NLEHSE

Programmer’s
Guide

Table of Contents

1 XCase OVErVIEW - IMIVC......ciiiiieeueiiiiiiiiieiiscis i rerssseesss s e s ssaassss s s s s s e e s saas e s s s s s e ssnnnsssns 5
1.1 EXample: RENAME @ ClaSS...uuuiiiiiiiiiiiiiiee ettt e e e et ee e e e e e erbraee e e e e s e e anasnraeeeeaeeeennranneens 5
2 1Y T L= N 6
21 INEFOAUCTION .ttt ss e st st st st et e emeeeneees 6
2.2 Two levels of @bSTractionc.oociiiiiiie s 7
2.3 The MOl INTEITACE .. .ei ittt et st e e e 7
2.4 The top-1eVel hIEIrarChYuueeeee e e e e e nnra e e as 8
P 3 R =3 [T o 1= o | PSPPSR 8
2.4.2 NAMEAEIEMENT ...ttt st e s e s ene e e e sabeesneeesaneesaneean 9
DA S B Y7o 1= 1= o 0= o USSR 9
2.5 SPECIAI INTEITACES ... e st e e e et e e s e abae e e e nrteeeenaneeas 9
2.6 PIM CONSTIUCES c..evviiiiiiiici ittt sre s s saba e s sarae e s sanes 9
2.6.1 Class & PIM ClaSsceiuieiieeeiiiiesiee ettt sttt et sb e s be e e sne e e sareesbe s e e smreesareeesnneesans 10
2.6.2 Stereotypes — definition and USAZEccccuiieiiiiiiie it 11
2.7 PSIM CONSTIUCES c.eeviiiiiiiiii ittt et e s sba e s sara e 13
2.7.1 PSMEIBMENT .ottt ettt ettt e b e bt e sbee e ebeesaeesaeesanesane e 13
2.7.2 PSMSuUperordinate@ComPONENT......ccccuiieieciieececiteeeciee e erre e e e sbre e e e saree e e s aaee e e s beeaeeeeeases 13
2.7.3 PSMSubordinateComPoNnENTt........ccccciiiiiiiiiee e crtee et eerre e e ree e e s aree e et e e e e 13
2.7.4 PSMASSOCIAtiONChIldcccueiiiiieiiie e s 13
2.7.5 THESPSIMALIIDULES. ... teieiiieeiee ettt ettt e s e e smre e snee e saneesans 14
2.7.6 PSM Class & PSM Structural representative.........cccccvvieeee e 14
2.7.7 PSM ATEIDULE ..ottt st s 15
2.7.8 PSM Attribute CONLAINET ..coueiiiieieeeeeeee sttt st st s st 15
2.7.9 PSM Content Choice / CONtENT CONTAINET ...euiiiiiieeeeeeeeeeeeeeeeeeeeee e e e e e eeeeeeeeeeeseeesaneeereees 15
2.7.10 PSIM ASSOCIATION ...eeiiiiieeeieee ettt s s e s e s e s nnn e e s nneeeean 15
2.7.11 PSIM ClaSS UNION ...ttt ettt ettt et st esabeesabe e e e smeeesareesaneeas 15
2.7.12 NESTING JOIN ittt e et e e e e e e e e e e eeeeeeeeeeeeeeesesrsseseaeseseseaaaaes 15
2.8 XM S B BOTYPES i 15
2.9 Linking between the PIM and PSIM [EVEISccoccuuiiiiiiiiiieciiee ettt se e 16
2.10 How to add a new construct to the model.........coocii i 17
2.11 Mapping of the model to the UML CONSTIUCESceeeiuiiiriiiiiiiieiieeciee e 17
3 XCase drawing frameWorkK.....cccccciiieiiiiiimiiiiiiiiiiiiieiieiieseiesesiesssesassees 19
3.1 Canvas CONLIOl = XCaSECANVAS....ccuteiueerieriienireeiteesreesteesteesteesiee st st st st et et e e b e b e nreennees 20

3.2 (0] o] 1= ot £ USSR 22

0t R 0 T - =3 N o U T 0] « TSRSt 22
3.2.2 RESIZETRUMD ..ot et e e sr e s nee e 23
3.2.3 IConnectable, ConnectableDragThumb.........cccccuviiiiiiiiiiicee e 24
3.2.4 Templates Of l@MENTScocuiiiiiee e 24
33 LINES 1ttt sera e 25
3.3.1 XCASEJUNCHION ettt e 25
3.3.2 XCasePrimitiVeJUNCHION ...t 26
Representing elements of diagBrams........coiieeciiiiieeiiiiiiniiniiniiissesessesens 27

4.1 D (O T=1 6= 0 V- [P O PP OPPRTPPPRRN 27
4.2 REPreSENtiNg EIEMENTS ...cciiiiie e e e et e e e et b e e e e sataeeeenraeaean 28
4.2.1 Sequence of actions performed when new element is added into a diagram 28
4.3 Binding Model properties t0 VIEWc.uviiiciiiiie ittt ettt e e v e e s s e e s saaee s 29
L= I 1 o T 31

5.1 (6 EY=Te I\ F={o] 14 Vo o TP SRR 31
5.1.1 LayouUting Of @ FOI@St .. .uuuiiiiiiii ettt ettt e e e e e e rterre e e e e e e e s anreaaeeeaeeennnnns 31
5.1.2 Layouting 0f @ SINGIE TrE.....ueii ittt e et e e s eaee e e 31
5.2 TrEELAYOUL ClASS ..uvviiiiiiiie et e ctee ettt e e ettt e e et e e e ettt e e e s ataee e e ataeeeentaeeseeansaeeesasseeesnraeennn 31
000311 o =T 32

6.1 ElemMENt CONTIOIIEIS ...ttt e s st e e sne e e sre e sanee e 32
L0t S R =Y Y o (SRR SURPOt 32
6.2 CoMMANACONTIOIEIS ...ttt et e s eree s emee e sareesanee s 32
6.2.1 Diagram CONIOIIET et e e e e e e e e e e e e e e e naraaee e e e e e nnnns 32
6.2.2 MOAEI CONTIOIET ..ttt e b e e enee e sabeesnee e e 32
6.2.3 VIEW CONTIOIET ..ttt st st e ne s 32
6.3 (60e] 1910 F=T oo L3 USRS P PR P O UPRRUSRRPRRPR 32
65.3.1 COMMANAS OVEIVIEW ...ttt ettt ettt ettt et st st st sttt et e sbeebeesneenreen 32
6.4 COMMANG STACKS ..eitrieeee ettt e e eeet e e e e e eeeabbe e e e e e eeessatseeeaaeeeeeesenssrereeesennns 33
6.5 More COMPIEX COMMANGSuviiieiiiieeiiieee et e et e e e srr e e e sre e e estreeeesabaeeeeaseee e sansreeesnnsaeeans 33
6.6 HOW-TO create @ COmMMANGc..coiiiriiiiiiiieee sttt ettt sree s sae e s eaeeeneeas 34
6.7 CoOMMAN FACEOMIES ...eiieiieiiee ettt ee e e s enee e st e sanee s 35
R Y=] N 36
(CTUTIRN 0 ToTol (T T={]+ T - T o P 37

8.1 B ToYol 4/ =T === SRR 37
.11 PaAN@ i e 37

S A |V Yo F- =0T [oY =T o | PSSR 38

8.2 Changes to Original Library ...t e e e erre e e e e s e e e e s ernraeeeaeeeas 38

9 GUI = WINAOWS ...oiiiiiiieiiiiiiiiiiiiiisins st rsseaessss s s s s saassssse s s s s s e s snasssssssssenennns 39
9.1 MAIN WINOW <.ttt ettt ite e st e s bt e e s et e e sabeesabeeeamebeesabeeeneeesareesneeenns 39
9.1.1 Docking & Managing DIagramsccccueeeiiiiieeieiieeeeseee e eeire e e etee e e sree e s e setee e e s neaeeeeenaees 39
9.1.2 MAIN TOOIDAN ceieieeee e st e s b e s enee e sareesree e 39

9.2 NAVIZAtOr WINGOW ...ceieiiiiiiiiiei ettt e e e e e e earre e e e e e e e st eteeeeaeeeeeeeesnseaseaaassennsnns 39
9.2.1 Model AdMINIStratioN......cc.eeiiiiiiiieiiie ettt st e s e sbe e s e sneeesreeesneee e 39
9.2.2 Interaction with Other WindOWS.........ccouiiiiiiiiieiiienee e 39

9.3 o [=Tot ATV T o [o YA U 40
0.3.1 OVBIVIBW ittt ettt e st e s sttt e s s e e e s e e s s n et e e s e ne e e e e e re e e e s anree e e nenes 40
9.3.2 Interaction with Other WindOWS........cccueiiiiiiiiiiiieiereeeene e 40

9.4 e o1 o A LTV VT oo [1Y U 40
10 Storing and loading of XCase Projectscccceeeeeeireeeciiirnnrcererenseereennsereenssseseennssssennssssnens 42
O I Y T 1 [) o] PP PS U OTTOPRP 42
10.1.1 SerializZation OFOEroi ittt s sre e e snee e 43
10.1.2 oY .01 o [P 44

10.2 XML DESEIIAliZator ...cc.ueeeeeieeiieieeteet ettt sttt 45
10.2.1 RESTOrAtioN OFAEr ..ccoueeiiiiieiie ettt ettt st e esre e s e smee e sareeenee s 45

0T T €1 0] Ao Tor=1 o U1 =Y YU 46
11 Translation of PSM diagrams into XIMIL schemas........ccccceiiiiiiniinininiinieniinieeeen. 47
11.1 Description of PSM di@gramccoc ittt e e e e e trree e e e e e e et nrra e e e e e e e ernnnns 47
11.2 Translation iNfrastrUCtUreooovee it 49
11.3 Part 3 Translation to XML Schema [anNgUAgEcccuevieeiiiiiicieee et 50
11.3.1 Basic translation PrinCiples......uu i 51
11.3.2 Translation of attributes and coONteNtc.ccooiiiiiiiiiiienee e 52
11.3.3 Translation of structural representatives.........ccceeveeeeccciieee e 56
11.34 Translations of generalizationsccoeii oo 59
11.3.5 Translation of SIMPIE tYPES ..eveeeeiiiie it raaee s 61

11.4 Limitations of XML Schema translationcccoouieiiriieiieiieeeeeesee e 62
11.4.1 IMIXEA CONEENT ...ttt sb e st s e smeesmeeeaeeenneeas 62
11.4.2 Attributes under choice CONSIUCTIONS.cc.eeiueeiiiriieieeeeeee e 63
11.4.3 Specialized classes without element labels...........ccouvveiriiiiiiiiei e, 65
1144 Non-deterministic diagrams.......coiiiiiie e re e e e e e 68
11.45 NOt PACKAZE-AWAIE ...t re e e e e e e e arreeeeaeeean 69
11.4.6 Multiplicity of attributes is discardedcccvviieeeeiccce e 69
REFEIENCES ... 70

1 XCase overview - MVC

XCase is based dviodel-View-Controller (MVC) architecture.

Model stores all the data managed by XCase and raisegsewen the data is
changed (which can be done only through Controbetsading data from a file)
View binds to Model's events and displays the curreatesh GUI. This binding is
unilateral; View cannot directly access/changentioglel.

Controllers provide methods for changing the model, which lsaused by view and
GUI (when processing user input), but doesn't ceahg View directly.

1.1 Example: Rename a Class

User clicks on thd&Renamecontext menu item of a Class, types in a new nante a
presses Enter

View checks whether the new name is different fittwm old one. If it is, it replaces
the new name with the old one (because the new mélhbe set here in a different
way and we want to see if everything works OK)

View calls the Controller with the rename request

Controller creates a Rename command, initializestit the Model class and executes
it

The Rename command sets t@meproperty of the Model class and stores the old
name for Undo

The Model class detects the change to Name property and invokes the
PropertyChangeevent

The View representation of this class receives @ohate via Binding and updates the
text box containing the class name.

2 Model

2.1 Introduction

This component is responsible for storing the seitswof the modeled data. It does not hold
any information for a particular visualization detmodel. But to support binding of the view,
it defines a set of so-callediew helpersthat contain the basic data needed for any
visualization (coordinates or dimensions). Therd @ a more detailed description of the
view helpers later in the text.

The main purpose of the model is to provide an-¢asyse implementation of the UML and
XSem models to the higher levels of the softwaspdeially view and controller). The UML
model constructs are restricted to those needetdfdl class diagrams and even there we
omitted some structures. The UML model is very gaih@nd XCase does not need more than
a rather small specialized part of it. Thereforeg wid not implement too general
constructions as for example Classifier or Redéliglalement. The XSem model will be
described in details later in this text but in thiace let's say that it is entirely represented in
the UML language by use of the UML classes andestgpes.

As the base of our implementation of the UML modeltook an existing open-source library
called nUML [1] written by Rodolfo Campero. The nUML librarg ia nearly complete
implementation of the UML 2.0 specification and gags import / export from / to XMl
language which is a standard format for metadathange between different software tools.
Despite this, it is still just a bunch of classeshaut any automatic ownership or objects
relations management. Thus, we created a compétefsadapter classes that enrich the
library objects by the mentioned relations manageraad several other capabilities that will
be described in the following sections.

The whole Model component is divided into two panablic interfaces and internal
implementation classes. The interfaces use muliimpleritance, since UML also makes use of
it in its definition. Internal classes are not bisi to other layers. They implement the public
interfaces and sometimes extend it by other metlamds properties needed mostly for the
automatic relations management and for the expositf the adapted nUML element. The
name of the implementation class is the same asdire of the interface but is preceded by
an underscore (e.@lass-> _Clasy.

To support binding with other layers all model domsts implements the

INotifyPropertyChanged interface and so raise RropertyChangedevent whenever any
property has changed. Also all the collections e tmodel are instances of the
ObservableCollectionclass defined in th8ystem.Collections.ObjectModehamespace that
raises &ollectionChangecavent on every interesting collection action (Ademove / move

/ replace item).

2.2 Two levels of abstraction

When dealing with the model, probably the most [@wiatic part is to clearly distinguish
between the metamodel and model levels. Every defssed in the Model library is a part of
the metamodel and their instances participate gjoesent the user model. This distinction is
very important especially when working with stegguas and the type system.

A Stereotypeis a metaclass describing any stereotype thecasecreate (or we have created
for representing XSem). It defines collections d@scribing attributes of the stereotype and
so on. An instance of this class is one concreteestype. The collections are filled with the
Property instances defining the real attributes that tleeesitype have, its name is set etc. So
far, it was easy. When we want to apply a stereotypa concrete model element a new
metaclass comes to the scen&tereotypelnstance It is a distinct interface describing any
applied stereotype. It has an attribute of typeereotype referencing the instantiated
stereotype (an instance of tBeereotypeclass) and defines a collection for storing thieies

of the attributes of the stereotype. Its instanescdbes one concrete instance of a given
stereotype. The collection is filled with the instas ofInstantiatedProperty class that
specifies the concrete values of the stereotypibates.

An analogue situation is in the type system. leasy to yield to the temptation to use the
types existing only in the metamodel with the mod#libutes et versa. ThBataType
interface is a common base class to all the datastysed in the model. TReoperty.Type
attribute has th®ataType reference type. And the concrete type &fraperty instance is an
instance of thé®ataType class. Thus, for example, if you want to modehgribute that can
reference any construct in the user model, you alagiwe it theElement type, since it is a
metamodel type. Instead you have to define a nassdhherited fronbataType called for
exampleObject (or Elementif you want) and set th&ype reference of the modeled attribute
to its instance.Note: We have already created a primitive type catibpbct intended for this
purpose, but it was a good example).

