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Abstract

One of the primary objectives for Virtual Reality (VR) systems is to immerse the user in an
artificial environment and cause the perception of actually being there. However, this full im-
mersion is weakened by the need to use unnatural devices like controllers to interact with the
environment. As a result, hand tracking has become a prominent interaction method for VR
recently. While this has made interactions less artificial, current systems represent the hands in
very generic ways and therefore still lack the personal feel. We propose to introduce a new sys-
tem which relies on head mounted cameras to generate realistic hands through a novel hybrid
architecture utilizing deep neural network and differential rendering based optimization. Our
approach outperforms other methods in the task of monocular 3D hand pose and shape estima-
tion by fusing input modalities. We also demonstrate state of the art performance in the task
of hand segmentation and elaborate how to further improve robustness by extending towards a
stereo setting, which is prevalent in VR headsets. Additionally, we are one of the first to explore
the accompanying generation of realistic textures, which comprises personal skin characteristics
for a truly personalized virtual hand.
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1
Introduction

1.1. Motivation

Parallel to the constant increase in computational power, the interfaces between humans and ma-
chines have evolved continuously as well. The first computers used punch cards as the primary
medium for input, which was followed by continuously more easily manageable command line
interfaces. Subsequently, the first graphical user interfaces started to appear, making computing
accessible to the general public for the first time. Similarly, multi-touch interfaces played a
crucial role in the rise of mobile computing, which further expanded the user base by reduc-
ing entry barriers. What all these revolutions have in common is that every new generation of
interaction was less artificial than the previous and therefore enabled a larger number of users
to access more functionalities. With the current emergence of new computing platforms such
as Virtual Reality (VR) and Augmented Reality (AR) we are standing on the verge of another
potential evolution in human-computer interaction.

As VR/AR headsets get more sophisticated and the boundaries between reality and the vir-
tual world start to vanish, interaction methods move into focus as unnatural input devices, such
as controllers, diminish the full immersion. Due to their dexterous functionality, hands are the
most effective general purpose interaction tool available to humans and are therefore a prime
candidate for replacing those devices. By using hands directly, humans’ natural communication
and manipulation skills can be employed for intuitive user interfaces while gaining access to a
very expressive input method with multiple degrees of freedom. For example, sculpturing 3D
objects with hands becomes as natural as working with clay and removes the limitations posed
by mouse and keyboard.

In contrast to VR, AR headsets started to opt for hand tracking as the primary input method
very early on. This is encouraged by the already available cameras used to keep track of the en-
vironment. By reusing them for vision based hand tracking, no additional devices are required.

1



1. Introduction

The enhanced mobility gained by the expendability of controllers further removes friction and
is vital to in the field operation of such devices by surgeons or engineers. Additionally, as
AR is merely blending real world with digital content, there is also no need to replicate the
hands in digital space since the real hands are visible and only the intended actions need to be
understood.

Lately there has also been a shift to inside-out tracking for VR headsets, which means that
the tracking hardware is included in the headset in the form of multiple cameras similar to AR
devices. This change fueled a new interest in turning hand tracking into the principal interaction
method for VR as well. Compared to AR headsets, VR completely replaces what is seen and
experienced, so there is the additional need to also represent hands in the virtual world. A
drawback of current systems is that they represent hands in very generic ways and therefore
lack the personalized feel. The feeling of self-presence, however, is an especially important
prerequisite for an immersive experience.

Surprisingly, very few works [1] go beyond hand pose estimation on to realistic hand recon-
struction where the appearance and shape of hands is also taken into account. With this thesis
we intend to provide a first glimpse at how such a problem could be tackled.

1.2. Background

The most effective tool for hand motion capturing are electro-mechanical or magnetic sensing
devices which come in the form of gloves. While they are able to deliver accurate real time
measurements, they come with several drawbacks. Not only are they expensive and require
complex calibration, but they also hinder the naturalness of hand motion and thus make the
whole experience artificial.

As modern VR/AR headsets already include multiple cameras, vision-based hand pose esti-
mation represents a promising alternative in order to provide more natural and unencumbered
interactions without the need for additional hardware. Both pose estimation and also 3D re-
construction are long standing computer vision problems which have been studied for decades.
The main challenges are accuracy and processing speed, which often conflict. Pioneering work
relied on low level visual cues, such as edges, skin color, and similar features. In general, these
are prone to tracking errors and not resilient to diverse backgrounds found in the wild. The
improved availability of depth sensors revolutionized the field of body pose estimation and also
impacted the research of hand pose estimation as they can yield more robust features. However,
due to self-occlusion, finger self similarity, and higher requirements on depth noise levels, it
is a more difficult task to solve. For such optimization-based methods a parametric model of
the human hand is fitted to match specific features. Typical 2D joint locations best explain the
observation and are often used as an optimization target.

With the emergence of deep learning, the dilemma between optimization-based approaches
and regression-based methods became more relevant than ever for many computer vision tasks.
While the results of optimization-based methods are promising, the methods tend to be slow
and also sensitive to the chosen initialization. On the other hand, deep learning approaches can
directly infer the parameters of a model. In theory, this approach is more powerful as it can take
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1.3. Problem statement

all pixel values into consideration instead of relying on a sparse set of features. In practice, this
one-shot prediction often leads to mediocre image-model alignment.

1.3. Problem statement

As previously mentioned, realistic modeling and rendering of human hands can be very valu-
able for virtual reality environments, as humans are extremely sensitive towards the physical
appearance of their own hands. Due to complex poses and large shape variability exhibited by
hands, this is a rather difficult task. Given a monocular or stereo camera stream, as found on
many VR devices, we want to infer a 3D mesh that resembles the appearance of the user’s hand
in real time. This includes not only pose, size and shape, but also the generation of a matching
realistic texture which comprises personal skin characteristics including, for example, possible
tattoos.

1.4. Challenges

The challenges faced by 3D hand pose estimation are very similar to closely related tasks, such
as body pose estimation [2] or facial landmark localization [3]. Unfortunately, most of the
challenges arise in more complex configurations for hand pose estimation. Additionally, re-
constructing individual hand meshes with the appropriated personal textures introduces further
difficulties.

High Degrees of Freedom

Hands are highly articulated and come with multiple degrees of freedom due to the many joints
this body part exhibits. Although these are not independent of each other and there exist kine-
matic constraints that restrict the pose space, this is challenging for learning-based methods
like ours. To successfully learn meaningful statistical priors, large amounts of representative
training data, ideally covering the full pose space, are required .

Self similarity

A difficulty in body pose estimation is the similarity between the left and right limbs, which
can lead to erroneous detections. When estimating hand posture, the ambiguities are even more
severe since all fingers have a similar appearance. Due to the exhibited self-similarity it is
difficult to distinguish between different fingers and global information has to be taken into
account to draw meaningful conclusions.

3



1. Introduction

Occlusion

Occlusions pose another significant problem. Whereas key point locations of rigid objects can
be deterministically derived from non-occluded parts, this is only possible to a limited extent
for articulated objects. Even with cues from the visible parts, occluded joint locations can only
be estimated using kinematic constraints or statistical priors of the pose space. In an egocentric
viewer setting such as ours, this is exceptionally difficult: Self occlusion is very common since
the palm or the forearm can completely conceal the fingers. In such cases, where the exact
locations are not recoverable, we have to rely on predicting likely distributions of possible
locations.

