of Address, namely DeliveryAddress and BillAddress. Both model the same
structure but have different element labels. The other is a structural representative of the
former, i.e. its structure is modeled by DeliveryAddress. PurchaseResponseFormat represents
Purchase as well but in a different structure.

Figure 6

Figure 7

 48

Purchase Request Format generated XML schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="http://kocour.ms.mff.cuni.cz/xcase/company/"
 targetNamespace="http://kocour.ms.mff.cuni.cz/xcase/company/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="purchase-request" type="Purchase" />

 <xs:complexType name="Purchase">
 <xs:sequence>
 <xs:choice>
 <xs:element name="new-customer" type="NewCustomer" />
 <xs:element name="reg-customer" type="RegCustomer" />
 </xs:choice>
 <xs:element name="delivery-address" type="DeliveryAddress" />
 <xs:element name="bill-address" type="BillAddress" />
 <xs:element name="item-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="item" type="Item" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="NewCustomer">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="email" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="RegCustomer">
 <xs:attribute name="customer-no" type="xs:string" use="required" />
 </xs:complexType>

 <xs:complexType name="DeliveryAddress">
 <xs:sequence>
 <xs:group ref="DeliveryAddress-c" />
 </xs:sequence>
 </xs:complexType>

 <xs:group name="DeliveryAddress-c">
 <xs:sequence>
 <xs:element name="street" type="xs:string" />
 <xs:element name="postcode" type="xs:string" />
 <xs:element name="city" type="xs:string" />
 </xs:sequence>
 </xs:group>

 <xs:complexType name="BillAddress">
 <xs:sequence>
 <xs:group ref="DeliveryAddress-c" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Item">
 <xs:sequence>
 <xs:element name="amount" type="xs:int" />

 49

 <xs:group ref="Product-c" />
 </xs:sequence>
 <xs:attributeGroup ref="Product-a" />
 </xs:complexType>

 <xs:group name="Product-c">
 <xs:sequence>
 <xs:element name="title" type="xs:string" />
 </xs:sequence>
 </xs:group>
 <xs:attributeGroup name="Product-a">
 <xs:attribute name="code" type="xs:string" use="required" />
 </xs:attributeGroup>

</xs:schema>

Purchase Response Format generated XML schema:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="http//www.example.org/"
 targetNamespace="http//www.example.org/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="purchase-response" type="Purchase" />

 <xs:complexType name="Purchase">
 <xs:sequence>
 <xs:element name="item-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="item" type="Item" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="Customer-a" />
 </xs:complexType>

 <xs:attributeGroup name="Customer-a">
 <xs:attribute name="customer-no" type="xs:string" use="required" />
 </xs:attributeGroup>

 <xs:complexType name="Item">
 <xs:sequence>
 <xs:element name="amount" type="xs:int" />
 <xs:element name="unit-price" type="xs:decimal" />
 </xs:sequence>
 <xs:attribute name="availability" type="xs:boolean" use="required" />
 <xs:attributeGroup ref="Product-a" />
 </xs:complexType>

 <xs:attributeGroup name="Product-a">
 <xs:attribute name="code" type="xs:string" use="required" />
 </xs:attributeGroup>

</xs:schema>

 50

Sales Report XML Format. Figure 8 depicts a PSM diagram modeling an XML format for
product managers viewing sales reports. It represents purchases grouped by regions, they are
billed to, and products sold. The formal semantics of the grouping is described by nesting
joins viewed by the tool in the Properties window. Informally, the association going from
Region to Product models that each region contains a list of products ordered from that
region. The association going from Product to Purchase models that each product contains a
list of purchase orders from that region and purchasing the product.

Figure 8

Sales Report generated XML schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="http//www.example.org/"
 targetNamespace="http//www.example.org/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="sales-report" type="Region" />

 <xs:complexType name="Region">
 <xs:sequence>
 <xs:element name="region" type="xs:string" />
 <xs:element name="product" type="Product" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Product">
 <xs:sequence>
 <xs:element name="title" type="xs:string" />

 51

 <xs:element name="unit-price" type="xs:decimal" />
 <xs:element name="purchase" type="Purchase" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="code" type="xs:string" use="required" />
 </xs:complexType>

 <xs:complexType name="Purchase">
 <xs:sequence>
 <xs:element name="expedition-date" type="xs:date" />
 <xs:group ref="Customer-c" />
 </xs:sequence>
 <xs:attribute name="purchase-no" type="xs:string" use="required" />
 <xs:attributeGroup ref="Customer-a" />
 </xs:complexType>