2.3 The model interface

To use the model classes you need to create &t leas
= one instance of theéschema class. This object

Class represents the whole modeled domain including the
platform-specific models. New Schema is created

with an emptyModel instance called “User model”

O IMctifyPropertyChanged

»

+ Fields

= Properties

R Model: Model that is used for the user data and another prfille
= PrimitiveTypes : ObservableCollection <SimpleDataType> Model instance with the name “UML” containing
B e s ecalecton<Profle the UML metaclasses to be used for stereotypes
SMespace ! Stlll"lg
= pE— (described in more details later in the text).
% AddPrimitiveType() : SimpleDataType The UML mOdel |S protected but |S Insel’ted as a
b e sociaton default metamodel reference to each new profile.
L CreateAsscciaticﬁﬁlass[):Asscciaticnilass The SChema methOdS are the Only Way to Create
@ ExportToXMIFile() : void new associations, generalizations and association
% FindByQualifiedMame() : NamedElement
® SetGeneralization() : Generalization classes in the user model. Also it is the unique
¢ Schema() owner of all the profiles since they are not a ért
e the user model.

PropertyChanged : PropertyChangedEventHandler

New schema is created without any profiles or
primitive types but XCase uses a project template

file to initiate these collections by the XSem @efand the primitive types used in xml
modeling.

2.4 The top-level hierarchy

O _ImplElement

3|

| Element | _Element<NUmiType=
Interface Generic Abstract Class
-+ INotifyPropertyChangad r
- - Fields
= Properties ‘Ep i
i = Properties

ﬁ" AppliedStereotypes : ObservabieCollection< Sterestypeinstance» =
2 AdaptedElement : Element

= Adaptee: NUmlType
= AppliedSterectypes : ChservableCollection <Sterectypelnstances

'ﬁ‘ Comments : ObservableCollection< Comment >
ﬁi Schema : Schema
ﬁ“ LML Metaciass - StereotypeTarget

= Methods

@ AddComment(} : Comment (+ 1 overload)

2 Comments : ObservableCollection <Comment>
ﬁ: Schema : Schema
i UMLMetaclass SterectypeTarget
| & Methods
% _Element()
W AddComment() : Comment [+ 1 overload)
% PutMeBackToModel() : void
% RemoveMeFromMedel() : void

g PutMeBackToModel]) : void

W RemoveMeFromModel() : void

= Events
| MamedElement :3. # PropertyChanged : PropertyChangedEventHandler
Interface s 7
—+ Element

-+ IXm|Serialimble) NamedElement

| _NamedElement=NUmiTypes =]
e . Generic Abstract Class

B Name: string =+ _Element<NUmIType>

ﬁ‘ QualifiedName : string i r H

ﬁa Visibility VisibilityKind .
= Methods

Y GetChildByQualifiedName() : NamedElement |

= Properties

= Properties
B Name: string
= QualifiedMame : string
B Visibility : VisibilityKind

= Methods
9 _MamedElement()
(TypedHement @) V GetChildByQualifiedMame() : MamedElement
Interface % (GetSchema() : XmlSchema
=+ NamedElement % ReadXml() : void
@ ToString() : string
& Properties % WriteXml() : void
B mperpatatype J| 0000 M
@] TypedEIemenf

! _TypedElement=NUmiType> (%
Generic Abstract Class
-+ _MNamedElement<MNUmTypes

 Fields
= Properties
= Type: DataType
& Methods
% _TypedElement()

Figure 1 Top-level hierarchy : Interface & Implementation

2.4.1 Element
The topmost interface in the model object hieraisitheElementand all the used UML and
XSem constructs inherit directly or indirectly frothis interface. It corresponds to the
Element construct described in the UML specification butsi enriched by several new
properties. One is th&ppliedStereotypesollection that presents an effective way to faid
the stereotypes applied to this particular elemEhnis is not possible in the pure UML where
the stereotypes have to be found by traversingxitensions instances present in the model.

The second one is the pair RémoveMeFromModélPutMeBackToModemethods that are
responsible for correct removal of the element frilvd model and its return to the model
when user undoes the operation that removed itth@ncontrary theODwnedElementand
Owner attributes defined in UML are not exposed since ¢hvnership of the elements is
solved type-safely between the classes that areecoad.

The implementation class is calledElement and extends th&lement interface by the
Adapteeproperty exposing the adapted nUML element. Thasscis generic and the type
parameter is the adapted nUML element type. The-sgiety of this property is ensured by
the type constraints construction of the C# languag

2.4.2 NamedElement

A direct child of theElement interface is théNamedElementinterface. It is a common base
interface of all the constructs that have a narmextends thdelement by three properties:
Name representing a name of the model element reldaiivets namespace (package).
QualifiedNamerepresenting a name including all the names ohtraespaces (packages) on
the path from the owner package to the root of tiuelel. The last property igisibility
defining the access rights to the element. Thefate also provides a method to search for a
subordinate element by its qualified name.

NamedElementinherits also from th&ystem.Xml.Serialization.IXmlSerializableinterface

to support the serialization / deserializationre thodel to an xml file.

2.4.3 TypedElement

The last interface described in this section isTiipedElement It is a named element that
has a type. The type is an instance Dia#gaType interface as described in the chapter 2.2.

2.5 Special interfaces

There is a set of 5 special interfaces definedhm model to ease the use of the model
components:

* |AssociationSource— Identifies an element that can be a source oasmociation
(i.e. an association can start in this element)

* |AssociationTarget — Idenitifies an element that can be a targetrofagsociation
(i.e. an association can end in this element)

* [HasAttributes — Identifies an element that can contain attrisuEroperty
instances)

» It defines an attributes collection and the methodsdding a new attribute

» IHasOperations — Identifies an element that can contain operati@peration

instances)
» It defines an operations collection and the mettiodadding a new operation
e |HasPSMAttributes — Identifies an element that can contain PSM lattas

(PSMAttribute instances)
» It defines a PSM attributes collection and the rod#hfor adding a new attribute

2.6 PIM Constructs

The Platform Independent Model is realized by anlUsllass diagram model. Therefore,
most of the PIM constructs have direct equivaleémtdhe UML specification. Therefore, we

will describe only the most important ones. Somehaim are extended by new properties
mostly to support linking between the PIM and dedi\PSM constructs. There is a dedicated
section describing them.

No component can be created on its own withoutvaneo. When a new project is created,
automatically twoModel instances are created. One is empty and is intefatethe user
model and the second, invisible to the user, coatthe definition of UML metaclasses that
can be extended by the stereotypes. There is alsqfile created containing the XSem
stereotypes definitions. Any new user component lsancreated uniquely by calling an
appropriateAdd method on the existing model element that willtaomit. For example, to
add a new class into the model you have to us@da€lassmethod on an existing package
that will contain the new class.

Each component has a reference to its owner thsgtiautomatically when the component is
inserted to the owner’s collection. This referersceead-only for other layers of the software.

2.6.1 Class & PIM Class

]

[Class
Interface

=+ DataType

= IHasAttributes

=+ IHasOperatiors

¥ [AssaciationSoune
=b IAssociationTangst

= Properties

AllAssociations : List= Association>

AllAttributes : List< Property >

Assocations : ObservableCollection= Association >
Generalizations : ObservableCollection< Generalization >
[sAbstract : bool

MeAndAncestars ; List< Class=

Specifications ; ObservabieCollection< Generalization>
= Methods

W GetPathToAncestor() : List< Generglization>

¥

[PIMClass
Interface
—+ Class

=l Properties
ﬁ} DerivedPSMClgsses : ObsenvableCollaction< PAMClass»
= Methods
W DerivePSMClass() : PSMClass

Figure 2 - Class & PIM Class

The Class interface corresponds to the UML Class structiires a data type that can have
attributes, operations and can participate in #s®eiations. The original construct is enriched
by the following properties

* MeAndAncestors- Collection containing this class and all its estors (classes that
this class inherits directly or indirectly from)
» Associations- Contains all the associations that include ¢lass

10

» AllAssociations— Contains the content of the Associations cathectand of the
Associations collections of all the ancestors.

» AllAttributes— Contains the content of the attributes collectb this class and of all
the ancestors of this class.

» Generalizations/ Specifications— Present an effective way to identify all the
generalizations that go to or from this class.

All the collections concerning the inheritance angual and their content is built on each
access, so frequent reading of this property camtren a loss of performance.

The PIM class is a simple extension of the UML slaowing the user to create a new PSM
class representing this one and track all the Plabtes that were derived from this class. The
content of theDerivedPSMClasses managed automatically. When a derived PSM dkass
correctly removed from the model (MRemoveMeFromModehll) it removes a reference to
itself from this collection and puts it back if tRetMeBackToModehethod is called.

2.6.2 Stereotypes - definition and usage

) INotifyPropertyChanged

bl
»

(InstantiatedProperty [ValueS pecification
Interface Class
—+ Element r
* Fields
=l Properties .
f MName : string P‘rﬂopemes
B Value ! ValueSpecification 1 AdaptedElement : ValueSpecification
B BooleanValue : bool
' ElementValue : Element
P . iy IntegerValue : int
| 7 -
Stereotypelnstance 2 = IsComputable : bool
Interface o
-+ MamedElement ﬁ: ISN_UH + boal .
' StringValue: string
' UnlimitedMaturalValue : UnlimitedMatural

= Properties
i&? Attributes : ReadCnlyCollection= InstantiatedProperty =
ﬁ:' Stereotype : Stereotype

o ValueType : ValueTypes
= Methods

% ToStringl) : string
¥ ValueSpecification() (+ 4 overloads)

= Bvents

»

| Stereotype
Interface # PropertyChanged : PropertyChangedEventHandler
=+ Class =l Mested Types
- P‘rﬂoper‘cles ValueTypes ES
3 AppiissTo : ObservableCollection< string > Enum
= Methods
Stri
W ApplyTo() : Stereotypeinstance nng
Element
Integer
Boolean
UnlimitedMatural

Figure 3 - Stereotypes - most important structures

Stereotypes are special kinds of classes definovg dn existing metaclass can be extended.
Therefore, an instance of a stereotype is alwdgseck to an instance of its related metaclass
(or metaclasses since stereotypes can be somedppéed to more than one element types).
Since the stereotypes are special classes, theglsoestored in a special type of package
called a profile. However, the profiles are vemisar to standard packages except that they

11

can reference one or more metamodels. A metamsd@esiandard UML model that contains
standard UML classes. But the names of the class®sspond to the metaclasses existing in
the used model.

To make it more clear we take an example of the Ufuihdel. It contains many familiar
metaclasses: Class, Association, Property, etc. XBem profile in XCase that contains
definition of the stereotypes used to representnXSeuctures references an instance of the
Model interface that has the name “UML” and containdanses of theClass interface
having the Name attribute set to “Class”, “Association”, “Propétty etc.
When we apply a stereotype to some model elemengxtend its definition by the attributes
of the stereotype. Before continuing, let's lookatoexample of the stereotype usage:

In XCase PSM classes of the XSem model are repessa@s standard UML classes having
the XSem.PSMClassstereotype. Note that both the PSM class and thi dlass are
metaclasses and user is working with their instandé&e definition of the UML class is
described in the previous section, tHSMClass stereotype contains attributes as
RepresentedClas®ferencing the PIM class that is represented bgracrete PSM class or
Componentgollection that contains all the PSM componentsostinate to the PSM class.
The PSMClass stereotype can be applied to the instances olUtWi& class which is (in
UML) represented by an instance of thetension metaclass that relates the stereotype and a
class in the UML metamodel corresponding to the URlass. Thus, factually a new
metaclass (let’s call it a PSM Class) is created titegrates the definition of both the UML
class and th®SMClassstereotype. When the stereotype is applied toxatimg UML class
instance, its definition is extended and correspatodthe PSM Class metaclass. Thus, the
user gains access to all the attributes definetheyPSMClassstereotype and can see / set
their values.

Now from the programmer’s point of view. The steéypes are described by the instances of
the Stereotype interface. As you can see on the figure abovenherits from theClass
interface. Thus, its definition is the same as deénition of a standard UML class. It is
extended by a collection calléppliesTothat contains the names of all the metaclassés tha
can be extended by this stereotype. The collectorains strings instead of the references to
the concrete metaclasses to support the visuaizatnd the serializator that does not serialize
the UML metamodel. When a reference is needed &lsday the metaclass name is
performed in the metamodels referenced by the owngfile. The extensions mechanism
mentioned in the previous paragraph is hidden ftbenother layers of the project and is
represented only inside the nUML library.

The Stereotypdnterface also defines a method calkspplyTothat takes a reference to an
existing element instance. When this method isdall first checks if the element metaclass
can be extended by this stereotype and if yes ainstance of the&Stereotypelnstanceis
created and inserted to the elemAppliedStereotypesollection. This is analogous to the
object oriented programming. You have a classdbatribes generally the attributes of some
entity and you instantiate it to create an objbet represents one concrete instance of the
entity. TheStereotypenstance is a description of the attributes ofdtezeotype. For example
in case of thexSem.PSMStereotypeyou know that this stereotype has an attributéedal
RepresentedClasand its type is a reference td®?BMClass instance. But to have a reference
to a concrete PIM class you have to instantiate stexeotype and this is what the
Stereotypelnstances for.

12

The Stereotypelnstanceinstance contains instances of thetantiatedProperty interface
that defines the value of the attribute. A valuerépresented by an instance of the
ValueSpecificationinterface.

If you want to create your own stereotype, prodaethe following scheme:

« Create a new profile or use an existing one. Ra®fiare accessible via the
SchemaProfilescollection, to create a new one catthemaAddProfile.

» Create a new Stereotype by calling Brefile.AddStereotypaethod.

» Set the name of the stereotype and define its bates by calling
StereotypeAddAttribute method and setting the attributes of the cred&saperty
instances appropriately.

» Add the names of the metaclasses that can be @ddndthe new stereotype to its
AppliesTocollection (all the extensions are created auttaidy)

» After that you can simply apply the stereotype gsisa ApplyTomethod

2.7 PSM Constructs

In this section we list the structures defined e XSem model used in XCase for the
Platform-specific model and some important auxfiaonstructs. In contrast to the PIM
structures that can be a part of multiple diagrdmas exist only once in the model, the
existence of every PSM component is connectedae@xistence of the diagram that it is part
of. And no PSM component can be drawn on more ¢imendiagram.

2.7.1 PSMElement
PSMElementinterface is the base interface of all the PSM ponents. It is inherited from
theNamedElementinterface and extends it by tBéagram property that references the PSM
diagram that the component is part of.

2.7.2 PSMSuperordinateComponent
This is a common base interface of PSM componéatscan contain other PSM components.
It defines aComponentgollection that is an ordered list of the suboatenPSM components
and a method calledddComponentvhich adds a new component to the end (or to the
specified position) in the components. This metlaadepts a reference to a factory that
creates instances of the concrie&VSubordinateComponentinterface child.

2.7.3 PSMSubordinateComponent
This is a common base interface of PSM componemi$ ¢tan make a part of some
superordinate component content (components caligctNote that a PSM component can
be both superordinate and subordinate at the sianee This is a case of for example PSM
content choice structure that can exist only indbietent of some other PSM component but
contains other PSM components on its own.

2.7.4 PSMAssociationChild
This is a common base interface of PSM compondrasdan appear at the child end of a
PSM association.