Fast motion

Humans are capable of moving their arms and hands very rapidly. For example, closing and
opening the hand at a natural speed only takes 60ms [4]. These fast movements can lead to
problems on different levels. For example, a well known side-effect is motion blur that dete-
riorates the quality of the input image and can cause dilution of the important finger contours.
Additionally, depending on the frames per second (FPS) rate of the camera, there can be large
differences between two consecutive frames, which makes it problematic to use previous frames
as initialization to constrain the pose space. Furthermore, it makes performance optimization
such as relying on interpolation between predicted frames less resilient. As a consequence, low
latency is essential to enable adequate user interactions.

Various hand sizes and shapes

Human hands show high variability in their size and shape, depending on factors such as body
height, gender and others. For robust tracking, it is important that the used hand model supports
different sizes and shapes. While size is crucial and commonly integrated, shape is more subtle
and related works have so far spent little effort on dealing with these variants.

Limited & noisy data

A reason why hand shapes have not been extensively explored is the fact that there is not enough
data available to model them. Most datasets include only few participants and therefore only
capture a tiny part of the hand shape variance. The lack of appropriate training datasets is
also noticeable for a problem such as ours, where we would ideally have a stereo captured
egocentric dataset with corresponding annotations available. Although it is possible to resort
to synthetically generated data, there is a large domain gap given the significant discrepancies
between real and synthetic images. In addition, the available large scale dataset annotations
have been created using automatic annotation procedures, which means there is no guarantee
for correctness. For example, the previously mentioned occlusion problem can also negatively
influence the accuracy during dataset generation and lead to noisy data.
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Segmentation

In the hand pose estimation literature, segmentations are often assumed to be a prerequisite.
While in lab environments a simple approach such as color thresholding can be used, this strat-
egy does not work in real-world environments and makes segmentation a non-trivial task in
itself.

1.5. Contributions

Our key contributions are as follows:

1. We predict 3D mesh parameters with high accuracy by fusing input modalities.

2. We improve the resilience of our method by additionally exploiting stereo views.

3. We predict a hand segmentation and optimize the fine grain fit of the predicted MANO
mesh through differential rendering.

4. We output a personalized hand mesh and therefore go beyond simple skeleton rigging.

5. We compute textures for a truly realistic hand mesh based on camera captured data.

To summarize, our hybrid approach is more expressive and personalized than work relying
on the MANO hand model, but also more efficient and robust than methods that directly try to
infer a mesh. Additionally, we are one of the first to explore texturing based on camera input,
yielding a truly unique and personalized hand mesh for use in VR.

1.6. Thesis Organization

This thesis is structured into a total of six chapters, including this introduction. In Chapter 2 we
examine existing works related to hand pose estimation and hand reconstruction. It is followed
by Chapter 3, in which we review theoretical concepts associated with this work. In Chapter 4,
we give insights into our method by providing an overview of the proposed architecture before
discussing the implementation details of every component. In the sixth and last chapter, we
conclude our findings and provide an outlook for future work.
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2
Related Works

This thesis has been inspired by several other papers in the research areas of hand tracking,
pose estimation and hand reconstruction. All fields have been thoroughly studied and provide
valuable concepts that have been crucial while exploring our novel approach. In the following
sections, we review the most relevant works related to this thesis.

2.1. Hand Detection and Tracking

Hand detection and tracking is one of the fundamental techniques involved in any form of
camera based hand analysis. Whether one is interested in pose estimation, hand reconstruction
or grasp analysis, identifying and tracking the hand position in video frames is inherent to all of
them, as they all require hand crops as input.

Early methods tried to detect hands through skin color models, which only lead to limited
success on unconstrained images. To overcome this, Mittal et al. [5] proposed a method that
combines three independent detectors (hand-shape, context-based and skin-based) for robust-
ness and precision. With the rise of data driven methods, the work from Bambach et al. [6] was
one of the first to use convolutional neural nets instead of relying on strong prior assumption,
such as that every skin pixel belongs to a hand. Very recent methods [7] are even able to infer
richer hand representations which include not only the location and side of the hand, but also
extend to contact states of interacting objects. One drawback of such sophisticated solutions is
that they come along with increased inference times, which makes them often unusable for real
time applications. Therefore, another branch of research is focused on optimizing the methods
for fast processing times to enable real time and mobile applications. One such hand detection
method with fast processing times is MediaPipe Hands [8]. They deployed a two-stage ap-
proach consisting of a palm detector locating the approximate hand location whenever tracking
is lost. Once a palm is identified a more fine grained hand landmark detector continues with
local hand tracking.
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2.2. 3D Hand Pose Estimation

3D hand pose estimation is the process of attributing hand joints with their respective alignment
so that a 3D hand skeleton can be recovered. Early methods [9] used low level visual cues
such as edge maps and Chamfer matching [10] to rank the likelihood of possible predefined
poses. The advent of low cost depth cameras paved the way for unconstrained 3D hand pose
estimation and research focused on using depth data as input. Oikonomidis et al. [11] proposed
a method based on Particle Swarm Optimization (PSO). Sharp et al. [12] made the approach
more robust and flexible through adding a re-initialization strategy. Likewise, Tagliasacchi et
al. [13] used depth images as input, but adopted Iterative Closest Point (ICP) optimization.
Although these methods perform well, the application range is limited by the need for depth
sensors. Therefore, Zhang et al. [14] replaced the active depth sensors with stereo cameras and
enhanced the disparity maps with prior hand knowledge. Panteleris et al. [15] also used stereo
cameras, but they optimized for color consistency between the two views.

With the success of Convolution Neural Nets (CNN) in other research areas, it did not take
long before they were applied in the context of 3D hand pose estimation. In contrast to opti-
mization based methods, the focus moved from estimating angles of hand joints to predicting
the keypoint joint locations directly. Initial methods [16] directly took the depth image as input
and processed them with 2D CNNs. Other methods argue that 2D CNNs are not directly suited
for such a task, due to the lack of 3D spatial information. However, because hands feature a
large scope of viewpoints for a given articulation, it is also hard to define a canonical viewpoint.
To alleviate this problem, different intermediate 3D representations have been studied. Ge et al.
[17] projected an obtained pointcloud onto multiple views to better utilize depth cues. Further
refined methods work with D-TSDF [18], voxels [19] or pointsets [20].

More recent work started to rely on only single RGB images as input. This is a sophisticated
challenge due to being an ill posed problem, given only 2D vision of the hand and no depth
data whatsoever. This change in input modality further fueled the switch from model to data
driven approaches, as the methods became applicable for in-the-wild images. The first work
that tackled the problem of 3D hand pose estimation from a single RGB image with a learning
based formulation was created by Zimmermann et al. [21]. One of the limiting factors of
such methods is the amount of annotated training data, which is crucial to learning how to
resolve the inevitable depth ambiguities. Mueller et al. [22] used generative methods to translate
synthetic training data into more realistic looking training images. Because there is a large
discrepancy between factors of variation ranging from image background and pose to camera
viewpoint, Yang et al. [23] introduced disentangled variational autoencoders to allow specific
sampling and inference of these factors. In contrast to the mentioned generative approaches,
other methods [24] make up for the lack of annotated training data by utilizing a depth camera
for weak supervision of the training procedure.

