# Neural Networks: When are they Useful?

# An Analysis of Three Different Datasets

Michael Zhou (mgz27), Qiaochu Xiong (qx27), Brian Ling (bjl95)

# Introduction

- Build a suite of neural network algorithms:
  - Fully-Connected Neural Network
  - Convolutional Neural Network
- Datasets Analyzed:
  - Music Notes Datasets (28x28 and 64x64 images)
  - Email Spam Classification Dataset
  - UCI Wine Quality Datasets (Red and White wine examples)
- Goal: Figure out which type of neural network works and does not work for each dataset.





# Dataset 1: Music Notes Dataset

- 2 balanced datasets of 5000 grayscale images
  - Small (28 x 28)
  - Large (64 x 64)

0

- Types of notes:
  - Whole
  - Half
  - Quarter
  - Eighth
  - Sixteenth
- Objective: Classify the note sed on each image
- No standardization needed since all features are uniform (grayscale pixel values)



### Music Notes Dataset: Models Used





Convolutional Neural Network (CNN)

# **FCNN - Experimentation Method**

- MLPClassifier from Scikit-Learn
- 80-20 train-test splits
- Parameter Grid:
  - Early stopping: True, False
  - Hidden Layer Sizes: 100, 200, ..., 500
  - Activation: Relu, Tanh, Logistic
  - Learning rate: Constant, Inverse-scaling, Adaptive
  - Learning rate init: 0.0001, 0.001, 0.01, 1
- Maximum 50K iterations
- Adam optimizer (default)
- 5-fold CV
- Ran grid search and random search (20 iterations)

# **CNN - General Experimentation Method**

- Models built using Keras
- 80-20 train-test splits
- Converted note categories (whole, half, quarter, eighth, sixteenth) into integers 0-4
- Separate CNN architectures for 28x28 and 64x64 images (next two slides) tuned manually (no grid or random search CV)

# CNN Architecture (28 x 28 images)

- Conv2D 32 filters, 3x3 filters, tanh activation, input shape (28,28,1)
- MaxPooling2D 2x2 pool size
- Conv2D 40 filters, 1x1 filters, tanh activation, input shape (28,28,1)
- MaxPooling2D 2x2 pool size
- Conv2D 50 filters, 11x11 filters, tanh activation
- MaxPooling2D 2x2 pool size
- Flatten
- Dense layer with 5 class outputs
- Softmax activation
- Categorical cross-entropy loss + Adadelta optimizer

| Layer (type)                                                                  | Output | Shape       | Param # |
|-------------------------------------------------------------------------------|--------|-------------|---------|
| conv2d_45 (Conv2D)                                                            | (None, | 26, 26, 32) | 320     |
| <pre>max_pooling2d_39 (MaxPooling</pre>                                       | (None, | 13, 13, 32) | 0       |
| conv2d_46 (Conv2D)                                                            | (None, | 3, 3, 40)   | 154920  |
| <pre>max_pooling2d_40 (MaxPooling</pre>                                       | (None, | 1, 1, 40)   | 0       |
| flatten_13 (Flatten)                                                          | (None, | 40)         | 0       |
| dense_13 (Dense)                                                              | (None, | 5)          | 205     |
| activation_13 (Activation)                                                    | (None, | 5)          | 0       |
| Total params: 155,445<br>Trainable params: 155,445<br>Non-trainable params: 0 |        |             |         |

Model: "sequential\_22"

# CNN Architecture (64 x 64 images)

- Conv2D 32 filters, 3x3 filters, tanh activation, input shape (64,64,1)
- MaxPooling2D 2x2 pool size
- Conv2D 40 filters, 11x11 filters, tanh activation
- MaxPooling2D 2x2 pool size
- Flatten
- Dense layer with 5 class outputs
- Softmax activation
- Categorical cross-entropy loss + Adadelta optimizer

Model: "sequential"

| Layer (type)                                                                  | Output | Shape       | Param # |
|-------------------------------------------------------------------------------|--------|-------------|---------|
| conv2d (Conv2D)                                                               | (None, | 62, 62, 32) | 320     |
| <pre>max_pooling2d (MaxPooling2D)</pre>                                       | (None, | 31, 31, 32) | 0       |
| conv2d_1 (Conv2D)                                                             | (None, | 21, 21, 40) | 154920  |
| <pre>max_pooling2d_1 (MaxPooling2</pre>                                       | (None, | 10, 10, 40) | 0       |
| flatten (Flatten)                                                             | (None, | 4000)       | 0       |
| dense (Dense)                                                                 | (None, | 5)          | 20005   |
| activation (Activation)                                                       | (None, | 5)          | 0       |
| Total params: 175,245<br>Trainable params: 175,245<br>Non-trainable params: 0 |        |             |         |