13

2.7.5 IHasPSMAttributes
This is a common interface of PSM components thateantain PSM attributes. Beside the
PSMAttributescollection and the methods to add new attributedefines a property called
RepresentedClaghat references the PIM class containing thebaiteis that are represented
by the owned PSM attributes.

2.7.6 PSM Class & PSM Structural representative

>

[PSMClass
Interface

—+ Class

=+ PSMSuperordinateComponent
= PSMAssociationChild

= IHasPSMAtEribukes

= Properties
ﬁu AllPSMALTributes : List< PSMALtribute>
ff" ElementName ! string
'_“F‘ HasElementlabel | bool
ﬁ:' ReprasentegClassMNarme @ string
ff" RepresenteaClassRepresentants : ObservableCollection< PSMClass>
ﬁ“ RepresentedPsMCiass : PSMClass

Figure 4 - PSM Class definition

The PSM class inherits from th@lass interface. Thus, it has all the functionality dfet
standard UML class, which is especially usefulrfaodeling the inheritance. It can appear at
the end of the PSM association and can containrditate PSM components. It has a
collection of PSM attributes that contains the saemas as thdttributescollection inherited
from theClass The content of both collections is synchronizatbmatically and you cannot
insert an attribute instance that does not impléniba PSMAttribute interface to the
attributes collection (an attempt to do this, ressil anArgumentException).

A PSM Class instance can be turned to a PSM StaldRepresentative instance by setting
the RepresentedPSMClasdtribute to a valid reference. In the backgrotmd results in a
replacement of th&SMClass stereotype by #SMStructuralRepresentative stereotype.
Contrarily, a representative can be turned to a BBk by setting thRepresentedPSMClass
property to a null value.

The AlIPSMAttributescollection includes the attributes from tR8MAttributescollection of
this class and all the subordinate attribute coetai (owned directly in the components or
indirectly through another subordinate componértt)s collection is virtual and its content is
built on each access to the property.

14

2.7.7 PSM Attribute

}}I

[PSMAttribute
Interface

-+ Property
=+ PsMElement

= Properties

Alias ! string

AttributeContainer : PSMAttributeContainer

Class : PSMClass

RepresentedAttribute ! Property

UsedGeneraiizations : ObservableCollection= Generalization
X5DImplementation : siring

SCTTTT

Figure 5 - PSM Attribute definition

A PSM attribute is a standard UML property extentgd reference to the represented PIM
attribute,Alias attribute that defines the name of this attriotéhe generated XML schema
and XSDImplementatiothat contains the implementation of the type o ttribute in the
generated schema.

2.7.8 PSM Attribute Container

An attribute container can contain some of thelattes of its superordinate PSM class. It is a
subordinate component and has PSM attributes.

2.7.9 PSM Content Choice / Content Container
These two components are superordinate and sulatedat the same time. They can only

exist in theComponentsollection of some PSM component but typically teams other PSM
components.

2.7.10 PSM Association

A PSM association has exactly two ends, a paredt archild end. It is a subordinate
component and so it is a part of the parent’s canfntent of the PSM component on the
parent end). The semantics of the associationfineteby one or more nesting joins. If the
association contains more than one nesting joexsémantics is defined as their union.

2.7.11 PSM Class Union
A class union is a PSM association child and so ajgpear at the child end of a PSM

association. It defines @omponentsollection that can contain any association clsfal by
now a PSM Class or another class union.

2.7.12 Nesting Join
Nesting join defines the semantics of a PSM as#onialt is formed mostly by instances of
PIMPath interface which defines a path through associationthe platform-independent
model. It is an ordered list of steps describedalBBIMClass in which the step starts and a
PIMClass in which the step ends and Associationused to get from the start to the end.

2.8 XSem Stereotypes

As we already mentioned earlier in this text, &k tXSem structures are expressed in the
standard UML language using the stereotypes. Tiseaa “XSem” profile created upon the
project creation that contains all the stereotypesded for the representation of the XSem
constructions.

15

We present their list in this section:

* PSMClass(applies to Class)
RepresentedClass (object, 1..1) — Reference teeghresented PIM class
ElementName (string, 1..1) — Element label assigogéde PSM class
Components (object, 0..*) — Ordered collection eferences to subordinate PSM
components
» PSMAttribute (applies to Property)
RepresentedAttribut@bject, 1..1) — Reference to the represented Rilibate
Alias (string, 1..1) - Alias of the PSM attribute
» PSMAttributeContainer (applies to Class)
Parent(object, 1..1) — Reference to the component tbatains this container
* PSMClassUnion(applies to Class)
Componentgobject, 0..*) — Ordered collection of referencedPSM components
in the union
* PSMContentContainer (applies to Class)
Parent(object, 1..1) — Reference to the PSM componeaitdtvns this container
Componentqobject, 0..*) — Ordered collection of referendesthe subordinate
PSM components
ElementLabe(string, 1..1) - Name of the modeled XML element
» PSMContentChoice(applies to Class)
Parent(object, 1..1) — Reference to the PSM componentawas this choice
Componentqobject, 0..*) — Ordered collection of referendesthe subordinate
PSM components
* PSMAssociation(applies to Association)
NestingJoin(object, 1..*) — Collection of nesting joins defig the semantics of
the association
* PSMStructuralRepresentative(applies to Class)
RepresentedClagsbject, 1..1) — Reference to the represented ¢¥digs
RepresentedPSMClagsbject, 1..1) — Reference to the represented BIat4
ElementNaméstring, 1..1) - element label assigned to theesgntative
Componentqobject, 0..*) — Ordered collection of referendesthe subordinate
PSM components

All the XSem stereotypes as well as the XSem @alfie defined in the project template file.
2.9 Linking between the PIM and PSM levels

The model is responsible for keeping the platfonakependent model and related platform-
specific models consistent. Therefore, the consrirom the models are related from both
sides by the references and collections. Theserergfes are in most cases handled
automatically, but there are several cases in whieh model does not have enough
information to do this and the outer layers haveamage the binding themselves.

PIM Class has a collection containing all the PSa&%es that were derived from it and every
PSM class has a reference to the PIM class tweastderived from. This linking is handled

16

automatically. Changes of some PIM class propedres propagated automatically to the
derived PSM classes (for now the Package prope@iher can be easily added in the
implementation of the PSMClassOnRepresentedClassChangagnt handler.

PIM Attribute has a collection of all the PSM ditrtes that represent it and PSM attributes
have reference to the represented PIM attributaés Tihking is handled automatically.
For a case when the PSM attribute in a class aaowar represents a PIM attribute that is not
owned by the represented PIM class but by somésdricestors, the PSM Attribute has a
collection of all the generalizations (in PIM) tHaad from the represented class to the class
containing the represented attribute. Accordinbky generalization has a collection of all the
PSM attributes that reference it. This linking Iscehandled automatically.

PIM Association has a collection of all the nestjpms that reference it. This linking is
handled automatically.

For case when a PSM association contains a refetere PIM association that is not directly
in the Associationscollection of the PIM class represented by the R3$&ds on the parent
end, but in some of its ancestors, the PSM associdefines the collection referencing all
the generalizations (in PIM) that lead from theegmdrrepresented class to this ancestor.
Likewise, a generalization has a collection ofthéé PSM associations that reference it. The
filling of these two collections is left for to trauter layers since the model cannot simply get
the necessary information. The rest of the managefmwhen some of the PSM associations
is removed from or put back to the model) is autiiena

2.10 How to add a new construct to the model

When creating a new structure for use in the motted, most problematic part is its
representation in the UML. If you need to represemstructure outside the UML definition
you have to create a stereotype that will add dupested functionality. The procedure to
create a new stereotype is described in the seahiont the stereotypes.

The new structure should be divided into a pubiterface and an internal implementation
class and should inherit directly or indirectlyrfrahe Element interface. Constraint the type
parameter of th&lementinterface to the real nUML type.

In the constructor of the new element create thaptedl NUML object using the appropriate
NUmI.UmI2.Create class method. Bind the properties of your stmgcta the corresponding
properties of the adapted nUML element. For everyitable property raise the
PropertyChange@vent when the property value changes, so thatisialization can reflect
the change. For collections use thebservableCollection type defined in the
System.Collections.ObjectModel

Override thePutMeBackToModelRemoveMeFromModehethods.

2.11 Mapping of the model to the UML constructs

Most of the UML constructs in the model have din@epping to the structures with the same
name defined in the UML specification, so we withib them and will list only the items that
differ either by name or by their properties frameit UML equivalents. We will certainly list
here all the PSM constructions.

17

Sometimes we have chosen a different name than givthe UML specification, because the
original name described a more general structufgeoause our name seemed clearer to us.
Not all the properties have mapping to the UML nlodAs for example the
PIMClass.DerivedPSMClassesollection. This collection is restored automdticavhen the
project is loaded and presents only redundant nmétion for the model added to find the
derived classes effectively. Without this collentiwe are still able to identify all the derived
classes of the specified one but the algorithmasentime complex. This is the case of many
collections used to track dependencies betweenesitsmin the model (especially between
PIM and PSM).

» Adapter name: DataType Adapted construct Type

* InstantiatedProperty — Slot

* PIMClass — Class

* PSMAssociation— Associationwith theXSem.PSMAssociatiorstereotype

* PSMAttribute — Property with theXSem.PSMAttribute stereotype

* PSMAttributeContainer — Class with the XSem.PSMAttributeContainer
stereotype

* PSMClass— Classwith theXSem.PSMClassstereotype

* PSMClassUnion— Classwith theXSem.PSMClassUniorstereotype

* PSMContentContainer — Classwith theXSem.PSMContentContainerstereotype

* PSMContentChoice— Classwith theXSem.PSMContentChoicestereotype

» SimpleDataType— PrimitiveType

» Stereotypelnstance— InstanceSpecification

18

3 XCase drawing framework

We chose Windows Presentation Foundation for implaation of graphical user interface
and drawing both the UML class diagrams and XSEdMydims. This part covers some of the
basic building blocks that we created for drawimggoams and are part of View.dll assembly,
the visual part of the View component of Model-Vi€entroller pattern (updates of View
according to changes in Model are described in idgrams basically consist objects
(usually rectangular) antines between these objects. The example diagram onrd=i§u
shows both objects and lines.

Package

- R ~ R
Possible ways of
transport

Transport

code o

deadline GroundTransport | AirTransport

x X

Vehicle AirCraft

Vehicle AirCraft

Figure 6 - Example diagram

ground air

Examples obbjectsare classes and attribute container and commiéaryraws (associations
and generalizations), the component connector legtwatass Transport and the attribute
container and line attaching comment to associdiEtween classes Package and Transport
are examples olines. Endpoints of all lines (in red circles) are obgeeigain (and can be
dragged by mouse). The example diagram is a PSitaiiawhere all layouting is performed
automatically, but in PIM diagrams, most of objects be freely dragged on the canvas
(including endpoints of lines that can be draggediad the borders of connecteljec) and
lines can be broken to polylines.

All diagrams are created using clagSaseCanvas

19

3.1 Canvas control - XCaseCanvas

XCaseCanvas [# | SelectedltemsCollection #
Class Class
-t Carvas 5 Selectedltems -+ ObzervableCallection«I5eledables
r : F
= Properties = Methods
'_ﬁ-‘ Controller % SetSelection (+ 1 overload)
i Diagram b
i SelectedFRepresentants S . -
R State ' XCaseCanvasStote @ |
=i Methods Abstract Class
% ExportTclmage (+ 1 overload)) C i E
- - - E t _— >
9 YCaseCanvas P Gumenlite F'r_nf}pEl"tlES
= Events ﬁ" Car
: —— B Tyme
Element5izeChanged =
= Methods

I+
{ * Nested Types W OnMouseDown

% OnMouseMove
% OnMouselp
W SelectableltemPreviewMouseDo...
W StateActivated
W Stateleft
#" XCaseCanvasState
i
| DraggingConnectionState ¥ | DraggingElement5tate ¥ || NormalState ¥ |
Class Class Class

—+ XCaseCamassiate —+ XCaselamassiate =+ XCaseCamassiate

Figure 7

Canvas control is a counterpart of Diagram in Veamponent of Model-View-Component
pattern and is responsible for drawing diagramsldb receives user input from mouse and
keyboard. It is responsible for creating repredesria of elements added to the displayed
diagram and removing the representations whenlémeeaits are removed from diagram. This
part of XCaseCanvadunctionality is covered in detail in the chapder

Class SelecteditemsCollection stores items selemetthe diagram, its methdgetSelection
deletes the current selection and adds items passadyuments to new selection. This class
is used aselectedltemsproperty. The propertgelectedRepresentantacts as a filter above
Selectedltemsand returns only items of typModelElementRepresentant See the chapter
4,

XCaseCanvasuses State design pattern [2] to manage mous¢ coprectly. Canvas can be
in three states and in each state mouse eventhandled differently. Abstract class
XCaseCanvasStataleclares empty operations that are overriddereiiveld classes. State is
changed by assigning desired value to State pwopert

20

NormalState is the initial state oXCaseCanvas In this state elements can be selected via
mouse and selected elements of type DragThumbd{tss is described in its own section).
DraggingElementState must be entered explicitly. In this state a neennt is dragged
onto canvas (in XCase this state is used when actessg8 or new comment is dragged from
toolbar or navigator window). Canvas returns imMormalState immediately after the
dragged element is dropped on canvas.

DraggingConnectionStatemust also be entered explicitly. In this staterussn dragged
connections between elements implementidgnnectable The user can start dragging by
clicking an element and continue by dragging theneation to another element. When the
connection is dropped, event handler that procefse®vent is called and user can start
dragging another element. This state is not |lefbraatically (user can drag as many lines as
he wants) and must be left explicitly.

Classl

Class2

Figure 8 - XCaseCanvas in DraggingConnectionState

21

3.2 Objects

We created a set of several WPF classes to dragctsbpn diagram. Each of these objects
encapsulates certain functionality. They don’'t hawesual appearance — this is where we rely
on WPF styles and templates. To add visual appearém a derived class, template is
assigned to each class.

3.2.1 DragThumb > IS”EF'F’H?'E
DragThumb is a class that can be dragged on | [Referentialtlement
diagram via mouse. It is tightly related 1t | DragThumb
MoveElementCommand which wraps the draggin¢ @ Class
action. DragThumb is an ancestor of virtually all the | = Cantral
elements in the diagram. It does not have vis
representation itself — this is left to derivedsslas and
their templates. = Properties

>

+ Fields

Properties Placement X, Y, Position and % AllowDraglfSelectedAlone

CanvasPositionand eventPositionChangedare all “# CanBeDraggedinGroup

related to position of the object on canvas. 8 CanvasPosition

Positionreturns values of andY asPoint. B FellowTravellers

CanvasPositionproperty is point with coordinates c %2 IsDragging

the object on canvas. The value returned by thpgrtp " Movable

depends on values of andY and also on value o “# ParentControl

Placement. Placement property describes the way % placement

CanvasPosition is computed from X and Y. % position

DragThumb can be placed absolutely on canvas oy

relatively to another element (snapped to anot vy

element - using methods SnapTo or = Methads

SnapElementToThummbWhen element is snapped i :

another element, it moves with that element wher 1 | ¢~ Adustorag

element is moved. This way it is for example achik ¥ Cancelbrag

that comments attached to another objects movega = Cregcempleted

with those objects. Another option is to set Plageito 77 DragDelta

EPlacement.AbsoluteSubCanvas - then Position is #¥ DragStarted

relative in coordinates of ParentControl and ¥ DragThumb

CanvasPosition is then equal to | @ FellowTravellersUpdate

ParentControl.CanvasPosition + this.Position ¥ GetBounds

EPlacement.ParentAutoPos — with this value the : znap_ErlemE”tTDTh”mb
naplo

computation ofCanvasPositionis the same as witt
EPlacement.AbsoluteSubCanvas but besides that
ParentControl is responsible of moving the contro

This setting is used for automatically adjustingipons # PositionChanged

of EndPoints of lines when the connectedbjectis

moved. EventPositionChangeds invoked every time

DragThumb is moved.