2.3. 3D Hand Reconstruction

The general problem of 3D reconstruction has a long history in the field of computer vision.
It is the process of capturing the shape and appearance of real world objects and replicating
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a digital representation. The previously discussed 3D pose estimation methods yield skeletal
representations of the hand. While this is expressive enough to describe all different kinds of
poses, they are not concerned with reconstructing the full hand in form of a 3D representation
such as a mesh. Although it is possible to align a generic hand mesh to the skeleton, this is
fundamentally different from 3D hand reconstruction, as the visual appearance determined by
fast variation of hand shapes is not considered at all.

In the related field of body pose reconstruction, multiple approaches have been explored.
This includes, on the one hand, completely 3D supervised methods [25] which require vast
amounts of annotated training data, but also more constrained parametric deformable surface
models, like SMPL [26], were exploited by various methods. Examples for SMPL based full
body 3D reconstruction includes the work by Kanazawa et al. [27], where an end-to-end CNN
with an additional adversarial is used to decide whether a given prediction is realistic or not.
Kolotouros et al. [28] tried to improve the alignment of predicted SMPL meshes by performing
iterative optimization to fit the regressed shape on 2D joints.

Inspired by the success of SMPL, a similar parameterized model for hands was proposed with
MANO [29]. This enabled shape aware hand mesh reconstruction methods, such as the work
from Boukhayma et al. [30], which used single RGB inputs together with OpenPose [31, 32]
hand keypoint detection to regress MANO parameters. The method proposed by Zhang et al.
[33] follows a similar approach, but the keypoint heatmap is regressed implicitly. A more robust
approach that deals with severe occlusion caused by hands that manipulate objects is introduced
by Hasson et al. [34].

Although hand models like MANO are able to represent a large amount of hand shapes, they
are still fundamentally limited in their expressiveness. Therefore, Ge et al. [35] proposed a
model-free method that uses a graph convolutional network to directly regress vertex positions.
Another alternative approach to obtain vertices directly is explored by Moon et al. [36], where
they introduce a novel image-to-lixel (line + pixel) prediction network which retains the spatial
relationship between pixels in the input image. Smith et al. [37] take 3D hand reconstruction
to the extreme, by utilizing 124 cameras to capture a high resolution footage from different
perspective and processing times of more than 20 minutes for a single frame. However, not
only are they able to replicate the hand pose and shape with impressive accuracy, but they also
capture details such as elastic skin deformations that occur when a finger is pressed against the
palm.
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3
Theory

In this chapter we review preliminary theory and concepts required to understand the methods
introduced in this thesis. We do expect the reader to have a basic understanding of neural
networks and accompanying concepts.

3.1. Camera Model

For most computer vision tasks, one requires an understanding of how an image is created in
the first place to recover knowledge about the captured 3D scene. In the real world, a camera
acts as projector of 3D space to a 2D image. Therefore, modeling such a camera to replicate
this projection is one of the most essential tools in computer vision.

3.1.1. Pinhole Camera

In a perspective setting the transformation from 3D camera coordinates to 2D image coordinates
is performed by the intrinsic camera matrix K, which models an ideal pinhole camera. More
specifically, a point X = (x, y, z)T is projected onto the intersection of the image plane with
the line between X and the camera center C, as illustrated in Figure 3.1.

Intrinsic Parameters

The mentioned intrinsic camera matrix K controlling the projection is defined as follows:

K =


f 0 px

0 f py

0 0 1
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Figure 3.1.: Illustration of the pinhole camera geometry. Points from the 3D camera coordinate sys-
tem originating at the camera center C are mapped onto the image plane where the line
X ↔ C intersects the image plane. Taken from [38].

The focal length f corresponds to the distance between the camera center C and the image
plane. The camera’s principal axis is perpendicular to the image plane and the intersection point
is referred to as principal point p = (px, py).

This yields the following mapping of 3D points to the 2D image plane:

Xcamera =


x

y

z

→
fx/z + px

fy/z + py

 =: xscreen

Extrinsic Parameters

With only intrinsic parameters, we assume the camera is located at the origin of the world coor-
dinate system. However, this is usually not the case which means we need to take the position
of the camera in world space into account as well. The extrinsic parameters are also essential
in a stereo camera setting where we need to model a small offset between the two cameras. We
denote the transformation from world coordinates to camera coordinates corresponding to the
extrinsic parameters as [R|t], where R ∈ R3×3 represents a rotation and t ∈ R3×1 a translation.
Combining everything we get:

xscreen = KXcamera = K[R|t]Xworld

3.1.2. Stereo Cameras

In a stereo camera setting we have two camera views with image planes IL (left) and IR (right)
which stand in a geometric relation to each other. This is similar to the human eyes, which see
the world from slightly shifted vantage points. Compared to monocular vision, stereo vision
has the ability to resolve projection ambiguities through imposed constraints, which enables the
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extraction of information such as depth. The relations between the linked views are described
by epipolar geometry, which we will quickly review.

Figure 3.2(a) depicts two pinhole cameras looking at the same point x with cL and cR repre-
senting the respective optical centers. The points xL and xR denote the projections of point x
on the image planes. Since the optical centers of the cameras are distinct, each center projects
onto a distinct point in the other image plane, which are called epipolar points and denoted by
eL and eR. The line cL ↔ x is seen by the left camera as a single point due to being directly
in line with the optical center. However, the right camera sees this line as line (xr ↔ eR) in its
image plane, which is called epipolar line. Symmetrically, cR ↔ x is seen by the right camera
as a point and as an epipolar line by the left camera. One important observation is that if the
relative positions of the two cameras as well as the points xL and xR are known, we are also
aware of their respective projection lines. Therefore, if two image points correspond to the same
3D point x, it implies that the projection lines must intersect precisely at x and the position can
be calculated through triangulation.

If the image planes coincide, the epipolar geometry is simplified, as illustrated in Figure
3.2(b). In this case, the epipolar lines also coincide, i.e. eL ↔ xL = eR ↔ xR. Moreover, as
the epipolar lines are parallel to the optical center, they can be aligned with the horizontal axis
of the images. This is helpful as for each point in one image, the corresponding point in the
other image can be found along a horizontal line. As stereo cameras are usually not perfectly
aligned, the images can be transformed to emulate such a common image plane with a process
called stereo rectification.

(a) Epipolar geometry of two pinhole cameras. (b) Rectified setting with a common image plane
and horizontal epipolar lines.

Figure 3.2.: Illustration of the stereo camera geometry.

3.2. Hand Pose Estimation

We adopt 21 pre-defined hand landmarks as our keypoints, which roughly resemble the joints
of a hand with additional keypoints for the fingertips and palm. There exist small variations
in literature, especially in regard to the order of the keypoints. For this thesis, we rely on the
common mapping from OpenPose [31, 32], which is illustrated in Figure 3.3.

Therefore, a hand pose P ∈ R21 can be expressed as Pk = (xk, yk) ∈ R2, k ∈ [0, ..., 20]
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in 2D. As the coordinates correlate with specific image features, convolutional neural networks
are able to extract them. Moving to 3D space, a hand pose can be expressed in a similar manner
by Pk = (xk, yk, zk) ∈ R3, k ∈ [0, ..., 20]. If an additional depth sensor is at hand, inferring the
z coordinate is trivial. By capturing a scene from two viewpoints, stereo cameras are capable
of extracting depth knowledge. However, especially at close range, the depth resolution is not
good enough to support a straightforward implementation. Thus, regressing to 3D coordinate
keypoints from a single image resembles a more complicated task that requires prior knowledge
about the camera model to understand it.