 <xs:group name="Customer-c">
 <xs:sequence>
 <xs:element name="customer-name" type="xs:string" />
 </xs:sequence>
 </xs:group>
 <xs:attributeGroup name="Customer-a">
 <xs:attribute name="customer-no" type="xs:string" use="required" />
 </xs:attributeGroup>

</xs:schema>

 52

Transport Detail XML format. Figure 9 depicts a PSM diagram modeling an XML format
for detailed information about transport source and target destinations. It demonstrates how
PIM classes and their specializations can be represented in PSM diagrams. Each transport
goes from a stock to a destination which is a stock or customer. Therefore, there is PSM class
Destination with two specializations DstStock and Customer. Destination models that for each
destination there is an address and region. DstStock extends this representation of destination
with stock number and capacity (since it is a structural representative of SrcStock). Customer
extends it with customer number and name. Moreover, Destination is abstract. It means that
instances of Destination can not be represented in the modeled XML format. Only instances
of the specializations can be represented since they are not abstract. Each stock is represented
as an XML element to-stock while each customer as an XML element to-customer.

Figure 9

Transport Detail Format generated XML schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="http://kocour.ms.mff.cuni.cz/xcase/company/"
 targetNamespace="http://kocour.ms.mff.cuni.cz/xcase/company/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="transport-detail" type="Transport" />

 <xs:complexType name="Transport">
 <xs:sequence>
 <xs:element name="from" type="SrcStock" />
 <xs:choice>
 <xs:element name="to-stock" type="DstStock" />
 <xs:element name="to-customer" type="Customer" />
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="code" type="xs:string" use="required" />
 </xs:complexType>

 53

 <xs:complexType name="SrcStock">
 <xs:sequence>
 <xs:group ref="SrcStock-c" />
 </xs:sequence>
 <xs:attributeGroup ref="SrcStock-a" />
 </xs:complexType>

 <xs:group name="SrcStock-c">
 <xs:sequence>
 <xs:element name="capacity" type="xs:int" />
 </xs:sequence>
 </xs:group>
 <xs:attributeGroup name="SrcStock-a">
 <xs:attribute name="stock-no" type="xs:string" use="required" />
 </xs:attributeGroup>

 <xs:group name="Destination-c">
 <xs:sequence>
 <xs:group ref="Address-c" />
 </xs:sequence>
 </xs:group>

 <xs:group name="Address-c">
 <xs:sequence>
 <xs:element name="street" type="xs:string" />
 <xs:element name="postcode" type="xs:string" />
 <xs:element name="city" type="xs:string" />
 </xs:sequence>
 </xs:group>

 <xs:complexType name="DstStock">
 <xs:sequence>
 <xs:group ref="Destination-c" />
 <xs:group ref="SrcStock-c" />
 </xs:sequence>
 <xs:attributeGroup ref="SrcStock-a" />
 </xs:complexType>

 <xs:complexType name="Customer">
 <xs:sequence>
 <xs:group ref="Destination-c" />
 <xs:element name="name" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="customer-no" type="xs:string" use="required" />
 </xs:complexType>

</xs:schema>

 54

References

1] M. Necasky: Conceptual Modeling for XML. Ph.D. thesis.
 Faculty of Mathematics and Physics, Charles University, Prague. May 2008.
 http://www.necasky.net/thesis.pdf

2] J. Miller, J. Mukerji. MDA Guide Version 1.0.1. OMG.

3] W3C, XML Schema Part 0: Primer Second Edition, October 2004,
 http://www.w3.org/TR/xmlschema-0/

4] Unified Modeling Language (UML), Superstructure, V2.1.2. OMG.

 http://www.omg.org/docs/formal/07-11-02.pdf

5] Unified Modeling Language (UML), Infrastructure, V2.1.2. OMG.
 http://www.omg.org/docs/formal/07-11-04.pdf

 55

http://www.necasky.net/thesis.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omg.org/docs/formal/07-11-04.pdf

 56

XCase CD Contents

• XCase Installer in the root folder
• User's and Programmer's Documentation in the doc folder
• Source code in the src folder
• Documentation generated from the source code in the gendoc folder

XCase Folder Contents (after installation)

• XCase
• Examples in the Examples folder
• User's and Programmer's Documentation in the Documentation folder

	User’s Guide
	1. Introduction
	2. XCase Installation
	4. PIM Diagrams
	5. Packages
	6. PIM Classes
	7. PIM Connections
	11. Comments
	13. Sample Diagrams
	XCase CD Contents
	XCase Folder Contents (after installation)