By setting value oDragThumb.Movabléo false, dragging dbragThumb is disabled (this
is used forDrugThumbs on PSM diagrams, wherebjects and lines are positioned
automatically. PropertpllowDraglfSelectedAlonesturns whether thebjectcan be dragged

% UnsnapElement

Events

22

when it is the only object selected. Prop&gnBeDraggedinGroupeturns true if th@bject
can be dragged when maobjectsare selected.

MethodsDragStarted DragDelta andDragCompletedare handling the dragging itself. They
are called depending on mouse inpgDtagDelta changes the values &f andY and thus
moves the element on the canv&yagCompletedaggregates all the changes done in
DragDelta and issuesoveElementCommand This command actually does not move the
object (because it only puts the object on the gams@ion where it was before the command
was executed), but the command is pushed into staaix and thanks to that the dragging can
be undone/redone (see chapters 6.3 and 6.4 forptest of undo).

All the method9DragStarted DragDeltaandDragCompletedare protected virtual and can be
overridden by derived classes.

3.2.2 ResizeThumb | ResizeThumb 3
ResizeThumbis a small class that handles resizing | s
another element (and is related e :

ResizeElementCommanyl Again, it lacks any visual
representation. ResizeDecoratorTemplate is a

control template made dResizeThumbsand it can
be applied to virtually an€ontrol and can be used t
resize the control via drag and drop.

= Methods
% ResizeThumb
2% ResizeThumb_DragCompleted
2" ResizeThumb_DragDelta
2" ResizeThumb_DragStarted

|
g

At run time, ResizeDecoratorTemplate is shown on those
elements that are selected at the time. The template allows resizing the selected element.
ResizeDecoratorTemplate is defined in ControlTemplates.xaml. To allow resizing for an object, declare
control with ResizeDecoratorTemplate. This is the declaration taken from XCaseCommentTemplate:

<Grid x : Class ="XCase.View.Controls.XCaseCommentTemplate">
<Control Name="ResizeDecorator"
Visibility ="Collapsed"
Template ="{ StaticResource ResizeDecoratorTemplate }'>
</ Grid >

Normally, the ResizeDecoratorTemplate is collapsed. When the Visibility of ResizeDecorator is
changed to Visible (usually when the control is selected), border-like control that allows resizing is

shown:

Some Some
comment comment

Figure 9 - Displayed ResizeDecoratorTemplate

23

3.2.3 IConnectable, ConnectableDragThumb
IConnectable is an interface required foobjects that should be connected Hines
ConnectableDragThumb its basic implementationlConnectable basically requires the
element to be able to create end points for lines.
ConnectableDragThumb derives fromDragThumb. Its two main abilities — dragging via
mouse (derived froragThumb) and connecting together makennectableDragThumb
a suitable base class for most diagram elemBesizeDecoratorTemplateas often used for
resizing subclasses GbnnectableDragThumh

L TConnectable

| IConnectable [#' | | ConnectableDragThumb [#

Interface Class

=+ IHasBounds =+ DragThumb

F f
= Methods =l Fields
& Cregtelunctionfrd (+ 1 overioad) # createdlunctionEnds
. =l Properties
ﬁ" BoundsAngle
= Methods

% ConnectableDragThumb
&7 ConnectableDragThumb_5izeChanged
% CreatelunctionEnd (= 1 overload)

Figure 10

The key method ofConnectable is CreateJunctionEndhat creates nedunctionPoint and
places it on the border of the control. Latere can be attached to this point. References to
created points are storeddreatedJunctionEnds

3.2.4 Templates of elements
As written earlier, most of the diagram elementsivédefrom ConnectableDrugThumhb.
Usually each element has some template that cantsinisual representation; the class itself
contains only logic above the visual representatidme template is usually registered as a
static resource and is loaded when the elememnéated (in the constructor).

This example shows how XCaseCommentaryTemplate is assigned to XCaseComment — class that
represent comments on diagrams:

public XCaseComment(XCaseCanvas xCaseCanvas)
base (xCaseCanvas)

{

#region Commentary Template Init
Template = (ControlTemplate) Application .Current.Resources| "XCaseCommentaryTemplate"];
ApplyTemplate();

The template class can reference the elementg itethplate (using WPF
Template.FindNameall, that returns a control from a template lsyname).

24

3.3 Lines

Two objects contained in View.dll assembly contsurfficient functionality for displaying all
lines on diagrams. These objects ¥gaseJunctionandXCasePrimitiveJunction.

3.3.1 XCaseJunction

XCaseJunction is can draw dine between twaoobjects It can be a direct line or can be
broken to a polyline. Elements connectedXd@aseJunctionsmust implementConnectable
interface. Each point on a junction is a separatgrol (JunctionPoint) that can be dragged
on the diagramXCaseJunctionis drawn as a polyline connecting the points.

On the example below, four junctions are used st fg the junction between Classl and
Class2, with two inner points created ByeakLine calls. Other three junctions connect
classes 3-5 to association diamond.

- 1
Classl —

Class2 —
- 1

Class3

.

Classd4

Classh

Figure 11 - Examples of XCaselunction usaje

() ISelectable
IPrimitivelunctionTarget

|

| XCaseJunction
Class
= Control

=

= Properties
AutoPosModelnly
EndCapStyle
EndPoint
SourceElement
StartCapStyle
StartPoint
TargetElement

= Methods

% BreakLine
% MewConnection
% StraightenLine

j} Points

P
i

A

JunctionPoint

() ISelectable

|

Class
= DragThumb

= Properties
P IsSelected

ﬁ) Junction
r’_%‘? Crderlnlunction
fl) CwnerControl

Figure 12

25

Pointscollection stores th@unctionPoints that the line consists of. More points can be ddde
via BreakLinecall and deleted vi&traightenLinecall. NewConnectiortall is an initializing
method that connects two connectable elements.

PropertyAutoPosModeOnlys set to false by default, but when set to tthe,junction will
always have only two points StartPoint and EndPoint and both will be positioned
automatically. This setting is used on PSM Diagramsere all positioning is done
automatically.

StylesEndCapStyleand StartCapStylecontrol the figure that is drawn at the beginnargl
end of the line. Several styles are provided (diadisparrows, and triangles).
PropertyOwnerControlof JunctionPoint contains the reference to therobthat created the
point (sedConnectable.CreateJunctionEnd

3.3.2 XCasePrimitiveJunction
XCasePrimitiveJunction is a much simpler control tha¥CaseJunction that is used to
connect elements to other junctions (but can bel tigseconnect an element to any object
implementinglPrimitiveJunctionTarget). It is always drawn as a straight line, not polyline
It is used for example to connect comments andcessmns.

26

4 Representing elements of diagrams

XCase uses Model-View-Controller design patternewtiagram elements are created in the
UML model, event mechanism notifies View about ¢thanges. It is up to the View to reflect

the changes in user interface and show the eleroerttse diagram.

4.1 XCaseCanvas

XCaseCanvass the class that represents one diagram in ngaface. When new diagram is
openedXCaseCanvads empty. It listens to the eventsDiagram class ElementAdde@nd

ElementRemovédWhen an element is add¥€aseCanvascreates its representation.

;. Diagram
Abstract Class
-
| = Properties

=y Capticn
i = DiagramElements
| 5 Methods
AddModelElement
Diagram (+ 1 overload)
IsElementPresent
MotifyElementAdded
MNotifyElementRemoved

B W R

% HRemoveModelElement
= Events

¥ ElementAdded

7

i # ElementRemoved

'j‘ Diagram l

B A

el ""'?'.: T

" PIMDiagram @

Class

- Diagram
o

" PSMDiagram @

Class

ﬁ'] ElementRepresentations
|

XCaseCanvas
Class
-+ Camvas

= Properties
' Controller

= Methods
27 Diagram_ElementAdded
&* Diagram_ElementRemoved
% InitializeRegistrationSet

% Unbind
i KCaseCanvas

& Nested Types

3|

|

Figure 13

27

"=

-+ Diagram
o

RepresentationCollection
Class

= Methods

AddElement

CanDeleteElement
CanRepresentElement
CreateRepresentant
GetElementRepresentedBy
IsElementPresent
Registerfepresentation (+ 1 overload)

RemoveElement

& & € &6 €0 €€

RepresentaticnCollection

TrySearchRepresentantType
Nested Types

H]]
£

¥

-

s j" PresentElements

. Element ¥
Interface
- INotifyPropertyChanged
- |

4.2 Representing elements

Part ofXCaseCanvasinitialization is initialization of theElementRepresentationsllection.

ElementRepresentatiomsa collection of entries of tygeepresentantRegistration For each
element that is part of the Model and should beesgnted in View a
RepresentantRegistrationentry must be added into the collection. The eobrnysist of

* ModelElementType- type of the registered diagram element in Mddabclass of
Element)

* RepresentantType type that should represent the element in Viasudlly WPF
control) implementingModelElementRepresentantinterface

» ControllerType- type of the controller for the element

* ViewHelperType- type of the view helper used for the element

This is an example of RepresentantRegistration entry for PIM_Association:

new RepresentantRegistration (
typeof (Model.PIMClass), // model element type

typeof (View.Controls.PIM_Class), Il representant type
typeof (Controller.ClassController), // controller type
typeof (Model.ClassViewHelper),..) Il view helper type

[IBindable ¥ | IDeletable 21| | IModelElementRepresentant |2/
Interface = Interface Interface
L2 g =+ IBindable =+ IDeletable
= Methods =l Properties
% DeletefromCanvas "_‘*11 XCaseCanvas
' = Methods

% InitiglizeRepresentant

Figure 14

Visual representations of elements must implentigiatdelElementRepresentantinterface.
Since View uses WPF for drawing, visual represéntatf an element is usually composed of
one or more WPF controls (for example: represesraif anAssociationis made of points of
the association, line that goes through the pantsset of labels). The WPF controls that the
representation composes of should be addeXGaseCanvasin the implementation of
methodInitializeRepresentantThe same controls that were addednitializeRepresentant
should be removed iDeleteFromCanvamethod.

4.2.1 Sequence of actions performed when new element is added into a diagram

When new element is added into a diagr&iementAddedevent is invoked on Diagram
class. This event fires th®iagram_ElementAddedevent handler inXCaseCanvas
XCaseCanvas then uses its ElementRepresentationgo instantiate the element.

28

RepresentationCollectionlooks up the entry for the type of the element @nidfounds one,
it can create new representant element, controllrd view helper. Then
InitializeRepresentaninethod is called on the representant and creaiattatler and view
helper are passed as arguments.

If the XCase model were to be extended by new altsnehe representant type must be
created (if any of the existing ones cannot be Judebably new controller will also be
created and maybe a new view helper. Then these tiges need to be added as a
RepresentantRegistrationentry into theElementRepresentatiogsllection.

Currently there are two sets of RepresentantRegistrations used in XCase — one for PSM Diagrams and
one for PIM Diagrams; both are defined as static sets in MainWindow class and the entry for the new
element would be probably added into one of these).

4.3 Binding Model properties to View

Very often it is desired to update some propertiesnodel element’s representant when
properties of represented element change (e.g. ih@ss’ Name property is changed via
RenameElementCommand PIM_Class’ ElementNameproperty should be updated to
contain the same value). Copying value of modehel& property into representant property
can be easily achieved via set of metadata ateshMCase supports and thanks to property
change notifications coming from the model elemefisodel elements implement
INotifyPropertyChange, collections of elements implemdiotifyCollectionChange).

Binding infrastructure expects that each model el@mepresentant will have two properties
— one referring to represented model element anel tonthe element’'s ViewHelper.
Declarative attribute markup is used to declareehe/o properties

This section deserves an example — comment example was chosen because it is quite simple, but can
demonstrate most of the binding features.

This is part of XCaseCommentary code declaring ViewHelper and model element references:

public class XCaseCommentary : IModelElementRepresentant

{

[ModelElement]

public ~ CommentModelComment{ get...}

[ViewHelperElement]

public CommentViewHelper ViewHelper { get ...}
}

ModelElement attribute is used in ModelComment property declaration — this property will be used
by the binding infrastructure as a source of model binding. ViewHelperElement property is used to
declare source of view binding in a similar way.

Another pair of attribute is used to declare binding between pair of properties itself:
[ModelPropertyMapping ("Body")]

public string CommentText ...

29

The declaration above says that each update of ModelComment.Body will update property
CommentText.

ViewPropertyMapping attribute can be declared in the same way as ModelPropertyMapping
attribute.

There is also an equivalent way to define the mappings — use the attributes on classes instead of
properties, following declaration is equivalent to the declaration above:

[ModelPropertyMapping ("Body", "CommentText")
public class XCaseCommentary

{

public string CommentText ...

}

This second way of declaring the mappings is useful when a property is declared in a base class but
mapping is defined in derived class (thus there is no place to declare an attribute in the derived class
without overriding the property). For example this is how X and Y properties of base class DragThumb
(that is a base class to ConnectableDragThumb) are bound to ViewHelper properties; X and Y are not
overridden in XCaseCommentary:

[ViewHelperPropertyMapping ("X, X))l

[ViewHelperPropertyMapping ("y" "Y'l

public class XCaseCommentary : ConnectableDragThumb
IModelElementRepresentant

This was the declarative part. The process of binding on a certain object must be explicitly started at
runtime by calling method StartBindings (extension method of IBindable interface — it doesn’t have
to be implemented by model element representants, only XCase.UMLController interface must be
imported).

CloseBindings method suspends binding for the object.

Good time to call StartBindings is at the end of InitializeRepresentant method (from
IModelRepresentant interface), good time to call CloseBindings is at the end of DeleteFromCanvas
method (from IDeletable).

Note: C# compiler requires this qualifier when calling StartBindings and CloseBindings. These
methods must be called using this qualifier: this.StartBindings() resp. this.CloseBindings(). Both
methods also provide overrides that start/closes only model bindings or only view bindings.

Internally, copying values from Model to View usedlection to identify the properties with
assigned mapping attributdy/peBindingData class does this job.

30

5 TreeLayout

The purpose of this static class is to ensure kaygun case of PSM diagrams. In contrast to
PIM diagrams, these have strictly tree structure/liich also order of children of an element
is important. For this reason, user’s positionisgdisabled and automatic layouting is
performed.

5.1 Used Algorithm

5.1.1 Layouting of a Forest
When a PSM diagram contains several roots andsselements form a forest instead of a
single tree, these trees are layouted side byfide left to right, separated by a gap of fixed
width.

5.1.2 Layouting of a Single Tree

The root of the tree gets the information of dekii@ and left coordinates of the entire tree.
From height of the root and size of fixed gap bemvaext levels of the tree, situation of the
top of the root’s children is computed. Then layogitof the first child is called recursively,
returning real width of the child’s subtree (ifg¢h8ubtree consists only of this node, width of
this node is returned). This width is used to cotemituation of the left of the second child
(by adding size of fixed horizontal gap to the \midtthen this child can be layouted. Other
children are layouted analogically. Now we know tidth of the entire subtree and we can
layout the root to the center.