Figure 3.3.: Definition of hand landmarks as keypoint annotations. The hand joints as well as the
fingertips and palm serve as 21 keypoints. Taken from [31].

3.3. Hand Model

As outlined in Section 3.2, recovering hand poses in 3D is a rather difficult task, due to their
relatively small size, self-occlusion and other ambiguities. Although hands can come in many
poses and shapes, there are fundamental physical properties that can be exploited to cope with
the mentioned problems. A recently introduced statistical hand model is MANO [29] (hand
Model with Articulated and Non-rigid defOrmations). One of the key contributions is that it
factors geometric changes into those inherent to the identity of the subject and those caused by
pose. Therefore, not only hand poses, but also different hand shapes can be represented with it.
Before we can examine and discuss the model in more detail, we review some general related
concepts.

3.3.1. Linear Blend Skinning

Linear Blend Skinning (LBS) is a widely used technique to deform meshes based on skeletal
structures. The popularity of LBS mainly derives from the possibility to directly evaluate it,
which makes it not computationally intensive.

To better understand LBS, we quickly review rigid skinning. In rigid skinning each vertex
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is assigned to exactly one bone of the skeleton. After a transformation Ti of the ith bone the
new position of a vertex vj can be written as v′j = Tivj . One problem of this method is that it
leads to unwanted discontinuities in the boundary regions, where neighboring skin vertices are
assigned to different bones.

To overcome this, LBS assigns each vertex to more than one bone and blends the bone
transformations using skinning weights. The weights define the influence each bone has on
mesh vertices. Hence the positions after a transformation can be computed as weighted average
of the positions obtained from each bone via rigid skinning, i.e. v′j =

∑
iwijTiv

i
j

3.3.2. Blendshapes

Blendshapes are often used together with skeletal techniques like LBS. The idea behind the
method is to have a source as well as one or multiple deformed target versions of the mesh. The
vertices are interpolated in between, so that one can smoothly blend between the base shape
and one or several morph targets. If the target is set to the posed mesh, with all unwanted
discontinuities from LBS removed, this corrective blendshape can be blended in to obtain a
smooth surface during the bending of joints.

3.3.3. MANO Hand Model

The MANO model is based on SMPL [26], a model for capturing body poses. The general
formulation of the model M is as follows:

M(β, θ) = W (TP (β, θ), J(β), θ, w)

TP (β, γ) = T +BS(β) +BP (θ)

where W : LBS function with blend weights w

TP : personalized hand mesh

T : template hand mesh

J : joint locations (kinematic tree)

θ: pose

β: shape

A hand mesh TP together with joint locations J that form a kinematic tree, pose parameters
γ, shape parameters β and blend weights w serve as input to a skinning function W that, in
the case of MANO, corresponds to linear blend skinning (LBS). Unlike standard LBS models,
the base hand mesh TP is a function of the pose and shape of the hand itself. The blendshape
function BS allows the base hand shape to vary and the pose blendshape function BP captures
deformations of the mesh as a function of the bending of the joints. As mentioned, traditional
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LBS suffers from collapse at the joints, which leads to unwanted discontinuities. Therefore,
corrective blend shapes for the MANO model were learned from hand scans to correct these
artifacts. Combined, this allows for natural-looking finger bending.

Figure 3.4.: Comparison of full MANO model to PCA version. The first two visualizations are created
by randomly choosing from the reduced PCA pose space. The last two visualization are
created by randomly choosing from the more expressive full pose space.

The model can be posed, either by specifying the full rotations for each joint or using param-
eters of a computed PCA space from training scans. A low dimensional PCA pose space makes
it easier and more robust to fit, but also limits the expressiveness, as visualized in Figure 3.4. In
our method, we utilize the full pose space and provide rotations for all 15 joints. In Figure 3.5
one can see how the selective joints can be rotated in the full model. The blendshapes that allow
representation of different hand shapes are represented by a linear subspace of blendshapes that
were computed with PCA. We visualized some samples in Figure 3.6.

Figure 3.5.: Visualization of the MANO pose space. The respective joints are articulated in the visu-
alizations .

Figure 3.6.: Visualization of the MANO shape space. The visualizations show how the shape param-
eters can modify the hand shape.
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Method

This chapter presents the methodological approach employed to solve the questions posed in this
thesis. We start with a high-level overview on the architecture of a single camera and continue
by providing more thorough descriptions of each component. Afterwards, we elaborate how the
architecture can be extended towards a stereo setting in order to fully utilize the available sensors
for robustness. This is followed by a comprehensive description of the training framework
including the FreiHAND dataset and our own synthetic stereo dataset. Finally, we outline the
complete inference pipeline from raw camera stream to rendering the textured mesh. To fully
understand this chapter, basic knowledge of neuronal networks and deep learning as well as
concepts explained in Chapter 3 are required.

4.1. Overview

Our method aims to estimate a textured 3D hand from monocular or stereo inputs. An important
aspect is that we go beyond estimating only parameters of a hand model by having an additional
differential rendering-based optimization step for fine grained adjustments. This makes our
approach more expressive compared to solely relying on the MANO hand model. Additionally,
this leads to increasingly accurate fits which enable us to rely on projections with basic filtering
to yield an accompanying texture for a truly unique and personalized digital hand replication.

Our proposed framework for the monocular setting is illustrated in Figure 4.1. The inputs
consist of an RGB hand crop and hand keypoints encoded in a 21 channel heatmap where each
channel represents a hand joint. Details on how the heatmaps are obtained are described in sub-
sequent Section 4.6.1 where we recount the whole inference pipeline. Both inputs are fed into
our deep encoder-decoder network, which produces three outputs. These include a segmenta-
tion mask indicating the probability of a pixel belonging to a hand part. Further, we predict
parameters m = (pose, shape) of the MANO hand model, which consists of 3 + 45 pose and
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Figure 4.1.: High level overview of our method framework. An encoder-decoder architecture is used
to obtain MANO and camera parameters, followed by a differential rendering based opti-
mization step.

10 shape parameters. As introduced in Section 3.3.3, the pose parameters correspond to the
global rotation as well as the 21 joint rotations in angle axis representation. The shape is de-
termined through 10 PCA components. Lastly, we obtain weak-perspective camera parameters
c = (trans, scale) which allow to project a posed 3D hand model back onto the input image and
obtain absolute camera coordinates. Here, t ∈ R2 is the 2D translation on the image plane and
s ∈ R is a scale factor. Afterwards, the predicted segmentation mask is used to iteratively refine
the vertex positions through silhouette-based differential rendering. As a last step, we project
the input image onto a texture map and apply basic filtering to improve the visual quality. To
obtain a final visual output the textured mesh is rendered with the help of generic rendering
software.

4.2. Architecture

In this section, we briefly describe the overall topology of our proposed architecture and provide
additional and more detailed insights into the constituting architectural components throughout
the following subsections.

