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A pendulum theoremT

By D.J. AcHESON
Jesus College, Oxford OX1 3DW, U.K.

We consider N linked pendulums which are inverted and balanced on top of one
another, and establish a general theorem which shows how they may be stabilized by
small vertical oscillations of the support.

1. Introduction

Stephenson (1908a, b) showed that it is possible to stabilize a single rigid pendulum
in its inverted, or upside-down, equilibrium position by subjecting the pivot to small
vertical oscillations of suitably high frequency. He confirmed his theoretical
predictions by a practical demonstration of the phenomenon.

While this is a well-known curiosity of classical mechanics it does not seem to be
generally known that an inverted double, or even triple pendulum can be stabilized
in the same way. This was, again, first predicted theoretically by Stephenson, in a
comparatively overlooked paper of 1909, though the idea has reappeared in a
number of subsequent studies (Lowenstern 1932 ; Hsu 1961 ; Kalmus 1970 ; Otterbein
1982; Leiber & Risken 1988).

Here we present a simple but general theorem on the linear stability of an inverted
N-pendulum of any kind. The generality of the theorem is achieved by relating the
stability question to just two elementary properties of the system as a whole when
it is in its non-inverted, or downward-hanging, state.

2. The stability of upside-down pendulums

Theorem. Let N pendulums hang down, one from another, under gravity g, each
having one degree of freedom, the wppermost being suspended from a pivot point O. Let
Wmax N4 Wy, denote the largest and the smallest of the natural frequencies of small
oscillation about this equilibrium state.

Now turn the whole system upside-down. The resulting configuration of the pendulums
can be stabilized (according to linear theory, at least) if we subject the pivot point O to
vertical oscillations of suttable amplitude ¢ and frequency w,. When wi > w2 .. the
stability critervon is

V29 /0y Wiy < € < 0.4509/wk . 2.1

Note. When several pendulums are involved, w2, is typically much greater than
w? i, The condition wj > w2 ,, is then necessary for the stability of the inverted state,
$0 (2.1) then gives the whole stability region in the e-w, plane, as in figure 1.
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Figure 1. Typical region of linear stability for an upside-down N-pendulum, as given by (2.1). Here
e* =0.450 g/w?,. and o = 3.143w?  /w.,.. The sketches indicate theoretical predictions of the
behaviour just outside this stability region. Thus, if at a given frequency w, the amplitude € is just
too large, the system is unstable to rapidly growing buckling oscillations at frequency jw,. If, on
the other hand, ¢ is a little too small, the pendulums fall over comparatively slowly, keeping to the
same side of the vertical.

Proof. Consider first small disturbances to the system about the original, i.e. non-
inverted equilibrium state, the pivot point O being fixed. Let the natural frequencies
be w;, and let X, be the corresponding normal coordinates, each of which will be some
linear combination of the (small) angles which the pendulums make with the
downward vertical. We then have

X, +w?X,=0, i=1,...,N. (2.2)

Now, each of the quantities w? will be simply proportional to ¢; this follows from
the standard theory of small oscillations based on Lagrange’s equations of motion
(see, for example, Landau & Lifschitz 1976), given that the uniform gravitational
field ¢ is the sole source of potential energy in this problem. If we tackle the stability
of the inverted state by changing the sign of ¢ we then find that small disturbances
are governed instead by

X,—w?X,=0, i=1,...,N. (2.3)

Suppose now that the pivot point O oscillates up and down so that its coordinate
in the direction of the upward vertical is A = —e¢cosw,t. We may allow for this
81mply by replacing g in the above argument by apparent gravity g-+h =
g+ ewicoswyt. In this way we find that

X, —w2(1 +(ew?/g) coswyt) X, =0, i=1,...,N.

On introducing the scaling 7'= w,t we therefore obtain N uncoupled Mathieu
equations:

d2X,/dT?+ (a;+ B;cos T) X, =0, i=1,...,N, (2.4)
where o =—wi/wl, ,Bi =—wle/y. (2.5)
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Figure 2. Stable (shaded) and unstable regions for the X = 0 solution of Mathieu’s equation
d2X/dT?+ (a+ Bcos T) X = 0. The points (2.6) lie on the straight line OP, and for the inverted state
to be stable they must all lie within the shaded region with o < 0, in the manner indicated (for
N=2).

Now, the stability regions of Mathieu’s equation are well known and indicated in
figure 2. We achieve stability of our inverted system if, by choosing ¢ and o,
appropriately, we can place all the points

wi(—1/wdclg), i=1,....N (2.6)

in the shaded part of the region a < 0.

To see that this can indeed be done it is simplest to pass directly to the high-
frequency limit, i.e. w2 > w2, so that w}/w? is small for all ¢ = 1,...,N. Now, when
|| is small the stability boundary which passes through the origin is given
asymptotically by a =—18* (see, for example, Jordan & Smith 1987, p. 257).
Moreover, the upper boundary to the shaded region in o < 0 is known to meet the

a = 0 axis at |f] = 0.450. Thus all the points (2.6) will be in the stable region if
(2w2/wi) < wie/g <0450, i=1,... N,
ie. if V2¢/w; 0, < € < 0.4509/w? (2.7

for all ¢ = 1,...,N. This is ensured by (2.1).

While this completes the proof, it is worth considering a more general and
geometric approach to the matter. All the points (2.6) lie on a line through the origin
with slope —ew?/g. Imagine, then, that we attach an elastic band OP to the origin in
figure 2, stretch it out, and mark points along it so that their distances from the

length of the band, and its slope —ew?/g, at will.