5.2 TreeLayout Class

|'r Treelayout
I StaticClass

= Fields
A horizontalSpace

= Methods
2% DrawSubtree
27 DrawTree

\

I

I

I

]

|

I

1
! verticalSpace }
I

I

I

I

I
% LayoutDiagram ll
’

Figure 15 - TreeLayout class

» active— Indicates whether layouting is active now

* horizontalSpace- Size of fixed gap between neighboring nodes erséime level
» verticalSpace- Size of fixed gap between neighboring levela tee

» LayoutDiagram()}- Performs complete layout of given diagram

» DrawTree()— Draws given element and all its children

» DrawSubtree(}- Draws all children of given element

* SwitchOff(}- Suppresses layouting

* SwitchOn()}- Activates layouting

31

6 Controllers

Controller as in MVC in our case consists of twortgaControllers and Commands.
Controllers also consist of two parts, ElementCalldgrs and CommandControllers.

6.1 Element Controllers

Classes providing methods for changing the modeV{ewHelpers) using Commands, each

PIM and PSM element has its own controller prowdimeans to rename, add/remove

attributes, operations etc. Used mainly by viewrgets, so they do not create Commands on
their own.

6.1.1 Example

6.2 CommandControllers

6.2.1 Diagram Controller
There is one for each diagram, stores diagram-spesgttings like Diagram (model class
representing a Diagram), and provides diagram-8peanethods like NewAssociation
NewGeneralizationetc., which are usually also wrappers for commandsation and
initialization.

6.2.2 Model Controller
One per project (we support only one project sy fores the undo stack and the redo stack,

provides model-specific methods like IsElementUsedInDiagrams
HasElementPSMDependengi€seateSimpleTypetc.

6.2.3 View Controller

Provides methods for moving and resizing view el@siewvhich are usually also wrappers for
commands likeMoveElement ResizeElementBreakLine etc.

6.3 Commands

XCase’s commands are small objects that are typicakated in response to some user
action (typically toolbar click or menu selectioand somehow alter the UML model and
diagrams built upon the model.

6.3.1 Commands overview

The key methods of each command Bpeecuteand UnExecute Execute performs some
operationslUnExecuteaeverts the changes done by Execute. When cgeatirew command,
one usually does not have to overritheecuteor UnExecutebecause they are implemented as
Template methods (design pattern) that relfCommandOperatioandUndoOperation
CommandOperatioshould perform the task itseEExecuteserves as a kind of wrapper of
CommandOperatiorthat integrates the task into the MVC infrastroetuRelation between
UnExecuteandUndoOperationis analogical. There is alsoRedoOperatiorwhich you will
need to override in case th@bmmandOperatiortannot be used by Redo. Choose proper
base class for the new command (typically it would DiagramCommandBase

32

ModelCommandBaseor MacroCommand) to achieve desired integration into the program.
Turn to overriding oExecuteandUnExecuteonly when solving some uncommon scenario.
Base class of all commands is abst@ommandBasethat contains some basic fields and
abstract method€ommandOperatignJndoOperation RedoOperatiorand CanExecuteand
also a default implementation dExecute method (that callsCommandOperation and
UnExecutgthat callsUndoOperatioi. Inheriting classes have to implement these nustho

» CommandOperatior this method should perform the actual effecfivgction of the
command (e.g. add an element to a diagram, adduaéto a class)

* UndoOperation- should revert all changes done®ymmandOperation

» CanExecute- should return true if command can be executedhen it is properly
initialized and all relevant objects are in a sthed permits execution of the command

BesideCanExecutehere is another method that can be used to valmammands — marking
properties of the command wiktandatoryArgumenandCommandResudttributes.

6.4 Command stacks

To support undo and redo operations, XCase workh stacks of commands. When a
command is executed, it is pushed to the undo stafllen user wants to undo the last
command, the command is popped from the undo stelgperation is reverted and the
command is pushed to the redo stack. When userswarniedo last undone command, the
command is popped from the redo stack and exearddoushed again to the undo stack.
Thanks to command stacks, XCase support undo/rétdamimited depth.

Pair of stacks (undo and redo stack) exists onlynia instance. All commands are pushed to
these stacks. BothDiagramController's and ModelController's getUndoStack and
getRedoStackethods return these stacks.

There are two actual commands that follow the twevipus scenarious ndoCommand
andRedoCommand They are executed when user wants to undo orhisdaction.

6.5 More complex commands

StackedCommandBases the next class in commands hierarchy. Agains ian abstract
class, but its Execute and UnExecute method wotk wommand stacks. When created,
reference to stacks is passed in the construatalo{vedo stacks are partidbdelController
object which is the constructor's parameter). Whetecuted, command is pushed to
command stack, when unexecuted, the command isedugh the redo stack. Here the
template methods Execute and UnExecute work with command stacks.
StackedCommandBasamplementsiStackedCommand interface that can also be used to
work with stacked commands.

DiagramCommandBaseis again an abstract class — subclasStatkedCommandBasend
parent of all commands that alter diagrams.

ModelCommandBaseis another abstract subclassSthckedCommandBaseand parent of
all commands that alter the model.

Diagram commands typically work withiagram object and itDiagramElementgollection
(when adding an element to the diagram or remoaimglement from diagram). Another type
of diagram command igiewCommand. ViewCommands alter visualization of an element

33

on the particular diagram (its position, size ete.}this is done by changing a certain
ViewHelper.

Model commands typically alter properties of sonmmlel elementClass Associationetc.).
MacroCommand is a special kind of command that is composedtimérocommands. Using
MacroCommand, more complex action can be exec@wedsangle command.

6.6 HOW-TO create a command

 Create a new class in the Controller.Commands rfoliteone of its subfolders
(depends on what the command does)

* You may want to change the namespac¥Gase.Controller.Commandgsyou do not
want to include another namespace into the plagewou use your new command

* Decide whether the command you are creating, iglonly one diagram or the
whole model and choodeiagramCommandBaseor ModelCommandBaseas the
ancestor of your new command accordingly

* Decide the complexity of your command. If it is anamand, which could utilize
another commands, create new basic operationgpasase commands and then group
them into one MacroCommand<ModelController> or
MacroCommand<DiagramController> along with the existing commands you
would like to use usingMacroCommand.Commands collection in a command
preparation method of the newly created MacroConupatike Set() or
InitializeCommand() (it is up to you how you name this method, it istn
standardized), which will be called by the wuser gfour command
(ElementController, PropertiesWindow, MainMenuCommand etc.) after
command creation and before command execution.

* In the constructor of your command, set Bescriptionproperty to a text description
of what your command does. Store the descriptichéCommandDescription.resx
file in the Commands folder.

* Create a Factory for your command. Look at anottenmand of the same type
(DiagramCommandBaseor ModelCommandBas@. The factories are all the same
except names.

* If your command does not support Undo, you canhsaindoableproperty to false in
the constructor. This will cause that this commamitl not be placed on the
UndoStack after execution.

Override theCanExecute CommandOperatiorand UndoOperationmethods of the
CommandBase

If you are returning false in CanExecute or OperationResult.Failed in
UndoOperation do not forget to fill theerrorDescription property with an item from
theCommandError.resx file.

34

* You may need to overridiRedoOperationalso, if your command cannot use
CommandOperatioras RedoOperation (When you are creating a new object, you
don't want to create another one when Redoingwamnt to return the already created
one fromCommandOperation)

) ommand) ICommand
| CommandBase ¥ | UndoCommand ®)
Abstract Class Class
) TStackedCommand) ICommand
| StockedCommandBase<ControllerType> @1 | RedoCommand # |
Generic Abstract Class i Class

—+ CommandBase

) IMacroCommand

| ModelCommandBase ® 1 | MacroCommand<ControllerType> # |
Abstract Class | GenericClass
=+ StackedCommandBase< ModelConbroller> i =+ StackedCommandBase< ControlleMpe

| DiagramCommandBase @1
Abstract Class

=+ StackedCommandBase< DiagramController=

Figure 16

6.7 Command factories
Command factories are used as the only way of ingeatstances of standard Commands in

Controller.
HOW-TO create a factory is included in HOW-TO cesatcommand in Commands.

35

7 Setup

XCase Setup is realized as a standard Visual StR0@8 Setup Project. It automatically
detects dependencies; there are no manually addedsl
Prerequisites set:

* Windows Installer 3.1
« _NET Framework 3.5 SP1

There is a manually added icon, which is used dss&top icon and a Start Menu icon. For
some reason, the setup project doesn't allow téhgsigon set to the XCase.exe file.

The Setup is set to create a Desktop Icon andttre 8enu Icons.

Also, the default banner is overridden with our own

When run, the setup detects presence of the pisiesguand downloads them from the
Microsoft's website as needed.

36

8 GUI - DockingLibrary

DockingLibrary is an external library [3] for manag dockable windows used in the XCase
editor (Navigator, Project, Properties) and alson@naging multiple diagrams at once in a
TabControl. Its goal is to acquire a way of working with dabke panels very similar to
Visual Studio.

The fundamental classes of this library BreckManager, PaneandManagedContent

8.1 DockManager

DockManager is responsible for managing the main window laytius a user control which
can be easily embedded into a window using justrsélines of code.

8.1.1 Pane
Q [DropSurface
ILaycutserializable
' Pane ¥ |
Abstract Class
= UserControl
| DocumentsPane 3 | | DockablePane ¥
Class Class

=+ Pane = Pane

| OverlayDockabl... (¥ | | FloatingWindo... (¥ |
Class Class

= DockablePare = DockablePare

Figure 17 - Pane

Pane represents the window area which a) can be dotdkexd border DockablePang, b)
contains documents in the main part of the windDacuments Pang

37

8.1.2 ManagedContent

' ManagedContent £
Abstract Class
= Window
| DockableContent [¥ | | DocumentConte... [¥ |
Class Class

= ManagedContert = ManagedContert

Figure 18 - ManagedContent

The content of Panes is compoundMdnagedContent DockableContentis contained in
DockablePaneand all dockable windows have to inherit from tbiass (in our case, these
windows areNavigatorWindow, ProjectsWindow and PropertiesWindow). Analogically,
DocumentContent is contained inDocumentsPaneand all document windows have to
inherit from it PanelWindow in our case).

8.2 Changes to Original Library

We made several changes to this library. The ngjai them are just subtle cosmetic
changes, two changes which are of major importanee

* DocumentsPane.ActivateTab(Tabltem enethod — allows a user to easily activate
chosen tab

* DockManager.ActiveTabChangeavent — invoked when an active tab in
DocumentsPands changed

38

9 GUI-Windows

9.1 Main window

Main window ensures proper displaying of dockabiedews (Navigator, Project, Properties)
and all diagram tabs as well as interaction ambegt

9.1.1 Docking & Managing Diagrams
The management of dockable windows is achievedsimguDockingLibrary — Main window
incorporatesDockManager and after loading registers Navigator, Project Bnoperties as
dockable windows oDockManager. Main window also handles opening/closing/changing
of diagrams and notifications to other windows ahbu
WhenDockManager invokes evenActiveTabChangedViain window reacts to it by finding
a diagram associated with now active tab and invakeentActiveDiagramChangedThis
event is handled by meth@hActiveDiagramChanged(.. flandling of this event is required
for proper synchronization amongst active diagriiayigator, Properties and also the main
toolbar.

9.1.2 Main toolbar
Main toolbar consists of several groups of butttmmscontrolling project, displayed dockable
windows and, above all, editing diagrams. The siglecf displayed groups depends on the
type of active diagram, the possibility of clicking particular buttons depends on the state of
particular active diagram (e.g. logically, Undadisabled on newly created diagram). That is
the reason why main toolbar visualization has toabigusted after each occurrence of
ActiveDiagramChangedvent.

9.2 Navigator window

Navigator window enables structuring of model atasmto packages and their easy control.
Using Navigator is also the only way to administéasses which are not present in any
diagram at the moment.

9.2.1 Model Administration

When a project is loaded, Navigator is bound tasihg the metho@8indToProject(...) This
ensures that model's collectioflassesis used as items source dfreeViewltem
modelClassesand collectionNestedPackagess used as items source ®feeViewltem
nestedPackagedroper displaying of all classes, attributes,kpges (and their recursively
nested packages) is handledDptaTemplatespackageTemplatandclassTemplate
Editing/adding/removing of these elements is pdesMia context menus of particular
elements. These context menus are also definBdt&Templatesmentioned above.

9.2.2 Interaction with Other Windows

When a class is selected in Navigator, Navigatmokes eventNavigatorSelectedClass
(which includes class reference). Main window redotthis event by selecting referred class
on canvas, if the class is visualized in activgdien, and displaying this class in Properties.
On the other side, Navigator reacts to selecting class on canvas (event
XCaseCanvas.Selectedltems.CollectionChangesla reaction to the event, class selected on
canvas is also selected in Navigator.

39

9.3 Project window

Project window enables projects’ diagrams visuéiimaand administration.

9.3.1 Overview
When a project is loaded, Project window is bound tising the metho8indToProject(...)
DataTemplate projectTemplate then ensures visualization of the project and
memberTemplatéandles visualization of particular diagrams. Ehemmplates also contain
definitions of context menus of project and diagsaammd assign event handler for handling
double click on a diagram. Renaming of project adding/renaming/removing diagrams is
then administered through these context menus.

9.3.2 Interaction with Other Windows
Project window invoke®iagramDClickevent after double click on a diagram. In reactimn
this event, Main window opens a tab with selectedydm (if not open so far) and gives it
focus.
Event DiagramRemoveas invoked after removing a diagram through cohteenu. Main
window reacts to it to ensure closing a tab comtgitthis diagram visualization.
EventDiagramRenamés invoked after renaming a diagram through cantesnu. Invoking
this event enables Main window to change the heatlappropriate tab accordingly to the
new diagram caption.

9.4 Properties window

Properties window displays properties of a PIM 8MPelement selected on the canvas or a
PIM class selected in the Navigator window. If montore elements are selected, Properties
window does not display anything.

There are several independef@aseGridBasecomponents in the Properties window, each
for one type of visual element. Only one is visiatdime.

public abstract class XCaseGridBase : UserControl

{
abstract public void UpdateContent();
/...

}
In the following table there is a list of all elente that can be displayed in the Properties

window together with the grid used for their digphg. All the listed grids can be found in
Gui\Windows\Properties

PIM Element XCaseGridBase grid used
PIM Class PIMClassGrid

Association class AssociationClassGrid

PIM Association AsspciationGrid

Comments CommentGrid

PSM Element XCaseGridBase grid used
PSM Class PSMClassGrid

PSM Association PSMAssociationGrid

PSM Attribute Container AttributeContainerGrid

Content container ContentContainerGrid
Comment CommentGrid

40

| XCaseGridBase =
Abstract Class
—+ UserCanitral

| AssociationClassGrid (¥ | | AssociationGrid ¥ | | AttributeContai... ¥ | | ClassGridBase #] | CommentGrid ¥] | ContentContain... ¥ | | PSMAssociation... ¥ |
Class Class Class Abstract Class Class Class Class
~+ XCaseGridBase ~ XCaseGridBase -+ XCaseGridBase ~+ XCaseGridBase + XCaseGridBase -+ XCaseGridBase - XCaseGridBase
| PIMClassGrid ¥ | PSMClassGrid &
Class Class
=+ ClassGridBase = ClassGridBase
Figure 19

When a selected element on the canvas is changser (selects something else),
SelectionChange$ invoked. According to what has been selecteé, anthese methods is
called and the appropriate specialized grid beconsdsle.

private void DisplaySelectedPIMClass(XCaseViewBase c)

private void DisplaySelectedPSMClass(XCaseViewBase c)

private void DisplaySelectedComment(XCaseCommentc)

private void DisplaySelectedAssociation(XCaseAssociation a)

private void DisplaySelectedAssociationClass(XCaseAssociationClass c)
private void DisplaySelectedPSMContentContainer(PSM_ContentContainer ¢)
private void DisplaySelectedPSMAssociation(PSM_Association p)

private void DisplayAttributeContainer(PSM_AttributeContainer c)

When user selects a PIM class in the Navigator awnBisplayModelClass(Class ahethod
is called. In this case, just model properties lté tlass are displayed in the Properties
window, not appearance properties.