The overall network architecture with its components is illustrated in Figure 4.2. The starting
point is the encoding stage that directly works on the inputs and serves several purposes. At the
beginning, each separate encoding head extracts meaningful feature maps from the respective
input. Afterwards, the feature maps get fused into a meaningful common representation, from
which further features are extracted by the tail encoder. The obtained compressed representation
gets passed to the segmentation decoder for predicting a segmentation mask as well as a fully
connected regressor to retrieve MANO parameters. The output of the regressor is fed into a
subsequent differentiable MANO layer outputting a mesh in form of vertices from the given
parameters. Combined with the predicted camera parameters, a differential renderer is used to
generate a silhouette image with gradients. The predicted segmentation from the segmentation
decoder is used as an optimization target for the output of the differential renderer. With the
help of the gradients we calculated vertex offsets that reduce the error between the two hand
silhouettes. Afterwards, the refined hand mesh acts as projection target to update the texture
map with the current appearance from the input image.
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Figure 4.2.: Overview of the architecture for a monocular camera setting.

4.2.1. Encoders

Encoders are the foundation of fully convolutional neural network architectures and crucial
to the success of the entire method. Every encoder architecture offers its own characteristics
and is almost always accompanied by various trade-offs. We required an architecture with
high representational ability as well as conformity with the computational budget and critical
inference time requirements for our targeted application. Therefore, our encoder is based on
the popular ResNet50 architecture proposed in [39]. The key idea behind residual networks is
the introduction of shortcut connections, which improve the performance of deep nets and also
mitigate vanishing gradients. For further details we refer the reader to [39].

As we not only have an RGB image as input, but also encoded keypoints in the form of
heatmaps, we extended the ResNet architecture, so that it can receive two different inputs and
learn an implicit modality fusion as shown in Figure 4.3. We achieved this by dividing the
network at the third ResNet layer into two parts where we name the front section head and the
back section tail. Afterwards, we duplicated the head section for both inputs and adapted them
to the corresponding input channel sizes. To fuse the modalities in a sensible way, we added
a fusion block that is based on the self-supervised model adaption (SSMA) block introduced
in [40]. The idea behind the SSMA block is to adaptively recalibrate and fuse encoded feature
maps according to spatial location and scene context. In other words, it learns to explicitly
model the correlation between two feature maps, to selectively emphasize more informative
features from a respective modality while suppressing the others. The fused modalities get fed
into the tail of the ResNet50 architecture to obtain the base features, of which the decoding
components of our method make use.

More specifically, as visualized in Figure 4.3, the "identity block" is the base building block
that contains a shortcut for activations to directly propagate to deeper layers. Furthermore, it
is based on a bottleneck design to reduce the number of parameters in order to save compu-
tation time. The "conv block" is composed in a very similar manner but yields a reduction in
dimensionality and therefore requires a convolution in the shortcut path.

Similarly, the structure of the fusion block consists also solely of convolutional and merge
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Figure 4.3.: Encoder Architecture. Proposed ResNet50 based encoder with self-supervised model
adaption block for modality fusion.

operations. First, the feature maps of each modality X img ∈ RC×H×W and Xkp ∈ RC×H×W

get concatenated to X img|kp ∈ R2C×H×W . For our chosen fusion location inside the ResNet
encoder, the dimensions correspond to C = 512, H = 28 and W = 28. Before the real fusion
happens, a recalibration technique is applied in order to adapt the concatenated features to ex-
tract meaningful knowledge. For this X img|kp is passed through a bottleneck, where the first
ReLU activated convolution reduces the channel dimensionality by a ratio of 8 to 2C/8 = 128.
Subsequently, the dimensionality of the features is increased back to their original size by the
second convolutional layer. This time, a sigmoid activation is applied to scale the values to
the [0, 1] range, so that they represent normalized weights. The resulting output w is used to
emphasize and de-emphasize different regions in the originally concatenated features X img|kp.
This is achieved by taking the Hadamard product, i.e. doing element wise multiplication of the
obtained weights and the concatenated features, which corresponds to X̂ img|kp = w ◦X img|kp.
As a last step, the adaptive recalibrated feature maps X̂ img|kp are passed through a final convo-
lution layer with batch normalization in order to reduce the channel depth and yield the fused
output with the correct dimensionality, so that it can be further processed by the tail of the
encoder.

4.2.2. Segmentation Decoder

Image segmentation is the process of attributing every pixel in an image to a certain category
in order to create a simplified representation that is more meaningful to analyze. In the case of
hand segmentation, each pixel of the input hand crop is assigned either ’hand’ or ’background’.
To obtain this segmentation mask we rely upon work from [41] which itself builds upon [42].
In this paper, the authors introduce so called "fully convolutional networks" with the idea to
supplement a usual contracting encoding network by successive expanding convolutional layers.
In these, the dimension reduction operations are replaced by upsampling operators, hence, the
resolution of the output is increased. They also propose to add lateral connections that combine
high resolution features from the contracting path with upsampled feature maps on the same
level. This helps with localization and allows the successive convolution layer to assemble a
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more precise output. In [41] the authors modified the previously mentioned architecture to have
a larger number of channels in the upsampling part which, in turn, results in a more symmetric
model architecture inspiring the name U-Net.

Because the U-Net architecture has proven very successful for various segmentation tasks,
we adapted a modified architecture for our segmentation decoder, which is visualized in Figure
4.4. Instead of using a separate encoder for the segmentation, we reuse the already existing
encoder described in Section 4.2.1. Because the input image contains more expressive segmen-
tation features compared to the keypoint heatmap, the first skip connections utilize the image
encoding branch. Nevertheless, the decoder can benefit from the fused hand keypoint modality
through deeper level features of the encoder.

More specifically, in the "up block" of the architecture, we utilize transposed convolutions as
upsampling operation, so that the dimensionality matches the size of the feature maps which get
propagated over the skip connections. After concatenation, a series of two convolutions with
batch normalization and ReLU activation is applied.

As a final step after the last "up block", the channels are reduced through a convolution to
size one, as we only have one segmentation class. Furthermore, a sigmoid activation is applied
in order obtain probabilities of a pixel belonging to a hand.

To drastically reduce the amount of parameters, we removed the convolutional bottleneck
layers between the contracting and expanding part from the original U-Net architecture without
significant impact on the performance.

Figure 4.4.: Segmentation decoder architecture. Proposed segmentation decoder architecture based
on U-Net [41] that utilizes the encoder architecture introduced in Section 4.2.1.

4.2.3. MANO Regressor

Besides the segmentation decoder also the MANO regressor makes use of the base features we
obtain with our proposed encoder from Section 4.2.1. The goal of this architectural compo-
nent is to predict the pose and shape parameters for the MANO model and also output camera
parameters, so that obtained mesh prediction can be projected onto the input image.

The structure of the regressor is straightforward as visualized in Figure 4.5 and consists -
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in contrast to all the other parts - of dense layers only. The obtained base features Xbase ∈
R2048×1×1 are flattened and processed by two fully connected layers with respective sizes 2048
and 512. This yields features of size 512 from which we regress our pose ∈ R48 and shape ∈
R10, as well as the weak perspective camera parameters cam = (trans, scale) ∈ R3.

Figure 4.5.: MANO regressor architecture. Proposed MANO regressor component of our architecture
consisting of dense layers.

