Freies Elektronengas

- Modell 1900 vorgestellt nach Entdeckung des Elektrons
- erklärt Ladungstransport in Metallen
- greift Ideen der kinetischen Gastheorie auf ("Elektronengas")

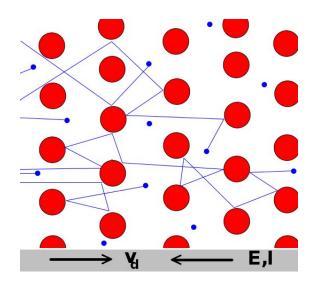
Annahmen

- zwischen Stößen bewegen sich die Elektronen frei (Näherung freier Elektronen, Näherung unabhängiger Elektronen)
- durch Stöße an Ionen (harte Kugeln) bewegen sich die Elektronen diffusiv mit konstanter Geschwindigkeit
- Wahrscheinlichkeit für einen Stroß ist $\frac{1}{\tau}$ (Streurate), Stöße sind unabhängig
- 4 durch Stöße befinden sich die Elektronen im thermischen Gleichgewicht mit der Umgebung

- Modell 1900 vorgestellt nach Entdeckung des Elektrons
- erklärt Ladungstransport in Metallen
- greift Ideen der kinetischen Gastheorie auf ("Elektronengas")

Annahmen:

- I zwischen Stößen bewegen sich die Elektronen frei (Näherung freier Elektronen, Näherung unabhängiger Elektronen)
- 2 durch Stöße an Ionen (harte Kugeln) bewegen sich die Elektronen diffusiv mit konstanter Geschwindigkeit
- **3** Wahrscheinlichkeit für einen Stroß ist $\frac{1}{\tau}$ (Streurate), Stöße sind unabhängig
- 4 durch Stöße befinden sich die Elektronen im thermischen Gleichgewicht mit der Umgebung



Neigung: $ec{E}$

Kugel: Elektron

Bumper: Ion

Annahme freier Elektronen

Warum bewegen sich Elektronen zwischen Stößen frei?

- Valenzelektronen weitgehend delokalisiert und über den Kristall "verschmiert" (Leitungselektronen)
- Leitungselektronen sehen nicht "nacktes"
 Coloumb-Potential, sondern ein Pseudopotential
- kaum Elektron-Elektorn-Stöße wegen Pauli-Prinzip
- gute Näherung für Metalle mit einem Leitungselektron

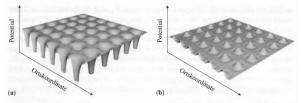


Bild 8.2: Anschauliche Darstellung der Potentiallandschaft. Die Bildbegrenzung ist so gewählt, dass ein Schnitt entlang von Atomkernen erfolgt, der andere dagegen zwischen den Rümpfen liegt. a) Coulomb-Potential, b) Pseudopotential.

Ohmsches Gesetz

lacksquare Bewegungsgleichung für ein Elektron im Feld ec E

$$\vec{v}(t) = \vec{v}_0 + \vec{\alpha}t = \vec{v}_0 + \frac{\vec{F}t}{m_e} = \vec{v}_0 + \frac{-\vec{E}e \cdot t}{m_e}$$

■ mittlere freie Stoßzeit: $t = \tau$, $\vec{v}_0 = 0$

$$\vec{v}_{\mathrm{D}} = \vec{v}(\tau) = -\frac{\mathbf{e} \cdot \tau}{m_{\mathrm{e}}} \vec{\mathbf{E}}$$

■ für die Stromdichte folgt

$$ec{j} = -\mathrm{e} n ec{v}_\mathrm{d} = rac{n\mathrm{e}^2 au}{m_\mathrm{e}} ec{E} \ \Rightarrow ec{j} \propto ec{E}$$

und damit für die Leitfähigkeit

$$\sigma = \frac{\dot{J}}{E} = \frac{n e^2 \tau}{m_e}$$

Ohmsches Gesetz

- $lue{\sigma}$ Tensor in anisotropen Materialien
- \blacksquare Ohmsches Gesetz zurückgeführt auf Elektronendichte n und Stoßzeit τ
- in der Herleitung werden alle Leitungselektronen beschleunigt: Widerspruch zur Fermi-Dirac-Verteilung
- man erwartet große Anzahl von Stößen mit den Gitteratomen
- experimentell: freie Weglänge hängt von Temperatur und Qualität des Kristalls ab
- experimentell: freie Weglängen deutlich größer als vorhergesagt