When selection is being changed, the content ofptiegiously displayedKCaseGridBase
component is updatedJpdateContent}o ensure that all unsaved changes are saved, Then
new XCaseGridBasecomponent is displayed in the Properties windbigglay is called on

the appropriate specialized grid).

41

10 Storing and loading of XCase projects
10.1 Serializator

XMLSerializator class provides an interface for serialization & éimtire XCase project to a
single XML file. We call this file with serializeXCase project ‘XCase XML file’ and use
our own suffix*.XCasefor it. ClassXmlVoc is used as a vocabulary of XML element and
attribute names while serializing the XCase project

Public interface:

public class XmlSerializator

{
/I project = XCase project to serialize
public XmlSerializator(Project project);
/I filename = Name of output XCase XML file with se rialized project
/I Returns true if serialization was successful, f alse otherwise
public bool SerilizeTo(string filename);

}

XCase XML file hence contains full information athaane XCase project and such project
can be later completely restored from its XCase XMé& by using XMLDeserializator
class.

XCase XML file

The structure of XCase XML files is precisely désed by XCaseSchema.xg@escription
provided in W3C XML Schema language). The overallture of XCase XML file looks as
the following:

project _
project | ——
e ' ' | Visualization part |
_Logical part | s U
_____ dlagrams
uml dragrams
1 1 / 1Y
primitive_| types prc-flles mr.:ndel B pim_diagrams _psm_diagrams
prtmttwe_types proflles model L p:m_dlagrams . | psm. _diagrams
[Basic data types . i \l/ bt \L
[integer, string, double, diagram . diagram
date, datetime, time, | diagram | diagram
boolenan, decimal, 3 A L Eip :
| object]

- Visualization of elements in one PIM | | Visualization of elements in one PSM |
| diagram in XCase project J | diagram in XCase project

Figure 20

42

10.1.1 Serialization order

First, UML (metamodel+model) is serialized and tladirthe diagrams. This approach ensures
that the logical part of the project (UML metamodel model) and the visualization
(diagrams) are completely separated in the XCasé Kll.

Serialization order of the most important UML andgitams parts is the following:

UML part
1] Data types (basic embedded data types: integarg, date ...)
2] Profiles
3] Model
3.1] PIM classes
0 Their derived PSM classes
» Their nested components (can be recursive):
e PSM Association
 PSM Attribute Container
« PSM Content Choice
e PSM Content Container
e PSM Class Union
3.2] PIM association classes
o0 Their derived PSM classes
» Their nested components (can be recursive) — the s listed
above

3.3] PIM associations (all types: simple assocretj@ggregations, compositions)
3.4] PIM generalizations

Diagrams part
1] PIM diagrams with their visual elements:
* Class (PIM class)
* Association class
* Association
e Comment
* Generalization

2] PSM diagrams with their visual elements
e Class (PSM class)
 PSM association
e Comment
e PSM attribute container
* PSM content container
* PSM content choice
* PSM class union

43

ID Table

During serialization, each serialized element gstsinique ID. This is then serialized as ID
XML attribute and determines the serialized elem@titelements with assigned ID attribute
are being stored in HashTaldd ableduring serialization.

HashTable idTable; //[Key = Element; Value = ID]
References are then handled via ID/REF mechanism.

In the XCase XML file, elements referring to othedlements use attribute with keyword
containingref. If there is an element wit@ref = nsomewhere in XCase XML file, it refers
to an element witl@id = n

10.1.2 Example

In the UML part there is a PSM class with @id = 43.

< xc:psm_class id ="43" name="Classl ">

</ xc:psm_class >

In diagrams part there is the visualization for this class, which is expressed by @ref = 43.

< xc:class ref ="43" methods_collapsed =" False "
properties_collapsed =" False "
element_label_collapsed =" False "
element_label _aligned_right =" False ">
< Xxc:appearance > </ Xc.appearance >
</ xc:class >

44

10.2 XML Deserializator

XMLDeserializator class provides an interface for restoration ohtkatire XCase project
(UML model + visualization) from XCase XML file. @sXmlVoc is used as a vocabulary
of XML element and attribute names while restotimg XCase project.

Public interface:

public class XmlDeserializator

{

public XmlDeserializator();

public static bool ValidateXML(System.IO. Stream input, ref String
message);

public static bool ValidateXML(string file, ref String message);
/I file = Valid XCase XML file

/I window = window where to restore the visualizati on diagrams
public void RestoreProject(string file, MainWindow windowy);

/I input = Valid streamed XCase XML

/I window = window where to restore the visualizati on diagrams

public void RestoreProject(System.IO. Stream input, MainWindow windowy);
}
Validation

Before starting the restoration itself it is recoemded to check the validity of the input
XCase XML file by callingvalidateXMLmethod.
It returnstrue if the passed XML is a valid XCase XML filBalseis returned otherwise.

ID Table

While reading XCase XML file, all restored elemente added tadTable along with their
IDs. This ensures correct restoration of referertmetsveen elements. References between
elements are provides via @id/@ref attributes emXase XML file.

HashTable idTable; // [Key = ID; Value = Element]

10.2.1 Restoration Order

First, primitive types and profiles are restoretiefi there are two phases: PIM and PSM. In
PIM phase, all PIM diagrams with all their PIM elemts are restored;, in PSM phase, all
PSM diagrams with all their PSM elements. A PIMaPSM element is always restored
together with its visualization.

1] Primitive Types
2] Profiles
3] PIM elements
3.1] Comments in PIM diagrams
3.2] Datatypes
3.3] Packages (recursive) — PIM elements
3.4] PIM classes

45

3.5] Association classes
3.5] PIM Associations
3.6] PIM Generalizations
4] PSM elements
4.1] Derived PSM classes and their componentsi{se®)
4.2] PSM Generalizations
4.3] PSM Associations

10.3 XmlVocabulary
ClassXmlVoc serves as a collection of static strings used i Xlement and attribute
names in XCase XML file. These static strings aeduduring serialization as well as during

deserialization instead of writing the XML elemeaimes right into the source code.

ClassXmlVoc offers all element and attribute names defined@raseSchema.xss$ well as
some XPath queries constructed from these names.

46

11 Translation of PSM diagrams into XML schemas

XCase PSM diagram describe a given type of XML doents on the conceptual level. For
practical reasons, we need to translate it to aih. Xbhema that describes the type on the
logical level. For this, we can apply an XML schelaraguage like XML Schema [4] or
RELAX NG [5].

11.1 Description of PSM diagram

PSM diagram contains mainly PSMClasses connectddSiAssociations — these are main
semantic elements and are representations of Glasgk Associations in PIM diagrams. In
addition it contains other elements that describaéctire of the XML document and are not
referencing any PIM elements. Those d&&MClassUnion PSMAttributeContainer,
PSMContentContainer andPSMContentChoice

PSMContentContainer, PSMContentChoice and PSMClass all implement interface
PSMSuperordinateComponentwhich means that they can have other classes mgpigng
PSMSubordinateComponent interface among their components
(PSMSubordinateComponent.Componeitslection). PSMClassUnions can have only
PSMClasses among their components P$MClassUnion.Componentscollection).
PSMAssociation always starts in aPSMSuperordinateComponent and leads to
PSMAssociationChild, which is eithePSMClassor PSMClassUnion(see Figure 2).
PSMDiagram is basically a forest of trees composed of thdements where following
elements act as nodes:

« PSMClass
 PSMContentChoice
 PSMAttributeContainer,
« PSMContentContainer
 PSMClassUnion

and following as edges:

* PSMAssociation

* lines connectingSMSuperordinateComponentto its components
* lines connecting?SMClassUnionto its components

* (specializations also act as edges, they will serileed later).

Roots of the forest are alwapSMClassesand they are stored in tR®otscollection of
PSMDiagram (see Figurel).

a7

E“‘.

PSMDiagram
Class
—+ Diagram
[|
= Properties ;
et PSMClass @
" Roots Interface
® Methods =+ 15 base interfaces
[|
4 o -
Figure 21 - PSMDiagram and its roots
8 n'-\'
PSMSubordinateComponent E3
Interface
= 5 hase interfaces
L |
= Properties
§ Parent
5 ¥
: : r: e
PSMContentContainer (¥ PSMContentChoice (¥ PSMAssociation E3
Irterface Interface Interface
= 8 base interfaces — 8 base interfaces = 7 base interfaces
i | i | i ¥
% -
= Properties
M child
J? X
P = 1
PSMSuperordinateComponent (£ PSMAssociationChild (¥
Interface Irterface
=+ & base interfaces =+ & base interfaces
e | |2
= Properties o
E Companents
% Methods
" .
fa
1
: s 5 —
PSMClass ® PSMClassUnion (2
Interface Interface
=+ 15 base interfaces =+ 7 base interfaces
.\--1.] [|
= Properties
ﬁ' Components

.,

Figure 22 - Basic elements in PSM diagram

48

11.2 Translation infrastructure

Abstract clas®iagramTranslator is meant to be parent class of all the classddridaslate
PSM diagram to a XML schema. One derived clasémtSchemaTranslator is currently
provided in XCaseXmlSchemaTranslator translates PSM Diagram to a XML schema in
XML Schema language [4]. The translation is basethe algorithm described in [6].

There may be constructions that are valid in PSEgm@ims (that describe a set of XML
documents), but they cannot be expressed by theretentranslator (see Part 4 for a list of
these constructions related to translation to XMthe&na language). Errors and warnings
caused by the constructions in PSM diagrams thahatabe expressed by the concrete
translator should be kept in theanslationLog class.

DiagramTranslator has a set ofTranslate{..} methods that all have empty default
implementation (except fofranslateSubordinateComponehgat continues the translation by
calling more specific Translate{..} method afdanslateSpecializationthat continues by
calling TranslateSpecializatiofor each specialization. Other methods have erptifes and

it is up to the derived classes to override theybibdheeded. Also the order in which the
methods are called is up to the derived classesh Harived class must override abstract
Translate method, which returns the result of thediation.

! DiagramTransiator<Context, Typeldentifiers %) | | ¥miSchemaTranslator ¥ |

Generic Abstract Class Class
= DiagramTranslator< TranslationConted, string

= Methods)

3% DiagramTranslator

% Translate "IPSMD' ¥ |

o Diagram iagram
3% TranslateAssociation j‘—g Class
3% TranslatefssociationChild - Diagram

3% TranslateAttributeContainer e

7¥ TranslateClass

7 TranslateContentContainer

£

“ Log (TranslationLog
L 000000 " -t Class
7% TranslateSpecialization =+ List<LogMessage>

7% TranslateSpecializations

77 TranslateContentChoice

7* TranslateSubordinateComponent

Figure 23 - Translators

49

11.3 Part 3 Translation to XML Schema language

XmlSchemaTranslator is a subclass dDiagramTranslator that translates PSM Diagram
into a XML schema in XML Schema languag&mlSchemaTranslator and classes
supporting the translation to XML Schema reside innamespace
XCase.Translation.XmlSchema

XmlISchemaWriter is a wrapper of standard .NET clagsmlWriter that makes writing
declarations of XML Schema language more conveniémiSchemaWriters are created by
WriterFactory class.SimpleTypesWriter is aXmlSchemaWriter that can write definitions
of simple types (definitions already written argki DeclaredTypesproperty).

Typehttribute (+ 1 overload)
Eml5chemaWriter

{ WriterFactory [#] | XmlSchemaWriter (2
Class Class
¥ Fields # Fields
= properties = properties] N
P DefaultPackage B IsEmpty | SimpleTypesWriter €S
#F Log # Log Class .
t G - —+ Xmil5chemaWriter
= Methods #r NamespacePrefix
% CreateGlobal Writer = Methods i Fields
% CreateWriter [+ 1 cverlcad) % AbstractAttribute = Properties
W GetResult % AppendContent e
@ Initialize @ Attribute i =Y DeclaredTypes
W WriterFactory W AttributefsElement = Methods
- = % AttributeGroup W SimpleTypesWriter
@ AttributeGroupRef % WriteSimpleDataTypeDeclaration
% ComplexContent 3
% ComplexType (+ 1 overload)
@ Element
% EndElement
% Extension
% Group
% GroupRef
% Choice
% MultiplicityAttributes
W Sequence
% Schema
@
o

Figure 24 - Translation writers

Each time a new global declaration (complex typemup, attribute group) is needed,
WriterFactory.CreateGlobalWritelis called and returned writer can be used to wthie
declaration. Contents of all writers created by séhecalls are concatenated when
WriterFactory.GetResulis called (this method returns result of the whinénslation). For
temporary writersCreateWritermethod can be called (writers returned by thi$ @ not
considered irGetResult

50

11.3.1 Basic translation principles
The algorithm [6] works as follows:
Classes with defined element labels are translateglobal xs:complexType definitions.
Classes from roots also adidbal xs:element definition. Classes without element labels
are translated into model groups and attribute ggoAssociations are translated into element
declarations referencing complex types if childh# association is translated into a complex
type. If it is translated into groups, referenceshe groups are propagated to the complex
type above. (Note: xml document declaration and zoilema starting declaration will be
omitted in the examples).
The algorithm creates a new global declaration acheroot class and continues with
translation of the contents of the root class amént proceeds recursively. All
XmlSchemaTranslator. Translate{methods have a parameter of tyfranslationContext.
This is a class that contains references to tkmkchemaWriters:

» TreeDeclarations- this is the “current writer” where the elemenbeing translated

» ComposedAttributes- this writer is used when references to attribgteups are
propagated to a complex type above (see sectiarslBtion of a class section (2))

» ComposedContent this writer is used when references to groupspanpagated to a
complex type above (see section Translation oésscsection (2))

Assume clasdJ with Attributes A;, .., An and component€;, ... C.. Type of eachAiis
usually a SimpleDataType (translated to built in Xchema data type or to a restriction of
another SimpleDataType), but other data types canused in Class (see Part 3.5 —
Translation of simple types). Eachis an association, attribute container, contentainar,

or content choice. In PSM Diagram Cldgsnodels a sequence of XML elements and set of
XML attributes. The XML elements are modeled by toatent ofU and XML attributes by
the attributes ot/. The components df are translated toxs:sequence declaration

<Xs.sequence>

XSC; ... XSC,
</xs:sequence>

whereXSC;denotes the translation ¢f(the translation is described later in this seqgtidine
xs:sequence is denoted<SEy .
The attributes ob) are translated to a sequence

XSA; .. XSAm

whereXSA;denotes the translation df(the translation is described later in this seqtidime
sequence is denotedsiy .

U gets assigned an automatically generated unigueerfor the purposes of the translation.
Names are generated by the clissningSupport (this class ensures that created complex
types gets assigned distinct names even when nafmée PSM Classes behind them are
identical, which is valid in PSM Diagrams). Theigaed name is composed of the name of
the typeT represented by and sequence number for the nodes represeftinghe PSM
Diagram. Name generated by NamingSupport for tagstl will be denotedr'Vy in this text.