# Music Notes Dataset: Model Comparison + Results

- CNN model far superior than FCNN in terms of test accuracy
- CNN has much slower training time
- Larger image datasets also slow down CV search and training (especially for CNNs)
- Key Takeaway: CNNs work best for image classification

#### Small Dataset (28 x 28 Images):

| Algorithm          | CV Search Method           | Test Accuracy      | Cross-validation<br>Search Time (seconds) | Training Time<br>(seconds) |
|--------------------|----------------------------|--------------------|-------------------------------------------|----------------------------|
| Fully-Connected NN | Grid                       | 0.88               | 6134.6064739227295                        | 37.561065912246704         |
| Fully-Connected NN | Randomized (20 iterations) | 0.844              | 539.9790909290314                         | 31.42546510696411          |
| CNN                | N/A (Manually tuned)       | 0.9340000152587891 | N/A (Manually tuned)                      | 1772.1896510124207         |

#### Large Dataset (64 x 64 Images):

| Algorithm          | CV Search Method           | Test Accuracy      | Cross-validation<br>Search Time (seconds) | Training Time<br>(seconds) |
|--------------------|----------------------------|--------------------|-------------------------------------------|----------------------------|
| Fully-Connected NN | Grid                       | 0.811              | 25156.27631998062                         | 78.14718914031982          |
| Fully-Connected NN | Randomized (20 iterations) | 0.826              | 2366.9517533779144                        | 77.53696775436401          |
| CNN                | N/A (Manually tuned)       | 0.9599999785423279 | N/A (Manually tuned)                      | 15400.268100738525         |

# Dataset 2: Email Spam Classification Dataset

- A dataset with 5172 emails
  - Each row represents an email
  - First column contains email names
  - 3000 columns represents 3000 words
  - Last column contains classification
- 2 classes in the last column
  - 1 represents spam
  - 0 represents not spam
- Objective: determine whether a given email is spam or not



## Email Spam Classification Dataset: Models Used







One-dimensional Convolutional Neural Network

# **FCNN - Experimentation Method**

- MLPClassifier from Scikit-Learn
- 80-20 train-test splits
- Parameter Grid:
  - Early stopping: True, False
  - Hidden Layer Sizes: 100, 150
  - Activation: Relu, Tanh
  - Learning rate: Constant, Adaptive
  - Learning rate init: 0.01, 1
- Maximum 50K iterations
- Adam optimizer (default)
- 5-fold CV
- Ran grid search and random search (32 iterations)

# **CNN - Experimentation method**

- 80-20 train-test splits
- Architecture:
  - Conv2D 32 filters, 3x3 filters, relu activation, input shape (3000,1)
  - MaxPooling2D 2x2 pool size
  - Conv2D 40 filters, 11x11 filters, relu activation, input shape (28,28,1)
  - MaxPooling2D 2x2 pool size
  - Flatten
  - Dense layer with 2 class outputs
  - Sigmoid activation
  - Binary cross-entropy loss + RMSProp optimizer
- Tuned Manually

#### Model: "sequential"

| Layer (type)                                                                | Output Shape     | Param # |
|-----------------------------------------------------------------------------|------------------|---------|
| conv1d (Conv1D)                                                             | (None, 2998, 32) | 128     |
| max_pooling1d (MaxPooling1D<br>)                                            | (None, 1499, 32) | 0       |
| <pre>conv1d_1 (Conv1D)</pre>                                                | (None, 1489, 40) | 14120   |
| max_pooling1d_1 (MaxPooling<br>1D)                                          | (None, 744, 40)  | 0       |
| flatten (Flatten)                                                           | (None, 29760)    | 0       |
| dense (Dense)                                                               | (None, 2)        | 59522   |
| activation (Activation)                                                     | (None, 2)        | 0       |
| Total params: 73,770<br>Trainable params: 73,770<br>Non-trainable params: 0 |                  |         |

### Email Spam Classification Dataset: Model Comparison + Results

- Testing accuracies of FCNN and CNN are similar
- CNNs were trained slower compared to FCNN, but much faster comparing to Musical Notes Datasets
- FCNN selected by randomized search has the best testing accuracy

| Algorithm          | CV Search Method     | Test Accuracy      | Cross-validation<br>Search Time (seconds) | Training Time<br>(seconds) |
|--------------------|----------------------|--------------------|-------------------------------------------|----------------------------|
| Fully-Connected NN | Grid                 | 0.9729468599033816 | 1817.4925224781036                        | 10.122442722320557         |
| Fully-Connected NN | Randomized           | 0.9797101449275363 | 2056.2531270980835                        | 47.68662929534912          |
| CNN                | N/A (Manually tuned) | 0.9787439703941345 | N/A (Manually tuned)                      | 202.64555978775024         |