Grenzen und Probleme des Drude-Modells

- ⊕ erklärt Ladungstransport in Metallen
- ⊕ erklärt Hall-Effekt
- erklärt thermische Leitfähigkeit
- ⊕ erklärt Wiedemann-Franz-Gesetz
- ⊖ überschätzt elektronische Wärmekapazität von Metallen
- erklärt nicht, welche Materialien Leiter bzw. Isolatoren sind
- erklärt nicht Temperaturabhängigkeit der thermischen und elektrischen Leitfähigkeit
- ⊖ viele Aussagen nur qualitativ richtig

Hauptproblem: beachtet nicht Pauli-Prinzip

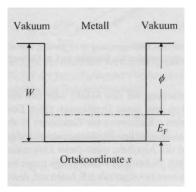
Grenzen und Probleme des Drude-Modells

- ⊕ erklärt Ladungstransport in Metallen
- ⊕ erklärt Hall-Effekt
- erklärt thermische Leitfähigkeit
- ⊕ erklärt Wiedemann-Franz-Gesetz
- ⊖ überschätzt elektronische Wärmekapazität von Metallen
- erklärt nicht, welche Materialien Leiter bzw. Isolatoren sind
- erklärt nicht Temperaturabhängigkeit der thermischen und elektrischen Leitfähigkeit
- ⊖ viele Aussagen nur qualitativ richtig

Hauptproblem: beachtet nicht Pauli-Prinzip ⇒ Quantenmechanik

Teilchen in einem Potentialtopf der Länge *L*:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x \le L \\ W & sonst \end{cases}$$



Teilchen in einem Potentialtopf der Länge *L*:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x \le L \\ W & sonst \end{cases}$$

stationäre Schrödingergleichung:

$$-\frac{\hbar^2}{2m}\Delta\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = E\psi(\vec{r})$$

Teilchen in einem Potentialtopf der Länge *L*:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x \le L \\ W & sonst \end{cases}$$

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

Teilchen in einem Potentialtopf der Länge *L*:

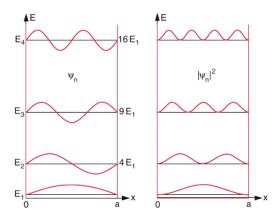
$$V(x, y, z) = \begin{cases} 0 & 0 \le x \le L \\ W & sonst \end{cases}$$

stationäre Schrödingergleichung im Metall:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

Lösung: ebene Wellen; Normierung $\psi_n(0) = \psi_n(L) = 0$

$$\psi_{\mathrm{n}}(x)=\sqrt{rac{2}{L}}\sin\left(\mathrm{n}rac{\pi}{L}x
ight), \ \ k_{\mathrm{n}}=rac{\pi}{L}\mathrm{n}$$
 $E_{\mathrm{n}}=rac{\hbar^{2}\pi^{2}}{2\mathrm{m}L^{2}}\mathrm{n}^{2}$



Teilchen in einem würfelförmigen Potential der Kantenlänge L:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x, y, z \le L \\ W & sonst \end{cases}$$

$$-\frac{\hbar^2}{2\mathsf{m}}\Delta\psi(\vec{r}) = E\psi(\vec{r})$$

Teilchen in einem würfelförmigen Potential der Kantenlänge L:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x, y, z \le L \\ W & sonst \end{cases}$$

$$-\frac{\hbar^2}{2m}\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{\mathrm{d}^2}{\mathrm{d}y^2} + \frac{\mathrm{d}^2}{\mathrm{d}z^2}\right)\psi(\vec{r}) = E\psi(\vec{r})$$

Teilchen in einem würfelförmigen Potential der Kantenlänge L:

$$V(x, y, z) = \begin{cases} 0 & 0 \le x, y, z \le L \\ W & sonst \end{cases}$$

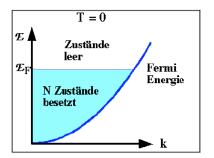
$$-\frac{\hbar^2}{2m}\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{\mathrm{d}^2}{\mathrm{d}y^2} + \frac{\mathrm{d}^2}{\mathrm{d}z^2}\right)\psi(\vec{r}) = E\psi(\vec{r})$$

Lösung:
$$E = E_x + E_y + E_z$$
, $\psi(\vec{r}) = \psi_1(x)\psi_2(y)\psi_3(z)$

$$\psi(\vec{r}) = \mathrm{Ce}^{\mathrm{i}\vec{k}\cdot\vec{r}}, \quad \left|E = \frac{\hbar^2 k^2}{2m}\right|$$

$$k_i = \frac{2\pi}{L} n_i$$
, mit $i = (x, y, z)$

Fermi-Energie



Wie groß ist die Energie des höchstbesetzten Zustands (Fermi-Energie) bei Temperatur T=0K?