If there is an association leading franto V and V does not have an element label, the XML
attributes modeled by are propagated td). Therefore, XSAy must be extended with
declarations of such XML attributes. The only excaps are the child nodes of contained

in a content container. In that case the XML atiigés are propagated to the XML element

51

modeled by the content container (because contentainers are also translated into
xs:complexType declaration).

As we show in a moment, the declarations of the Xaftkibutes modeled by classes without
element labels are included in the resulting XMbhesuoa in a form of attribute groups (i.e.
xs:attributeGroup construct) namedNv-a. Therefore, for each chilef of U without an
element label and not contained in a content coetakSAy is extended with

<xs:attributeGroup ref=" TNv-a' I>

11.3.2 Translation of attributes and content
In the following list we describe how is translated to an XML schema representation. (1)
describes the translation in cagéas an element label. (2) describes the translaticaseU
does not have an element label. (3) covers speafiabstract classes.

(1) Class with an element label
If Uhas an element lab#l, the sequence of XML elements and set of XML ladiies
modeled byUis enclosed in an XML element nam&d To describe the content of the XML
elementlU we use a complex type (ixes:complexType construct) composed &fSEy and
XSAy . Therefore XSEy and XSAy are included in the resulting XML schema in a farha
global complex type definition

<xs:complexType name=" TNy'>
XSEy
XSAy

</xs:complexType>

Moreover, ifUis a member of the Roots collection of the PSMgtaan then it models root
XML elements namedU with the content described by the complex type. In that case a
global element declaration

<xs:element name=" [U"type=" TNy'/>

is added to the resulting XML schemallfs not among roots, it is an inner node in the.tree
In that case either a) there exists an associgborg to the clas®’ and then the declaration
for lU XML elements is created in the scope of the trdimsiaof the edge going to'as we
show later or b}V is among components of class union and then dmezit declaration will
be created in the scope of the class union.

Method XmliSchemaTranslator.TranslateClassWithLabel writes the complex type declaration
described above.

(2) Class without an element label

If Udoes not have an element label, the sequence of ébtents and set of XML attributes
modeled byU is not enclosed in an XML element. The attribute€/anodel a set of XML
attributes that is a subset of XML attributes medeby the parent ot/ (if there is any).
Similarly, the content ot/ models a sequence of XML elements that is a patie@tequence
of XML elements modeled by the parenti@f Therefore, we cannot includesE, and XSAy

in the XML schema in the form of a complex typeinigbn, as in the previous case, because
xs:complexType construction can describe only the whole conténXML elements but
not a part. Instead, we use model groups Xsgyroup construction) and attribute groups
(i.e. xs:attributeGroup construction) to includexsSty and XS4y in the XML schema
representation as follows

52

<xs:group name=" TNy-c">
XSEy
</xs:group>
<xs:attributeGroup name=" TNy-a'>

XSy
</xs:attributeGroup>

with the name composed 61Vy followed by the string "-c" or "-a", respectivelystead of
xs:element declarations, that are created in the case (1§remce to groupl'Ny-¢ and
attribute groupl'Ny-a is propagated to the first ancestor in PSM Diagne® that is translated
to a complex type (this can be either class witlkelament label or content container).

Note: there is a departure from the rule that shagsclass with an element label is translated
without using groups. It refers to a situation caming structural representatives and is
described in the section devoted to structuralesgmtatives [see Part 11.3.3].

Note: translation of xs:attributeGroup is differemben the class being translated is under a
content choice or class union and the referentieet@reated group should be propagated to a
complex type above the choice resp. class uniors. fTife is described in section (7) devoted
to class unions.

Method XmiISchemaTranslator.TranslateClassContentToGroups writes the group declarations
described above.

(3) Abstract classes
Class can be markeabstract in a PSM Diagram (by setting the propedjbstractto true).
This is taken into account in translation. Abstreletsses are covered in more detail in Part
3.4 describing translations of specialization. hors — if the class is translated into a
xs:complexType declaration, attributabstract="true” is used for the complex type.
xs:element declarations are not created for abstract clagh @@me exceptions described
in Part 3.4). When the class is translated intougsp references to the groups are not
propagated into containing complex type (again withsame exceptions).

Translation of a class is executed in method XmISchemaTranslator.TranslateClass, which calls either
XmlISchemaTranslator.TranslateClassWithLabel when the class has an element label or method
XmlISchemaTranslator.TranslateClassContentToGroups when the class has not an element label.

Translation of class attributes and contents

In the following list, we describe how the attribstand content o/ are translated. The
content ofU is composed of associations going to classes @s alaions, content choices,
attribute containers and content containers. ThHewng list describes the translation of all
these constructs. (4) is related to the attribafes. The other items are related to the content
of U.

(4) Attribute of a class
A simple attributeA with aliasNA and typedomA of Uis translated to an attribute declaration

<xs:attribute name=" NA" type=" domA" [>

Attributes can have their multiplicity propertieower and Upper defined. But declaring
multiplicity of attributes in XML documents is rested to use="optional” and

53

use="required” definitions. Thus, if Lower is set to 0 and Upperl A is translated as
follows:

<xs:attribute name=" NA"type=" domA" use="optional" />
If both Lower and Upper are set taAls translated into:
<xs:attribute name=" NA" type=" domA" use="required" />

When either Lower or Upper values are greater thanwarning is put into translation log
(because the same attributes cannot occur moreoti@nin an element declaration in XML
documents).

When both Lower and Upper are set to 0, the ateiminot translated.

Attributes can also have their Default propertycsiped. If Default property ofA is set to
“value” thenA is translated as follows:

<xs:attribute name=" NA" type=" domA" default="value" />

It is up to the user to set correct default valicegenerate a valid schema, XCase does not
check the default value (it can be set to an ayitstring) and it is always translated as is.
When both Default value and multiplicity are spdf and multiplicity is set to

"required ", the use attribute is omitted aAds translated into:
<xs:attribute name=" NA" type=" domA" default="value" />
becauseise="required" anddefault="value" would not make sense (and is forbidden

in XML Schema).

Note: there is a departure from the rules for mlittity and that is when the attribute is under
content choice or class union but should be prdedg@ a class or content container above
the content choice resp. class union. This excepsialescribed in Part 4.2 — Attributes under
choice constructions.

XmlISchemaTranslator.TranslateAttributesincludingRepresentative method translates attributes of a
class as described above. It also appends attribute group references for attributes propagated from
classes beneath the translated class.

(5) Attribute container

An attribute container that is composed of atteisut; ... Ax among the components ofis
translated to a sequence

XSA:1 ... XSAk
where XSA;is the following element declaration translatedhfrthe simple attributel; with
aliasNA; and typedomA;:

<xs:element name=" - NA{ type=" domA;" />

Rules for translation of Default property are sanibs for attributes in classes. If Ai has
multiplicity properties Lower set td; and Upper tdJ, they are translated usimgnOccurs
andmaxOccurs declarations:

<xs:element name=" NA/"type=" domA/
minOccurs=" L maxOccurs=" U;'/>

When Upper is set to valueUnlimitedNatural.Infinity , it is translated into
maxOccurs="unbounded" declaration.

54

XmlISchemaWriter.TranslateAttributeContainer writes element declarations of all the attributes in
the attribute container.

(6) Association going to a class

Let E be an association going fromi to classV where m and n are values assigned to
cardinality properties Lower and Upper of the asgam. U can be another class, content
choice, content container or class union.

* |f Vhas an element lab&F, E is translated to an element declaration

<xs:element name=" [V "type=" TNy
minOccurs=" m" maxOccurs=" n"/>

TNv is the name of the global complex type to whiassV is translated.
* If Vdoes not have not an element laliis translated to a model group reference

<xs:group ref=" TNy -c"
minOccurs=" m" maxOccurs=" n"/>

the model group reference is propagated to a neareglex type abov& using
TranslationContext. ComposedContentter. The group declaration is written when
classVis translated.

XmiSchemaWriter.TranslateAssociationChild(V) calls TranslateClass(V) and after V is translated, it
writes the element declaration when V has an element label. When V does not have an element label,
the group reference is written during the translation of components of V using
TranslationContext.ComposedContent writer.

(7) Association going to a class union

Let E be an association going froi to a class union with component, ..., V.. It is
translated to as:choice content model

<xs:choice minOccurs=" m'" maxOccurs=" n'">

XSEy; ... XSEy,
</xs:choice>

where m and n are values assigned to cardinality properties ltoaed Upper of the
associatiorE andXSty; is an element declaration

<xs:element name=" [V{"type=" TNy />
if V;has an element lab#l;, or a model group reference
<xs:group ref=" TNyi-c" I>

if V;does not have an element label.

XmlISchemaTranslator.TranslateAssociationChild writes translation of a class union and calls
TranslateAssociationChild for each of the components Vi, ..., Va

Both class union and content choice enter “choice context”. Specifics of the translation when in
choice context are described in Part 4.2 — Attributes under choice constructions.

55

(8)Content container
Let C be a content container with a nar@among components df. It is translated to an
element declaration
<xs:element name=" IC'>
<xs:complexType>
XSEc
XSAc
</xs:complexType>

</xs:element>

XSEc is the translation of the content ©f The translation of the content 6fis performed in
the same way as a content of a class, i.e. ixissequence containing translations of the
components from the content 6fas described by (5) - (9XSAc is a set of references to
attribute groups translated from the child node# that are contained i@ and do not have
an element label.

XmISchemaWriter.TranslateContentContainer writes translation of the content container. This
method creates new TranslationContext which is passed to the translation of the Components. Using
this new context, all propagated attribute group references and group references are included in the
translation of the content container.

(9)Content choice
A content choice with components... C, is translated to &s:choice content model
<xs:choice>

XSc; ... XScn
</xs:choice>

whereXSc; is the translation of;as described by (5)-(9).

XmlISchemaTranslator.TranslateContentChoice writes translation of the content choice. If there are
any classes without element labels among the components of the content choice or beneath them
(but not beneath en element that is translated to a complex type), references to groups and attribute
groups are written in the TranslationContext.ComposedContent and
TranslationContext.ComposedAttributes writers (so the references are passed to the first element
translated to a complex type above the content container).

Both class union and content choice enter “choice context”. Specifics of the translation when in
choice context are described in Part 11.4.2 — Attributes under choice constructions.

11.3.3 Translation of structural representatives
PSM Diagrams allow structural representative caoigstrLet there be PSMClads$ and its
PSMClass.RepresentedPSMClassperty is assigned a reference to another dladlow U
has all the attributes and contentiofnd also can have some content of its own. Thdewvho
structural representative concept is meant to aleveral PSM Classes representing one PIM
Class without repeating the whole definitions aditttontents types. This concept is also very
beneficial when defining recursive structures in XNbcuments.

56

Catalog

eshop
EShop Category
url code
title
1.x
root-category
Category descripticn category
Category
1
ranager
ProductManager
code
title

Figure 25 - Structural representatives used to defined recursive structure

Concept of structural representatives could be steted via several methods.
XmlSchemaTranslator uses attribute groups and ngrdelps which is more flexible than for
example usings:extension context (with attribute groups and model grougs ftossible

to propagate content and attributes to a complea &bove, like it was described in Part 3.2).
Let U be a structural representative af If Vdoes not have an element label, it is translated
according to Part 11.3.2 (2) to a model and atteilgwoup. If it is does have an element label,
it should be translated into a complex type acewydo section 11.3.2 (1). Because for the
translation of a structural representative we niedrepresented class to be translated into
model and attribute group, the pattern for trangdg’ must be modified a little bit — so ¥fis

a class with an element label and it is being esfeed from a structural representative, it is
not translated into this definition:

<xs:complexType name=" TNy'>
XSEy
XSAy

</xs:complexType>

But rather to

57

<xs:complexType name=" TNy">
<xs:sequence>
<xs:group ref=" TNy-c' >
</xs:sequence>
<xs:attributeGroup ref=" TNv-a" I>
</xs:complexType>

<xs:group name=" TNy-c'>
XSEy

</xs:group>

<xs:attributeGroup name=" TNy-a'>
XSAy

</xs:attributeGroup>

where XSy, and XSAy denote the translations of the content and ategof V;, respectively.
With the algorithm altered like that it is ensutbét V is translated into a model group and
attribute group no matter wheth#has an element label or not.

The altered translation of a PSMClass without label to groups is performed by
XmlISchemaTranslator.TranslateClassWithLabelAsGroups method.

Uitself is translated as follows. The contéhnt .., C,of Uextends the content &f It is
therefore translated toxa:sequence content model

<xs:sequence>
<xs:group ref=" TNy-c'>
XSci ... XScn
</xs:sequence>
whereXSc;denotes the translation 6f. The xs:sequence is denoted<SEy. The attributes

A, ..., An Of Uextend the propagated attributesiof ..., Vi.and are translated to the
sequence

<xs:attributeGroup ref=" TNy-a'>
XSai ... XSam

whereXS,;denotes the translation af. The sequence is denot&84,. For each child/of U
without an element label and not contained in a@erncontainer XS4y is extended with the
reference to the attribute group translated fia(if there is any).

The rest of the translation @f is the same as in the case of classes that arstnuctural
representatives. This is described in Part 11B.A14d (2). It means that if has an element
label thenXSAyand XSty are included in the resulting XML Schema as a dlebanplex type
definition. Otherwise they are included as a maahel attribute group.

Methods XmlSchemaTranslator.TranslateComponentsincludingRepresentative resp.
XmiISchemaTranslator.TranslateAttributesincludingRepresentative are both “structural
representative aware” and thus if class being translated is a structural representative then if the

58

represented class was not already translated, it is translated immediately, and then the contents resp.
attributes of the translated class are translated into the sequences described above.

11.3.4 Translations of generalizations

PIM Diagrams allow defining generalizations and P$Nagrams allow bringing these
generalizations into the PSM level. XML Schema lsage has adequate constructions to
allow translations of these relationships into Xichema. There are two approaches used
that follow the principles described in Part 11.@Pand (2).

Let Ube a node specialized by nodés ..., V.. V, ..., V, are translated as follows.

(10) uhas an element labeiu.

Uis translated to a complex type definitidivyas described in Part 11.3.2 (1). Moreovel/ if
is abstract, the complex type definition has set parameter abstract to true. Eaghs
translated to a complex type definition

<xs:complexType name=" TNy;">
<xs:complexContent>
<xs:extension base=" TNy'>
XSEy;
XSAvi
</xs:extension>
</xs:complexContent>
</xs:complexType>

where XSEy; denotes the translation of the contentVodnd XSAy; denotes the translation of
the attributes oft; as described in Part 11.3.2. The complex type:; extendsTNy which
corresponds to the semantics of the specializati@assU by classV..

(11) udoes not have an element label.

Uis not translated to a complex type definition tutnodel grougl'Ny-¢ and attribute group
TNy-a as described in Part 11.3.2 (2). Therefore, wenaaruse thexs:extension
construction (it can be applied only on complexeg)p Model and attribute groups are used
again.

If V;does not have an element label as well, it is laéed to a model group and attribute
group

59

<xs:group name=" TNy-c">
<xs:sequence>
<xs:group ref=" TNy-c' I>
XSEy;
</xs:sequence>

</xs:group>

<xs:attributeGroup name=" TNyi-a'>
<xs:attributeGroup ref=" TNy-a' I>
XSAvi

</xs:attributeGroup>
If Vi has an element lab&r;, it is translated to a global complex type defomt

<xs:complexType name=" TNV{">

<Xs.sequence>

<xs:group name=" TNy-c"/>
XSEyi
</xs:sequence>
<xs:attributeGroup name=" TNy-a" I>
XSAy;

</xs:complexType>

To fully express the semantics of specializatigeseralized classes must be substitutable by
the specialized classes. This comes up in thesesmets

* Global elements — in section Part 11.3.2 (1) it wtded that each class from PSM
Diagram’s Roots collection that is not abstract #mat has an element label adds a
global element declaration. For classes that sleeigot this has to be extended.