# Dataset 3: UCI Wine Quality Dataset

- 2 imbalanced datasets
  - 1599 Red Wine samples
  - 4898 White Wine samples
- 11 predictors:
  - Fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol
- Goal: Predict wine quality (integer ranging from 0 to 10)



## UCI Wine Quality Dataset: Models Used

VS



Fully-Connected Neural Network (Single Hidden Layer)



Fully-Connected Neural Network (Multiple Hidden Layers)

# Single-Layer FCNN - Experimentation Method

- Scaled dataset using a StandardScaler
- Exact same procedure and parameter grids as FCNN model for Music Notes Dataset
- Used grid and random search

# Multi-Layer FCNN - Experimentation Method

- Scaled dataset using a StandardScaler
- Used Keras tuners for random search (60 trials, 1 execution per trial)
- Random search architecture grid:
  - Dense layer with 50, 100, ..., 400 units + dropout rate 0.2
  - 1 to 12 dense layers with 50, 100, ..., 400 units + dropout rate 0, 0.1, ..., 0.5
  - Another dense 50, 100, ..., 400 units + dropout rate 0, 0.1, ..., 0.5
  - Output dense layer + softmax activation
  - Adam optimization, MSE loss
- Red wines have quality labels 3-8, white wines 3-9
- 100 maximum epochs per trial + batch size 32
- Early stopping criteria stop if 10 iterations without validation loss improvement
- Saved best models into h5 files
- Did not produce compelling results (probably due to some bug probably the loss function?)

# UCI Wine Quality Dataset: Model Comparison + Results

- Single Hidden Layer FCNN has much higher test accuracy
- Multiple Hidden Layer FCNN underfits due to some bug
- Grid Search CV for Single Hidden Layer boosted test performance compared to Random Search CV
- Red wine models consistently outperform white wines
- White wines take longer to train
- Low accuracies overall why?

**Red Wines Dataset:** 

| Algorithm                                   | CV Search Method           | Test Accuracy | Cross-validation<br>Search Time (seconds) | Training Time<br>(seconds) |
|---------------------------------------------|----------------------------|---------------|-------------------------------------------|----------------------------|
| Single Hidden Layer<br>Fully-Connected NN   | Grid                       | 0.653125      | 2361.737888097763                         | 3.13327693939209           |
| Single Hidden Layer<br>Fully-Connected NN   | Randomized (20 iterations) | 0.6375        | 151.85131907463074                        | 15.565123796463013         |
| Multiple Hidden Layer<br>Fully-Connected NN | Randomized (60 iterations) | 0.525         | 376.85603404045105                        | N/A                        |

White Wines Dataset:

| Algorithm                                   | CV Search Method           | Test Accuracy       | Cross-validation<br>Search Time (seconds) | Training Time<br>(seconds) |
|---------------------------------------------|----------------------------|---------------------|-------------------------------------------|----------------------------|
| Single Hidden Layer<br>Fully-Connected NN   | Grid                       | 0.6479591836734694  | 17003.405514001846                        | 46.954169034957886         |
| Single Hidden Layer<br>Fully-Connected NN   | Randomized (20 iterations) | 0.6183673469387755  | 688.1731026172638                         | 46.393786907196045         |
| Multiple Hidden Layer<br>Fully-Connected NN | Randomized (60 iterations) | 0.25204081632653064 | 804.2011730670929                         | N/A                        |

## UCI Wine Quality Dataset: Why Low Test Accuracy?

- Weak correlations between predictors (left)
- Imbalanced Class Distributions (right)



Figure 3.2: Heat maps showing correlations between predictors for red wines (left) and white

wines (right). Lighter color denotes weaker relationship between two predictors.



Figure 3.1: Class label distributions for red wines (left) and white wines (right)

# Conclusion

- Analyzed 3 Datasets: Music Notes Classification, Spam Classification, and Wine Quality.
- CNNs work well for image-based datasets (Music Notes Classification)
- FCNN is suitable for datasets that are densely populated by zero
- Larger size -> longer training/fitting times
- Weak inter-predictor correlations + Unbalanced dataset -> Poor Generalization Performance