4.2.4. Fine Grained Optimization

Research has shown that one-shot MANO parameter prediction methods like ours, although
fast and robust, often come with mediocre image-mesh alignment. With the goal of mitigating
this problem, we propose a test time optimization strategy. The idea behind the fine grained
optimization section in our architecture is to iteratively refine the vertex positions to better align
with the input image by adding an offset ∆H ∈ R778×3 to the hand mesh H ∈ R778×3. The
optimized mesh at iteration step t+ 1 therefore corresponds to:

H(t+ 1) = H(t) + ∆H(t).

The initial hand mesh H(0) is obtained from the MANO model by providing pose and shape
parameters, i.e. H(0) = MANO(pose, shape).

The offset ∆H(t) is obtained from the gradients provided by a differential renderer aiming to
reduce the discrepancy between the predicted segmentation and the rendered silhouette of H(t).
In other words, we learn offsets for each vertex, such that the predicted mesh silhouette Smesh is
more similar to the target silhouette image Starget from the previously introduced segmentation
decoder at each optimization step.

In the subsequent paragraphs, we will describe in more detail how the offsets are calculated
based on the differential rendering approach.

Differential Renderer

Given a 3D geometry and other scene properties, such as illumination, classical graphic render-
ers can produce realistic images. Differential renderers attempt to solve the inverse problem,
which is to infer 3D geometry from image data. In other words, they try to model the re-
lationship between parameter changes and image observations. A differential renderer takes
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vertices and color as input to produce pixels in an image, similar to a classical renderer. How-
ever, it also retains derivatives so that it can determine which inputs contributed to the final
pixel colors. Classical renderers include a fundamental discretization step, called rasterization,
which assigns triangles to pixels. Due to discontinuities, this prevents the rendering process to
be differential and made early differential renderers only approximate the gradients. In [43], a
truly differentiable rendering framework was proposed which views rendering as an aggregation
function that fuses probabilistic contributions of all mesh triangles with respect to the rendered
pixels. This novel formulation allows to propagate gradients also to occluded and far-range
vertices, which was not possible with previous methods.

For our implementation we used PyTorch3D [44], which is a library of reusable components
for deep learning with 3D data and includes a differential renderer based on [43]. As we are
only interested in obtaining a segmentation mask, we can make use of the soft silhouette shader
that calculates the silhouette by blending the faces for each pixel, based on the 2D euclidean
distance of the center of the pixel to the mesh face. We further initialized the renderer with the
appropriate rasterization settings to be consistent with SoftRas [43].

As optimizer we used stochastic gradient descent with the learning rate set to η = 0.002 and
momentum α = 0.9, which results in the offset at step t being calculated as follows:

∆H(t) = η∇L(H(t)) + α∆H(t− 1)

where η: step size (learning rate)

α: decay factor

Loss

The loss function L in (4.2.4) corresponds to a weighted sum of the image silhouette loss and
regularization terms that include mesh normal consistency, laplacian mesh smoothing and mesh
edge loss as denoted in (4.2.4). The hyperparameters which balance the loss are λ1 = 1, λ2 = 1
λ3 = 1 and λ4 = 0.1.

L = λ1Lsilhouette︸ ︷︷ ︸
image loss

+λ2Lnormal + λ3Llaplacian + λ4Ledge︸ ︷︷ ︸
smooth / regularize loss

The image silhouette loss is computed as the squared L2 distance between the predicted sil-
houette and the target. Furthermore, all of the regularization losses are essential to generate a
quality appealing mesh model. More specifically, the mesh normal loss favors smooth surfaces,
the edge loss encourages uniform distribution of the mesh vertices for high recall and the lapla-
cian loss prevents mesh faces from intersecting each other. They are defined in the following
equations, where v corresponds to a vertex andN (v) describes the edge connected neighboring
vertices of v. Further n0 and n1 describe normals of neighboring faces.
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Lsilhouette = (Smesh − Starget)
2

Ledge =
∑
v

∑
k∈N (v)

‖v − k‖22

Llaplacian =
∑
v

‖δv‖22 , where δv = v −
∑

k∈N (v)

1

‖N (v)‖
k

Lnormal = 1− cos(n0, n1) , where cos(n0, n1) =
n0 · n1

||n0|| ||n1||

4.2.5. Texturing

As we aim for a pixel perfect fit, our texturing method can rely on using the projection of the
camera image onto the 3D mesh to obtain a texture map. To improve the quality and robustness
against outliers, we apply some some basic filtering on top.

As a simple straight forward implementation in Python is too slow for real time use, we rely
heavily on functions provided by the PyTorch3D rendering pipeline, which includes various
optimized native implementations of useful functions. As a first step, the MANO hand mesh is
unwrapped into a UV map to obtain a static UV mapping that provides UV map coordinates for
every vertex. During test time, we utilize the PyTorch3D rasterizer to obtain fragments, from
which the face attributes can be interpolated with the help of barycentric coordinates to yield
UV map coordinates for pixels of the input image. We collect the corresponding RGB values
from the input hand crop and update the texture map based on following strategy:

γ = 1− |(Πnew − ΦΠold)|
T = T + Φ(γΠnew)− Φ(γT )

where Φ ∈ {0, 1}s×s: mask , i.e. Φi,j =

{
1 if Tnewi,j

6= 0

0 else

Π ∈ Rs×s×3: projection of input image to UV map

T ∈ Rs×s×3: texture map

s : texture size

4.3. Stereo Extension

The estimation of a 3D hand pose from a single RGB image is an ill-posed problem due to
depth and scale ambiguities. Additionally, the hand pose space is rather large, due to the many
degrees of freedom. Self-occlusion, motion blur and diversity including jewelry, skin colors or
tattoos contribute to the difficulty of the problem. While stereo has the power to overcome some
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of the ambiguities, the lack of corresponding stereo training data requires a more sophisticated
network architecture that allows the use of monocular datasets like FreiHAND to first learn the
correlations between poses and real hand image data. Afterwards, limited stereo data such as
our proposed synthetic hand dataset can be utilized to learn a sensible stereo fusion.

Figure 4.6.: Proposed stereo extension of our architecture. We duplicate the monocular architecture
and fuse the obtained predictions in a meaningful way. The second viewpoint is also helpful
for the differential rendering based fine grained optimization.

To take advantage of the stereo vision that most VR headsets provide, we extended our
model to a stereo setting. We achieved this by duplicating most of the previously introduced
monocular architecture, as illustrated in Figure 4.6. Besides regressing the pose p, shape s and
camera parameters c for each view from the base features X ∈ R512 of the MANO regressor,
we also concatenate them from both views to a new stereo feature of size Xstereo ∈ R1024 =
Xright|Xleft. From this, we regress additional stereo weights w ∈ R48 with the help of a fully
connected layer. The obtained weights are used to combine the predicted poses from the left
and right view in a meaningful way. More specifically, we calculate the stereo fused right hand
pose pright as

pright = w pright + (1− w) pleft.

In other words, we ideally want the network to be able to differentiate between visible and
occluded joints of different views, so that they can be merged in a meaningful way. For example,
if a joint is self-occluded by the palm in the right view, the exact location is not recoverable and
we have to rely on predicting likely distributions of possible locations. However, if the specific
joint is visible in the left view, the network now has the power to compensate for the lack of
information by utilizing the left view joint predictions over the right view predictions.

The predicted shape parameters from both views are fused by averaging, the same way we
refine the left and right camera parameters while taking their geometric constraints into account.
With ξ transforming from left to right view, we obtain
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sstereo =
sright + sleft

2

cright =
cright + ξ(cleft)

2
.

