

Introduction to
Public Key Cryptography

Email:

micahflee@riseup.net

micah@eff.org

5C17 6163 61BD 9F92
422A C08B B4D2 5A1E
9999 9697 (GnuPG)

Jabber:

micah@jabber.ccc.de

F38D9B47 35BD9AC1
3A5AEE1B AA42A761
1B2814E6 (OTR)

Twitter: @micahflee

mailto:micahflee@riseup.net
mailto:micah@eff.org
mailto:micah@jabber.ccc.de

Security Autonomy

● Crypto is hard: Even people who use it
all the time don't understand why they
have to do what experts tell them

● Anyone can follow instructions without
understanding what's going on

● If you understand the nuts and bolts, you
don't need training for specific software

Scope

This workshop covers:
● Secret keys, public
keys, signatures

● Attacks against
encryption and how
to protect yourself

● Encrypting messages
(IM, SMS, email)

● PKI, like HTTPS

This workshop does
not cover:
● The mathematical
magic behind
encryption

● How to use specific
software

Props and Volunteers

● I brought a bunch of props to explain concepts
● I will need volunteers
● You are my guinea pigs! There's a lot of stuff
crammed in here. I'll try to get through as much
as possible.

● I want you to understand these concepts, so
please ask questions at any time

Keys

● Each person who uses public key crypto has
a key pair, public key and secret key

● Secret key

– Keep it secret, keep it safe

– Linked to one's identity

● Public key

– Publish wide and far

– Lots of copies

Alice, Bob, and Eve

● Alice and Bob are just two folks trying
to communicate

● Eve is the eavesdropper
– She can monitor and modify all messages

– Maybe she works at your ISP, or works with
the NSA, or hangs out at the same coffee
shop as you

Sending a Message:
Eavesdropping and Modifying

Description:
● Alice sends message to Bob
● Eve eavesdrops
● Bob replies to Alice
● Eve modifies
● Eve sends message to Bob

Parties:
● Alice
● Bob
● Eve

Encrypting and Decrypting

Description:
● Alice asks for Bob's public key
● Bob gives copy of public key to
Alice

● Alice encrypts message using
Bob's public key

● Alice sends ciphertext to Bob
● Bob uses secret key to decrypt
ciphertext

● Passive Eve can't eavesdrop

Parties:
● Alice
● Bob
● Eve

Imposters

Description:
● Eve pretends to be Alice,
asks for Bob's public key

● Eve encrypts message to
Bob, signs Alice's name

● Bob decrypts, has been
duped

Parties:
● Bob
● Eve

Spies: Part 1

Description:
● Alice asks for Bob's
public key

● Eve intercepts public key!
● Eve gives Alice her own
public key

● Alice encrypts message to
Eve's public key, thinking
it's Bob

Parties:
● Alice
● Bob
● Eve

Spies: Part 2

Description:
● Alice sends message to
Bob, but Eve intercepts!

● Eve decrypts message using
her secret key

● Eve re-encrypts message to
Bob's public key

● Eve sends message to Bob

Parties:
● Alice
● Bob
● Eve

Spies: Part 3
What just happened?

● That was a man in the middle (woman in the
way?) attack

● If you are chatting with someone and your
conversation is unverified, you have no
way of knowing if this is happening to you

● You can be talking to your real friend,
encrypting everything, with your enemy
listening in

Spies: Part 4
What just happened?

● This might happen to you if you are using:
– Pidgin/Adium and OTR

– TextSecure on Android

– PGP/GnuPG

– SSL-enabled internet service: HTTPS, SSH, etc.

● Verifying identity solves this problem

Signatures

● You can use your secret key to digitally
sign something

● Other people who have your public key can
verify your signature

● It is impossible to fake a digital
signature (with some exceptions :p)

Signing Messages
To Prevent Tampering

Description:
● Alice writes a message and
signs it

● Alice sends it to Bob
● Eve intercepts! Modifies the
message but leaves the same
signature

● Bob sees the message is
signed with an invalid
signature

Parties:
● Alice
● Bob
● Eve

Signing Messages
Tampered Anyway

Description:
● Alice writes a message and
signs it

● Alice sends it to Bob
● Eve intercepts! Modifies the
message, and signs it
herself

● Bob sees the message is
signed with a valid
signature

Parties:
● Alice
● Bob
● Eve

Signing Messages
Tampered Anyway (cont.)

● Just because a message is from your friend
and is digitally signed (but unverified)
doesn't mean your enemy didn't sign it!

● Solution is for Alice and Bob to confirm
each other's public keys

Signing Keys

Description:
● Alice and Bob meet in person
at a CryptoParty (or maybe
they talk on the phone)

● Alice gives Bob a copy of her
public key, and Bob signs it

● Bob gives Alice a copy of his
public key, and Alice signs
it

Parties:
● Alice
● Bob

Signing Messages
Eve Gets Caught Tampering

Description:
● Alice writes a message and
signs it

● Alice sends it to Bob
● Eve intercepts! Modifies the
message, and signs it herself

● Bob sees the message is signed
with a valid signature, but not
Alice's!