Now, if wp,, and wpy;, are almost equal, so that the marked points are tightly
clustered along the band, we may evidently steer those points into the stable region
in figure 2 even if |«| is not particularly small, so that } is not large compared with
w2 .- If, on the other hand, w,,, is substantially greater than w,;, — as will typically
be the case — we may still steer all the points into the stable region, but only by
moving the band very close to the a =0 axis in figure 2 and by shrinking it
accordingly. The stability criterion (2.1) will then apply, and the region of stability
in the e-w, plane will be as indicated in figure 1.
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3. Examples
(@) Stephenson’s system inverted

Stephenson’s original double-pendulum analysis was for two identical rods of
uniform density and equal length I. An elementary exercise shows that the natural
frequencies are then

Omax.min = (3E6/4/T) (g/1), (3.1)

and (2.1) becomes
(1.653/w,) (9/1)F < €/1 < 0.085. (3.2)

The first of these inequalities may be written as
(ew,)? > 0.683¢l, (3.3)

which is Stephenson’s original criterion, derived by a different method.
His formula for the inverted triple pendulum appears, unfortunately, to be in
error; the theorem of §2 gives

(1.738/w,) (g/1) < €/1 < 0.03 (3.4)

as the high-frequency stability criterion for an inverted triple pendulum consisting
of three equal heavy rods.

(b) The point-mass double pendulum

Consider now a double pendulum consisting of two point masses m,, m, and two
light rods of equal length I (as sketched in figure 1). The normal modes of small
oscillation about the lower, inherently stable equilibrium position (with O fixed) have
frequencies

— = and o,y ;
max (1_1722)i min (1+ E)

, (3.5)

where m = my/(My +my), (3.6)

m, denoting the point mass which is attached directly to O. The high-frequency
criterion (2.1) for the stability of the inverted equilibrium position then reduces to
M(Q) <% <0.450(1 —mb). (3.7)
W, l l

For comparison, we show in figure 3 the stability boundaries for this inverted
double pendulum obtained by direct numerical integration of the equations of
motion, linearized about the upward vertical. At high frequencies w, the stable range
of ¢/l is given well by (3.7), but if the upper mass m, is much smaller than the lower
mass m, it is possible to stabilize the system with a comparatively small driving
frequency w, and (3.7) does not then apply. This case corresponds, of course, to wp,,
and w;, being almost equal (see (3.5) and the end of §2); indeed, when m = 0 the two
coincide and (3.7) reduces to the stability criterion for an inverted single pendulum.
More typically, rather high frequencies w, are needed to give stability, and (2.1)
then provides a good approximation to the whole stability region in the e, plane.

The case of equal masses (m = 0.5) is a good. example:

(1.85/w,) (g/1)} < €/1 < 0.132, (3.8)
Proc. R. Soc. Lond. A (1993)
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Figure 3. Computed linear stability boundaries for the inverted point-mass double pendulum
for four values of m = m,/(m, +m,).

for the right-hand stability boundary in figure 3 is indeed almost a straight line
parallel to the wy-axis, save at the very lowest frequencies giving stability.

The larger the value of m, clearly, the smaller we have to take ¢ and the higher we
have to take w,, but there is in theory no upper limit to the mass ratio m,/m, which
can be stabilized by vertical oscillations of the support.

(¢) An inverted N-pendulum

We now apply the theorem of §2 to a pendulum with N equal point masses
connected by N equal light rods of total length L = NI.
The natural frequencies of oscillation about the lower equilibrium position are

o= &g/}, i=1,... N, (3.9)

where £; denotes the ith zero of the Laguerre polynomial L y(x); this was shown by
Daniel Bernoulli and by Euler in the late 1730s (see Cannon & Dostrovsky 1981).
In the case N = 3 this gives

w, = 0.64(g/1)}, w,=151(g/l}, w,=2.51(g/l), (3.10)
and on taking the greatest and least of these we find that the criterion (2.1) becomes
(2.21/w,) (9/1)* < €/1 < 0.07. (3.11)

For comparison, figure 4 shows the stability boundary obtained by numerical
integration of the linearized equations of motion.

When N is large we can use the asymptotic expression &, ~ y2/4N, where y; denotes
the ith zero of the Bessel function Jy(x). With y, =2.4 and y, = (N—1)© we then
have

Wnin = 12(g/L)7, Wmax = %(N—%) Tt(g/L)E,

and therefore

1L18(g) e _ 0.182
L

=<3 A2
o, \L) S 0-p 12

as the criterion for the stability of this particular inverted N-pendulum, when N is
large.
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Figure 4. Computed regions of linear stability for the upside-down N-pendulum, for N=1,2,3,
in the case when the various (point) masses are equal.

Suppose finally that L is fixed. Then, the larger the value of N, the smaller we must
take e, and, consequently, the larger we must take v, if stability is to be achieved.
The limit N— oo for fixed L corresponds to a perfectly flexible string, and was of
major interest in the original investigations of Bernoulli and Euler. The region of
stability of the inverted state vanishes altogether in this limit, so we cannot perform
the Indian rope trick.

4. Concluding remarks

While the theorem of this paper concerns linear stability, numerical integrations
of the full equations of motion have also been carried out, together with laboratory
experiments (Acheson & Mullin 1993). These further studies show the stability of
these inverted states to be remarkably robust, at least in the cases N=1,2,3. In
particular, we have seen an inverted triple pendulum recover from very severe initial
disturbances and gradually wobble back to the upward vertical.

I am grateful to Peter Clifford, Don Fowler, Janet Mills, Tom Mullin and John Roe for helpful
discussions and encouragement.
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