Fermi-Energie

- \blacksquare N Elektronen besetzen die $\frac{N}{2}$ energetisch niedrigsten Zustände
- lacksquare Seitenlänge der Einheitszelle im Impulsraum: $\frac{2\pi}{L}$
- lacksquare besetzte Zustände füllen im Impulsraum eine Kugel mit Volumen $V=rac{4}{3}\pi {
 m k}_{
 m F}^3$
- Anzahl der Zustände muss Anzahl der Elektronen N entsprechen

$$N = rac{2 \cdot ext{Kugelvolumen}}{ ext{Zustandsvolumen}} = 2 \cdot rac{rac{4}{3} \pi ext{K}_{ ext{F}}^{3}}{\left(rac{2\pi}{L}
ight)^{3}}$$

■ für den Radius der Kugel folgt:

$$k_{
m F} = \left(rac{3\pi^2{
m N}}{{
m V}}
ight)^{rac{1}{3}} \;\; \Rightarrow {
m E}_{
m F} = rac{\hbar^2}{2{
m m}} \left(rac{3\pi^2{
m N}}{{
m V}}
ight)^{rac{2}{3}}$$

Fermi-Energie

Parametrisierung der Fermi-Energie über die Temperatur:

$$k_{\rm B}T_{\rm F}=E_{\rm F}$$

	Wertig- keit	Elektronenzahi- dichte [cm ⁻³]	Fermi- Energie [eV]	Fermi- Temperatur [K]	
Li	1	4,70 1022	4,72	54800	
Rb	1 .	$1.15 \cdot 10^{22}$	1,85	21500	
Cu	1	8.45 · 10 ²²	7,00	81200	
Au .	1	$5,90 \cdot 10^{22}$	5,51	63900	
Be	2	$24,20 \cdot 10^{22}$	14,14	164 100	
Zn	2	$13,10 \cdot 10^{22}$	9,39	109000	
Al	3	$18,06 \cdot 10^{22}$	11,63	134900	
Pb	4	$13,20 \cdot 10^{22}$	9,37	108700	

Fermi-See

Zustandsdichte

Anzahl der Zustände mit Wellenzahl kleiner k:

$$N(k) = \frac{Vk^3}{3\pi^2}$$

Anzahl der Zustände mit Energie kleiner E:

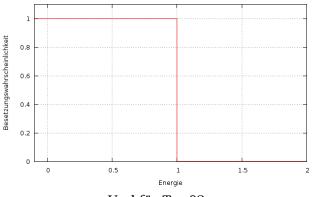
$$N(E) = V \frac{(2mE)^{\frac{3}{2}}}{3\pi^2\hbar^3}$$

Zustandsdichte im Energieraum:

$$rac{\mathrm{dN}(E)}{\mathrm{d}E} = rac{\sqrt{2}V\mathrm{m}^{rac{3}{2}}}{\pi^2\hbar^3}\sqrt{E}$$

Fermi-Dirac-Verteilung

Besetzung für T = 0 klar:



Und für T > 0?

Fermi-Dirac-Verteilung

■ Verteilung durch Fermi-Dirac-Verteilung gegeben:

$$f(E) = \frac{1}{e^{(E-\mu)/(k_BT)} + 1}$$

- lacksquare chemisches Potential $\mu = \left(rac{\partial F}{\partial N}
 ight)_{\mathrm{T,V}}$
- $E_F = \mu(T = 0)$
- für T << T_F

$$\mu(\mathrm{T}) pprox E_\mathrm{F} \left[1 - rac{\pi^2}{12} \left(rac{\mathrm{T}}{\mathrm{T}_\mathrm{F}}
ight)^2
ight] pprox E_\mathrm{F}$$

 \blacksquare Aufweichung der Verteilung um Fermi-Kante von etwa $2k_{B}T$

Fermi-Dirac-Verteilung

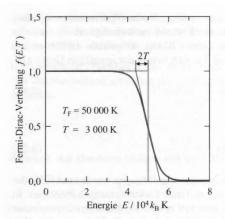


Bild 8.6: Fermi-Dirac-Verteilung als Funktion der Energie bei $T=0\,\mathrm{K}$ und $T=3\,000\,\mathrm{K}$. Es wurde eine so hohe Temperatur gewählt, weil sich bei einer Darstellung für Zimmertemperatur die resultierende Kurve kaum von der bei T=0 unterscheiden ließe. Als Fermi-Temperatur wurde $T_\mathrm{F}=50\,000\,\mathrm{K}$ angenommen.