Moreover, the fine grained test time optimization introduced in Section 4.2.4 can additionally
profit from the stereo setting. Instead of optimizing the mesh offsets with only one view, we
can now compute the silhouette image loss as the average over the two views, i.e. for SL being
the left silhouette image and SR being the right silhouette image. Our new loss term is:

Lsilhouette =
(SLmesh − SLtarget)

2 + (SRmesh − SRtarget)
2

2

4.4. Datasets

In this section we briefly review the FreiHAND dataset and introduce our own synthetic stereo
dataset.

4.4.1. FreiHAND Dataset

The FreiHAND [45] dataset consists of 32,560 unique RGB images of right hands with the
corresponding MANO annotation. Additionally, intrinsic camera parameters, 2D joint locations
and the scale of a specific reference bone are provided. All but the reference bone were used in
our project. Furthermore, the creators of the dataset used a harmonization method [46] based on
a deep network and the deep image colorization approach from [47] to augment the dataset to a
total of 130,240 samples. There also exists an online competition based on a validation dataset
containing 3960 samples, for which no groundtruth data was released.

What distinguishes the FreiHAND dataset from others is that the annotations include not
only pose but also shape parameters for the MANO model. This makes it the first dataset which
allows to also learn hand appearances directly from RGB image data. The hands in the dataset
are captured from 32 people who were told to perform various actions in front of the camera
setup. Additionally, the dataset contains samples that include hands that grasp objects, which
range from workshop tools like drills, wrenches and screwdrivers to kitchen supplies.

4.4.2. Synthetic Stereo Hands Dataset

To overcome the lack of adequate training data for a stereo setting with focus on egocentric
viewpoints, we generated a large-scale synthetic stereo image dataset of hands. The primary
use was to learn the proposed stereo fusion, but the pixel-accurate segmentation masks were
also utilized for training the segmentation decoder.
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Figure 4.7.: Visualization of the FreiHand dataset with 2D keypoint annotations Samples of the
augmented FreiHAND dataset with groundtruth 2D keypoint annotations.

Figure 4.8.: Visualization of the FreiHand dataset with mesh annotations. Samples of the augmented
FreiHAND dataset with groundtruth mesh annotations.

To render realistic images of embodied hands, we modified publicly available code for the
generation of the synthetic ObMan [34] to our needs. The original ObMan dataset is concerned
with modeling hands grasping objects so that hand-object interactions can be studied. Our
additions include the introduction of a stereo camera resembling the properties of the ZED
stereo camera1 that was used for testing. This includes replicating the inter-ocular distance as
well as sensor and lens properties. While ObMan uses a grasp database to obtain poses, we
rely on random MANO parameters to cover a more general pose space. In order to only receive
likely hand articulations, we sample randomly from the PCA space with six components. The
shape parameters are also uniformly selected. For realism and so that boundary regions between
hands and arms can be learned for segmentation, we render the full body. To achieve this, the
random hand pose is converted to the SMPL+H [29] model which integrates MANO to the
statistical body model SMPL [26]. Similar to ObMan, the body poses and shapes are varied

1https://www.stereolabs.com/zed/
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by sampling poses from the CCMU MOCAP database [48] and shapes from CAESAR [49].
The body textures are obtained from the full body scans of SURREAL [50]. For egocentric
viewpoints, the back of the hand is more often visible than the palm of the hand. To cope with
this, we rotate the global orientation of the body, so that our camera captures relevant views.
Furthermore, we translate the hand root joint to align with the camera’s optical center. The
images are rendered using Blender [51], with the background being sampled from the living
room category of the LSUN dataset [52]. We output a left and right RGB image, a left and right
segmentation binary mask as well as annotations that include hand vertices, 2D joints, 3D joints
along with shape, pose and camera parameters.

We rendered a total of 15082 samples, corresponding to 30164 RGB images, annotations
and segmentation masks. In Figure 4.9 the full rectified image from the left and right camera is
visualized and in Figure 4.10 hand crops with the corresponding annotations are shown.

Full (Right) Full (Left)

Figure 4.9.: Stereo image from our synthetic dataset. An example of the rendered rectified images
from our synthetic dataset, which models the camera properties of the ZED stereo camera.

Figure 4.10.: Annotations of our synthetic dataset. Extracted hand crops with groundtruth annotations
consisting of 2D keypoints, segmentation mask and hand mesh vertices.
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4.5. Training Framework

We employ a multi-stage training procedure for our proposed architecture where we freeze
different parts of the model and also selectively remove components from the information flow.
Figure 4.11 visualizes a simplified representation of our architecture, which together with Table
4.1 and Table 4.2 helps to understand our training framework.

In addition, the datasets mentioned in Section 4.4 and compositions thereof are used to train
the network’s various stages. For the monocular model there exist five training stages as denoted
in Table 4.1. For the ’Image’, ’Keypoint’, ’Fusion’ and ’Finalize’ stage, the FreiHAND dataset
with data augmentation is used. For the ’Segmentation’ stage, both our synthetic stereo hands
dataset and FreiHAND are used in combination. The reason for this is that while the FreiHAND
dataset captures real hands, the segmentation masks lack accuracy compared to the pixel-level
accurate groundtruths from the synthetic data. By jointly training on both, we mitigate their
respective drawbacks.

Figure 4.11.: Trainable components. Simplified representation of all trainable architectural compo-
nents.

Stage Information Flow Trained Components

Image Image→ Tail→ Regressor Image, Tail, Regressor

Keypoint Keypoint→ Tail→ Regressor Keypoint

Fusion (Image, Keypoint)→ Fusion→ Tail→ Regressor Fusion

Finalize (Image, Keypoint)→ Fusion→ Tail→ Regressor Tail, Regressor

Segmentation (Image, Keypoint)→ Fusion→ Tail→ Segmentation Segmentation

Table 4.1.: Training stages for monocular setting.

For the stereo setting, the previously trained ’HandNet’ gets duplicated, as described in Sec-
tion 4.3 to learn meaningful stereo fusion weights. Ideally, the network learns to distinguish
visible and occluded joints from different views, so that the respective predictions from each
view get merged in a meaningful way. The training is carried out with our synthetic stereo hand
dataset which was mainly introduced for the purpose of learning this stereo fusion. As there
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Stage Information Flow Trained Components

Synthetic adaption (Image, Keypoint)→ Fusion→ Tail→ Regressor Image

Stereo (HandNet Right, HandNet Left)→ Stereo Stereo

Table 4.2.: Training stages for stereo setting. The adaption to synthetic data is only done to better learn
the stereo fusion. During test time, the original monocular network is used.

is a rather large domain gap, the trained HandNet has limited success in predicting poses for
synthetic images, which makes it also hard to learn a sensible fusion. We propose to introduce
an additional synthetic adaption training stage, in which only the image encoder is retrained for
a small number of epochs to adapt towards the synthetic image data. Afterwards, we continue
with training the ’Stereo’ weights regressor, which concludes training the two stages for the
stereo setting, as denoted in Table 4.2. It is important to note that during test time on a real
stereo camera stream, the original non-adapted HandNet is used.

4.5.1. Losses

The previously described training stages use different loss functions, as specified in Table 4.3.
In the following paragraphs, the respective loss functions are defined and discussed.