» Element declarations that are a result of assoadteing translated.

» References to groups that are propagated from argenlass without an element
label.

(12) Substitutions of roots
If Uis a root with type nam@&Ny and element labéU. If Uis not an abstract class, then

<xs:element name=" [U'type=" TNy'/>

global declaration is written. To satisfy subsahitity, the same element declaration is
created even when there is some non-abstract clagsose ancestor i& (not necessarily
parent) andC has notan element label and there are no classes witheglelabel betweer
andU in the inheritance hierarchy.

This condition can be checked using extension method PSMClass.CanBeDeclaredAsElement() defined
in namespace XCase.Translation.XmlSchema.

Let U be a node specialized by nodés ..., V.. If V;is a specialization ot/ and V; is not
abstract and has an element lalbeivhich is different fromiUi a global element declaration:

60

<xs:element name=" Vi type=" TNy />

is written. The complex typ&Nv: is declared becausé has the element label. if has an
element labelU, a global element declaration

Because of (10), eacti is translated to a complex type definiti@wy; extendingTNy using
xs:extension construct. Because of the semanticgsoéxtension , the elementUwith
the typeTNy can also have a type inherited frdftvy. Therefore, the element declaratitn
does not represent only the notlan the resulting XML schema but eadhthat does not
have its own element label and therefore inhétifsom U.

Substitutions in associations and class unions

If Uis not a root and there is an associafiggoing from a clas§/yto U, E must be translated
in a different way then we described in Part 11(8)2and (7). Instead the element declaration
created by (6), thes:choice content model

<xs:choice minOccurs=" m'" maxOccurs=" n'">
XSt XSgwvi) ... XSk
</xs:choice>

is created whergn; n) is the cardinality ofsin E. If Udoes not have an element label and is
abstract XS is empty. OtherwiseXSzis the result of the translation &faccording to (5). If
Vihas an element lab#l;, XSgyvyis an element declaration

<xs:element name=" [V{"type=" TNy />
Otherwise XSk is a model group reference
<xs:group ref=" TNyi-c" [>

These substitutions apply recursively {if is specialized byW, substitutions forw is
translated in a similar way as fuj).

If V; was translated to model groupVvi-c, the referenced is placed inside the choice
declaration. But if there also is an attribute grdtiVi;-a, there is not a convenient place
where to put this reference. Thiii;-a is not referenced during translation@{reasons for
this are given in Part 11.4.3 — Specialized class®ut element labels).

Translation of a class union (described in Par8.21(7)) is modified in a similar way as
translation of association.

Method XmiISchemaTranslator.TranslateSubstitutions, which is called for each specialized class, tests
conditions mentioned above and translates substitutions for each specialized class (recursively).

11.3.5 Translation of simple types
XCase allows the user to define custom types orPthelevel. Type of an attribute on PIM
level is propagated to PSM level. XML Schema lamgugarovides constructions to define
custom attribute types and these have to be ugetidiaslation of a PSM Diagram into a
XML schema. XCase supports deriving new simple $ypg restriction of built-in XML
Schema data types and other already defined sitypés. The rules for the restriction are
entered by user into the propertgimpleDataType.DefaultXSDImplementatiohe
translation algorithm considers string valuésahpleDataType.DefaultXSDImplementation
generate a simple type declaration.
Following properties of SimpleDataType are taketo imccount when generating the
declaration:

61

* Name- for naming the type
» Parent— to use as the restriction base
» DefaultXSDImplementation the actual restriction

Following declaration is generated for simple dgfse with values of Name, Parent and
DefaultXSDImplementatioequal to ‘STName”, “ STParent’, “ STXSD":

<xs:simpleType name=" STName">
<xs:restriction base="xs: STParent'>
STXSD

</xs:restriction>
</xs:simpleType>

The value oDefaultXSDImplementatiois pasted into declaration as is (only xml well-
formedness is checked).

11.4 Limitations of XML Schema translation

PSM Diagram describes certain set of XML documeftsnstructions of XML Schema
language are not always sufficient enough to c@alepossible constructions available in
PSM Diagrams. On the other hand, there are som&raations provided by XML Schema
language that cannot be achieved by PSM Diagrarhs 3ection is devoted to these
incompatibilities.

11.4.1 Mixed content
It is possible to define complex types with mixexhtent in XML Schema language. Mixed
content is useful for “document oriented” XML docents (like XHTML pages) but less
useful for documents describing data and since ¥Ga®oriented to data modeling, mixed
content is not supported

62

11.4.2 Attributes under choice constructions
XML Schema language does not allow any kind of fcadbetween attributes”. Attribute
declarations are not allowed x3:choice declarations and the only instrument to control
occurrence of attributes in XML Schema arse="optional” and use="required”
attributes.
Consider following XML Diagram:

Choice

Root

A

Common

CommonAttributs

SN

Optionl Option2
Attributel Attribute2

Figure 26 - Choice

XML documents modeled by this diagram will lookdikhis:
<Root>
<Common CommonAttribute="...” Attribute1="... />
</Root>

or this:
<Root>
<Common CommonAttribute="...” Attribute2="... />

</Root>

However, such a construction cannot be expressexiMly Schema language, but could be
expressed in other languages describing structukMih. documents (i.e. Schematron [7]).

Basic translation algorithm described in Part 1.@isturbs the semantic meaning of the
diagram — according to Part 11.3.2 this diagramld/be translated to following schema:

63

<xs:complexType name="Root">
<xs:attributeGroup ref="Common-a" />
</xs:complexType>

<xs:attributeGroup name="Common-a">
<xs:attribute name="CommonAttribute"
type="xs:string" use="required" />
<xs:attributeGroup ref="Optionl " />
<xs:attributeGroup ref="Option2 " />
</xs:attributeGroup>

<xs:attributeGroup name="Optionl ">
<xs:attribute name="Attribute1"
type="xs:string" use="required" />
</xs:attributeGroup>

<xs:attributeGroup name="Option2 ">
<xs:attribute name="Attribute2"
type="xs:string" use="required" />
</xs:attributeGroup>

This is very different from the semantic meaningté diagram, because all the three
attributes in element Root are now required. Thétebesolution is to declare only
CommonAttribute as required and Attributel and iBttre2 as optional. This would not
prevent the situation where all the three attrisutee defined in Root element or only
CommonAttribute is defined, but at least all docatsevalid according to the desired
descriptions are valid according to the descripimrXML Schema. The additional check
against using both attributes at once would haveetperformed by other means [7].

The translation described in Part 11.3.2 is theeefohanged to support the correct
declarations. XML Schema does not suppsg="optional” anduse="required” on
attribute groups, only on attributes. This obstdebds to introducing “opt-groups” that are
created each time an attribute group needs tofeeereed from a choice context. Translation
is in choice context (see fieldsgChoiceandchoiceCountem XmISchemaTranslator) if it is
translating elements between content choice os clagn (that are translatedxschoice)
and nearest content container or class with elentebél (that are translated to a
xs:complexType).

If the translation is in choice context, attribute€lasses without element labels are translated
into opt-groups. The diagram above will be traregldahto following schema:

64

<xs:complexType name="Root">
<xs:attributeGroup ref="Common-a" />

</xs:complexType>

<xs:attributeGroup name="Common-a">
<xs:attribute name="CommonAttribute"
type="xs:string" use="required" />
<xs:attributeGroup ref="Option1l-a-opt" />
<xs:attributeGroup ref="Option2-a-opt" />
</xs:attributeGroup>

<xs:attributeGroup name="Optionl-a-opt">
<xs:attribute name="Attribute1"
type="xs:string" use="optional" />
</xs:attributeGroup>

<xs:attributeGroup name="Option2-a-opt">
<xs:attribute name="Attribute2"
type="xs:string" use="optional" />
</xs:attributeGroup>

The drawback of opt-groups is that in some diagrémase have to be created both versions of
an attribute group — standard version and opt-gchfigrencing only in theise declarations.

When the attribute group is translated, only the version that is currently needed is written (opt or
normal) by the method XmlSchemaTranslator.TranslateAttributesincludingRepresentative. If the
attribute group needs to be referenced as the other version, it is translated by calling
XmlSchemaTranslator.TranslateAttributeGroupsAgain. The versions already created are tracked in
ClassTranslationData.AttributeGroupUsage field (that can have values None, Optional, Normal and
Both). Also a warning is written to Log when an opt-group is translated, because this is only a work-
around that does not ensure perfect semantic correctness of the XML document being validated.

11.4.3 Specialized classes without element labels
PSM Diagrams allow declaring both general and $igedasses without an element label. In
that case both classes are translated into moakktnbute groups (xs:complexType and
xs:.extension are not used here). Trouble comes whiene is an edge going to the general
class and attribute group of the specific clasaas empty, because having an association
going to a general class should allow the gendaalsdo be substituted by specialized class.
The situation is a bit similar to the situation ciéised in previous section, but is a bit trickier.

65

Consider following diagram:

Inheritance

roct

o

General
GAL
GA2 specif icf \:\
Specificl Specific2
51A1 S2A1
S1A2 S2A2

Figure 27 - Inheritance problem

The diagram contains classes General and Spetifai2have no element labels. They are
translated into groups and groups belonging to ip2aeference the groups belonging to
General. General should be always substitutabl&gdmcific2. The diagram describes XML
documents that look like:

<root GA1="...">
<GA2>..</GA2 >
</root>
or
<root GA1="...">
<GA2>..</GA2 >
<specific S1IA1="..." S1A2="..."/>
</root>
or
<root GA1="..." S2A1="...” S2A2="...">
<GA2>..</GA2>

</root>

But such a set of XML documents can hardly be esqaé in XML Schema. One problem is
that the first and third options are again choosietyveen two possible ways of declaration of
attributes. This is similar to the problem desalile Part 11.4.2 but trying to solve it again by
creating opt-groups fails, because complex typéwmnld result in following translation:

66

<xs:complexType name="Root">
<xs:sequence>
<xs:choice>
<xs:group ref="General-c" />
<xs:element name="specificl" type="Specific1" />
<xs:group ref="Specific2-c" />
</xs:choice>
</xs:sequence>
<xs:attributeGroup ref="General-a-opt" />
<xs:attributeGroup ref="Specific2-a-opt" />
</xs:complexType>

<xs:attributeGroup name="General-a-opt">
<xs:attribute name="GA1" type="xs:string" use="opti onal" />
</xs:attributeGroup>

<xs:attributeGroup name="Specific2-a-opt">
<xs:attributeGroup ref="General-a-opt" />
<xs:attribute name="S2A1" type="xs:string" use="opt ional" />
<xs:attribute name="S2A2" type="xs:string" use="opt ional" />
</xs:attributeGroup>

and there are many problems with this translation:

» there is no check whether Specific2-c and SpecdHicpt are used together in the
document

» attributes in General-a-opt and Specificl-a-opt lsameclared both ore none of them
can be declared (this is similar to translatiorhveihoice context)

» attributes in General-a-opt are not only includedRkbot element but also in element
specificl, because they are part of the conteSpectificl type

» attribute GA1 is in both groups — in General-a-dygtcause it is declared there, and in
Specifc2-a-opt because it references General-afbpetschema above is thus not only
semantically inaccurate, but even invalid.

To overcome the last issue the groups created gpetialized classes would have to not
reference the groups from general classes (in sgladmove <xs:attributeGroup ref="General-
a-opt" /> would be omitted from Specific2-a-opt.ebfhthe schema above would be valid
(although the first two problems would still rempand would described a superset of XML
Documents that were described by the PSM Diagram.

But there are new issues coming from this workadouihe Specific2-a-opt is now not a
superset of General-a-opt, they are distinct settimibutes in fact. If Specific2-a-opt were

referenced from some other class in the diagranthgastructural representative construct
described in Part 11.3.3, the attributes from Ganevould not be included in the

67

representative’s translation which is again sernsahiyi incorrect. The groups would have to
be translated again using the original algorithnesehthe general groups are referenced from
specific groups. And it mustn’t be forgotten tHag¢ lass can be referenced from a structural
representative in two ways — from choice contextamally.

In the end there could be up to three translat@nsach attribute group (and since attribute
groups can be nested and each of the nested gnaupg have to be translated in these three
ways, the resulting schema would be extremely angle

That is why the attribute groups belonging to spleted classes are not referenced from
translations of general classes, moreover situatem be simply solved by assigning an
element label to the specialized class or movirgattributes of the specialized class into an
attribute container (so that they are translate ks:elements). If there is such a
construction in the diagram, warning is writterLg.

11.4.4 Non-deterministic diagrams
It is possible to assign the same element labdlsdassociations going from one class like
in the following diagram:

determinism

parent
Parent
/0
child child
Childl Child2
al a2

Figure 28 - Determinism

The diagram describes XML documents looking like:
<parent>
<child a1="..." />
<child a2="..."” />
</parent>

But XML Schema language does not allow declaring #lements of the same name and
different type in the same scope. Such a conteimt general nondeterministic (the example
above is deterministic, but when the multiplicit@sassociations are changed for example to
1..3 and aliases of both the attributes were theesé would truly be nondeterministic).
XCase translation algorithm does not solve the lpratand the solution is left up to the user
— he is given an error when he tries to validategbnerated XML Schema.

Nondeterministic schema can occur in more strustifer example when there is some
content declared in two model groups and when thaps are both referenced in a complex
type, the result is nondeterministic).

Another similar problem occurs when there are tembaites with the same name defined in
different attribute groups or types and referentggbther in a type or attribute group. This

68

problem is also ignored by the translation anduger must change his diagram to get a valid
schema as a result.

11.4.5 Not package-aware
The translation algorithm does not consider packagel the whole schema is placed in one
namespace common for the project. Creating XML rsaees according to package
hierarchy cannot be used, because PSM Diagramar#aic classes from several packages
and the translated schema has to declare the degipes — and one schema cannot declare
elements in multiple packages.

11.4.6 Multiplicity of attributes is discarded
As described in Part 11.3.2 (4), XML Documents adnrzontain multiple instances of the
same attribute in one elements, therefore only 0..0 and 1..1 multiplicity specifications can
be considered by the translation. Attributes cammuwed to an attribute container, where
their multiplicity can be fully expressed usimgnOccurs and maxOccurs attributes of
element declaration.

69

References

[1] nUML project page on sourceforge.net
http://numl.sourceforge.net

[2] State design pattern.
E. Gamma, R. Helm, R. Johnson, J. M. VlissidesidgpeBatterns: Elements of Reusable
Object-Oriented Software.

[3] Original DockingLibrary webpage -
http://www.codeproject.com/KB/WPF/WPFdockinglib.&sp

[4] W3C, XML Schema Part 0: Primer Second Editi®atober 2004,
http://www.w3.0rg/TR/xmlschema-0/

[5] Relax NG, a schema language for XML.
www.relaxng.org/

[6] M. Necasky: Conceptual Modeling for XML. Ph.ibesis.
Faculty of Mathematics and Physics, Charles UniiyerBrague. May 2008.
http://www.necasky.net/thesis.pdf

[7] Schematron, a rule-based validation language.
http://www.schematron.com/

70