■ innere Energie $u_0 = \frac{U}{V}$ des Fermi-Gases pro Volumen (T= 0)

$$u_0 = \int_0^\infty E \cdot D(E) \cdot f(E,T) dE = \int_0^{E_F} E \cdot D(E) dE = \frac{3n}{5} E_F = \frac{3n}{5} k_B T_F$$

■ für die spezifische Wärme gilt:

$$\mathbf{c}_{\mathrm{V}}^{\mathrm{el}} = \left(\frac{\partial u}{\partial T}\right)_{\mathrm{V}} \quad \mathrm{mit} \ u(T) = \int_{0}^{\infty} E \cdot \mathbf{D}(E) \cdot \mathbf{f}(E, T) \mathrm{d}E$$

■ innere Energie $u_0 = \frac{U}{V}$ des Fermi-Gases pro Volumen (T= 0)

$$u_0 = \int_0^\infty E \cdot D(E) \cdot f(E,T) dE = \int_0^{E_F} E \cdot D(E) dE = \frac{3n}{5} E_F = \frac{3n}{5} k_B T_F$$

■ für die spezifische Wärme gilt:

$$c_{V}^{el} = \left(\frac{\partial u}{\partial T}\right)_{V}; \ \delta u(T) = u(T) - u_{0} \approx nk_{b}T\frac{T}{T_{F}} - u_{0}$$

■ innere Energie $u_0 = \frac{U}{V}$ des Fermi-Gases pro Volumen (T= 0)

$$u_0 = \int_0^\infty E \cdot D(E) \cdot f(E, T) dE = \int_0^{E_F} E \cdot D(E) dE = \frac{3n}{5} E_F = \frac{3n}{5} k_B T_F$$

■ für die spezifische Wärme gilt:

$$\mathrm{c_{V}^{el}} = \left(rac{\partial u}{\partial T}
ight)_{\mathrm{V}} pprox rac{2 \mathrm{nk_{B}} T}{T_{\mathrm{F}}}$$

■ spezifische Wärme pro Volumen eines Metalls

$$\mathbf{c}_{\mathrm{v}}^{\mathrm{ges}} = \gamma \mathbf{T} + \left\{ egin{array}{ll} 3 n_{\!A} k_{\!B} & T > \theta \ eta T^3 & t << \theta \end{array}
ight.$$

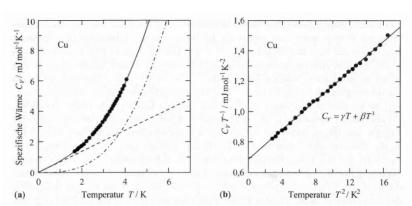


Bild 8.8: a) Verlauf der spezifischen Wärme von Kupfer bei tiefen Temperaturen. Die spezifische Wärme setzt sich aus dem linearen Anteil der Elektronen (gestrichelt) und dem T3-Beitrag der Phononen (strichpunktiert) zusammen. b) Spezifische Wärme C_V/T von Kupfer als Funktion von T^2 . (Nach J.A. Rayne, Austral. J. Phys. 9, 189 (1956)).

effektive Masse

Tabelle 8.2: Vergleich der experimentellen Werte der spezifischen Wärme (pro Mol) einiger Metalle mit den Werten aus dem Modell freier Elektronen.

The state of the state of	Na	K	Al	Cu	Ag
$\gamma_{ m exp}$ / mJ mol $^{-1}$ K $^{-2}$	1,38	2,08	1,35	0,70	0,65
$\gamma_{\rm exp}/\gamma_{\rm theo}$	1,26	1,25	1,48	1,38	1,00

- lacksquare Einführung einer effektiven Masse $m_{th}^*: rac{m_{th}^*}{m_{theo}} = rac{\gamma_{exp}}{\gamma_{theo}}$
- hohe Werte für m^{*}/_m bei Übergangsmetallen: d-Wellenfunktionen mit Vorzugsrichtung

Quellen

- Festkörperphysik, Hunklinger
- Solid State Physics, Ashcroft
- Wikipedia (Drude-Theorie, Elektronengas)