Parties:
● Alice
● Bob
● Eve

Encrypting and Signing Messages

Description:
● Bob doesn't need to ask for
Alice's key, he already has a
copy he signed

● Bob writes a message, encrypts
with Alice's public key, signs
with his own key

● Bob sends message to Alice
● Eve sulks

Parties:
● Alice
● Bob
● Eve

Eve's Final Trick

Description:
● Eve writes a message to Bob,
pretending to be Alice

● Eve encrypts it to Bob's public key
● Eve sends it to Bob
● Bob receives encrypted message
“from Alice”, that isn't signed

● He decrypts it, reads it, but
wonders why Alice didn't sign it

● Bob could just trust it, but
instead he calls Alice on the phone
to verify. Eve gets caught!

Parties:
● Alice
● Bob
● Eve

Thank you Alice and Bob!
(I'll need new volunteers later)

Web of Trust

Alice has signed Bob's key

Bob has signed Alice's key

Charlie has signed Bob's key

Bob has signed Charlie's key

Charlie needs to talk to Alice

Key Server

Alice Bob CharlieAlice

Please Sign Responsibly

Thanks, XKCD!

HTTPS
Self-Signed Certificate

Description:
● Firefox is packaged with
CA's public key

● Firefox tries to load Bank's
website

● Bank gives Firefox it's
public key

● Firefox sees that Bank's key
is not signed by CA, throws
scary warning

Parties:
● Certificate
Authority

● Bank
● Firefox

HTTPS
CA-Signed Certificate

Description:
● Firefox is packaged with CA's
public key

● Firefox tries to load Bank's
website

● Bank gives Firefox it's public
key that's signed by CA

● Firefox sees that Bank's public
key is signed by CA, starts
encrypted session

Parties:
● Certificate
Authority

● Bank
● Firefox

HTTPS
Man in the Middle

Description:
● Firefox tries to load Bank's website
● Eve intercepts! Eve tries to load
Bank's website

● Bank gives Eve it's public key that's
signed by CA

● Eve gives Firefox Eve's public key
● Firefox sees that the public key
(Eve's) is not signed by CA, throws
scary warning

● Eve sulks

Parties:
● Certificate
Authority

● Bank
● Firefox
● Eve

HTTPS
CA-Signed Man in the Middle

Description:
● Firefox tries to load Bank's website
● Eve intercepts! Eve tries to load Bank's
website

● Bank gives Eve it's public key that's
signed by CA

● Eve works for/owns/hacks CA, and signs her
own public key

● Eve gives Firefox Eve's public key that's
signed by CA

● Firefox sees that the public key (Eve's)
is signed by CA, starts encrypted session
with Firefox

● Everyone loses :(

Parties:
● Certificate
Authority

● Bank
● Firefox
● Eve

Thank you Certificate Authority,
Bank, and Firefox!

Certificate Authorities

● CAs are a bit more complicated than this
● Technically web servers use certificates,
not public keys

● Browsers trust ~100 root CAs
● Like vampires, CAs can sire new CAs
creating intermediate CAs

● New CAs are created when an existing CA digitally signs
the “signing certificate” of a new CA

● If a web servers' CA is signed by an intermediate, the
web server should serve the entire certificate chain,
details details, blah blah blah...

Certificate Authorities (cont.)

● All 100 root CAs, plus all the intermediate CAs,
adds up to roughly 650 different organizations (see:
https://www.eff.org/observatory)

● If any one of them has a malicious employee, gets
hacked, or gets compelled by their government, it
can be used to man in the middle any HTTPS website
on the web

● The certificate authority system is broken, but
decentralized solutions are in the works:
– Sovereign Keys: https://www.eff.org/sovereign-keys

– Convergence: http://convergence.io/

https://www.eff.org/sovereign-keys
http://convergence.io/

Final Thoughts

● Encryption keys are just huge numbers,
stored in a file on your hard drive

● You can backup your keys by backing up
the right files on your hard drive

Final Thoughts

● When you use GPG or TextSecure, your
secret key is stored encrypted

● When you type your passphrase, you are
decrypting your secret key

● If you lose your phone or computer, your
GPG and TextSecure keys are safe as long
as your passphrase is good

Final Thoughts

● OTR (as implemented in Pidgin, Adium,
Gibberbot, ChatSecure) stores your secret key
in plaintext

● You don't have to constantly type an annoying
passphrase to use OTR, which is convenient

● If your computer or phone is lost, your
secret key has been compromised

Thank you! I would love to sign your key.

Email: micahflee@riseup.net 5C17 6163 61BD 9F92 422A C08B B4D2 5A1E 9999 9697
Jabber: micah@jabber.ccc.de F38D9B47 35BD9AC1 3A5AEE1B AA42A761 1B2814E6
Twitter: @micahflee

mailto:micahflee@riseup.net
mailto:micah@jabber.ccc.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