Stage Mano Loss Segmentation Loss Stereo Loss FreiHAND Synthetic

Image 7 7

Keypoint 7 7

Fusion 7 7

Finalize 7 7

Segmentation 7 7 7

Synthetic adaption 7 7 7

Stereo 7 7

Table 4.3.: Overview on what loss and dataset is used for each training stage.
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Mano Loss

The loss used to train the network which regressed the MANO parameters consists of a weighted
sum that is composed as follows:

Lmano = λ1Lpose + λ2Lshape + λ3Ljoints2D︸ ︷︷ ︸
mano losses

+λ4Lshape_reg + λ5Lcam_reg︸ ︷︷ ︸
regularization

where Lpose: MSE of pose parameters

Lshape: MSE of shape parameters

Ljoints2D: MSE of 2D joints

Lshape_reg: MSE of shape with [0, ..., 0] ∈ R10

Lcam_reg: MSE of scale camera parameter

MSE(ŷi, yi) = 1
B

∑
i∈[0,B)

(ŷi − yi)2 with batch size B

While Lpose and Lshape help to infer MANO parameters, Ljoints2D is required to learn the weak
camera parameters for the root joint, so that the mesh can be projected back onto the image.
As the mean shape is encoded by the zero vector, we introduce an additional regularization
term Lshape_reg to protect against shape blow ups. Furthermore, as we rely on projection of the
3D joints to obtain the 2D joints, we were required to add a regularization term Lcam_reg on the
scale parameter as to not learn scale values that place the root joint behind the camera. During
training, we used the following hyperparameters to balance the loss: λ1 = 10, λ2 = 1 λ3 = 100,
λ4 = 0.5 and λ5 = 10−5.

Segmentation Loss

For training the segmentation decoder, we rely on the binary cross entropy.

Lsegmentation = BCE(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ))

Stereo Loss

Similar to the mano loss, the stereo loss is based on a weighted sum. However, this time we
directly supervise the vertices and the 3D joint locations.

Lstereo = λ1Lvertex + λ2Ljoints3D

where Lvertex: MSE of vertices

Ljoints3D: MSE of 3D

MSE(ŷi, yi) = 1
B

∑
i∈[0,B)

(ŷi − yi)2 with batch size B
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4.5.2. Data Augmentation

We apply a variety of data augmentation techniques during training, more specifically:

• Rescale: The input image and the accompanying annotations get scaled correspondingly
by a provided factor. In our experiments this was used to obtain the correct input sizes for
the encoders.

• Rotate: The RGB image and the accompanying annotations get randomly rotated. For
our experiments, we randomly selected one of 20 pre-computed linear spaced rotation
matrices.

• Crop: A tight hand bounding box is calculated from the 2D joint annotation and scaled
by a randomly selected factor. For our experiments, the scale factor was in the range
[1.5, 2.5].

• Blur: The RGB image is blurred with a given probability with a randomly selected blur
kernel. In our experiments, we used a probability of 0.5 and pre-computed four blur
kernels, with the kernel size being linearly spaced between [3, 12].

Correctly augmenting the annotations is not always trivial by itself. For example, cropping
leads to a change in the principal point which impacts the perspective projection of groundtruth
mesh vertices. To align them with the cropped image again, the hand mesh must be rotated
appropriately to cope with the transformation, as visualized in Figure 4.12.

Figure 4.12.: Geometry of hand crop data augmentation. When a hand crop is extracted (a), this
also introduces a new principal point ppnew, which leads to changes in the perspective
projection. To compensate for this, the groundtruth mesh vertices need to be rotated by
some degree α, as illustrated in (b) for the horizontal direction. Similar for the vertical
direction.

4.6. Inference Pipeline

In the following sections we describe the inference pipeline in more detail. It consists of pre-
processing, executing our method and rendering the obtained results.
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4.6.1. Pre-processing

Pre-processing consists of detecting the hand in a video frame and extracting the appropriate
inputs for our method.

Hand Detection

As hand crops are required for subsequent regression, we explored of the shelf hand detec-
tion solutions, namely 100DOH [7], OpenPose [31, 32], GANeratedHands [22] and MediaPipe
Hands [8]. While the first offers superior accuracy, it does not offset the poor runtime perfor-
mance of only several frames compared to MediaPipe Hands, which is lightweight and runs
at 60+ FPS. Additionally, the latter provides 2D keypoint annotations, whereby we are not re-
quired to do an implicit heatmap regression similar to [33]. Therefore, we rely on it for detecting
the hands in the input frames.

Figure 4.13.: Extraction of hand crops. The bounding box (a) is calculated based on the 2D keypoints
(b) to obtain the final hand crop (c).

Extracting inputs

We use the obtained 2D keypoint annotations to calculate a tight bounding box which then gets
scaled by a factor of 2. Afterwards, the obtained hand crop Ic is scaled to a spatial size of
224 × 224 and normalized to the range Ic ∈ [−1, 1]. Furthermore, the retrieved 2D keypoints
are converted into a heatmap with the same spatial dimensions as the image and 21 channels.
Each channel corresponds to a hand joint and, in order to provide informative gradients, we
encode the locations with a 2D gaussian distribution Hk:

Hk(x, y) = A exp

(
−
(

(x− xc)2

2σ2
+

(y − yc)2

2σ2

))
, {x, y} ∈ Ω.

In the equation k corresponds to a joint and Ω is the set of pixels in I . For our experiments we
used σ = 5 for a kernel size of 49 and σ = 15 for a kernel size of 127. A is a scale factor, that
is chosen such that the sum over the whole kernel equals one. Similar to the RGB image, we
normalize the heatmap afterwards to the range H ∈ [−1, 1].
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Figure 4.14.: Keypoint heatmaps. Visualization of the 21 channel heatmaps with kernel size 49 (a) and
127 (b) for the keypoint input modality. The color-coded joints are visible in (c).

4.6.2. Realistic Hands

The obtained RGB hand crop and the heatmap serve as input for our method. For the stereo
setting, we have an input image and heatmap for each view. The output of our method consists
of a textured mesh with weak camera parameters that specify the location of the hand root
joint. Any standard renderer can be used to render the textured hand mesh. For visualization
purposes, the obtained camera parameters can be used to overlay the hand mesh. In a real VR
setting additional viewpoint correction can be incorporated on top, in order to cope with the
camera-eye misalignment.
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5
Results

In this chapter, we first provide details about the computational environment for the experiments
and introduce the used evaluation metrics. Afterwards, we evaluate and discuss the results of the
different architectural components. Furthermore, we demonstrate that our method outperforms
other monocular 3D hand reconstruction and segmentation methods. Additionally, we provide
many qualitative results to give detailed insights into our approach.

5.1. Computing Environment

Our implementation uses Python 3.7.9 and PyTorch 1.8.0, along with other common libraries
such as PyTorch3D, Numpy and ZED SDK. The code of this project can be found on GitHub1.
The training was conducted on the Leonhard cluster provided by the ETH Zurich using an
Nvidia RTX 2080Ti with 11GB memory alongside 8 cores and 64 GB of RAM. The experiments
were carried out on a personal workstation with an AMD Ryzen 9 5900x, 64 GB of RAM and
an Nvidia GTX TITAN X with 12GB memory.

5.2. Metrics

The performance for the 3D reconstruction is evaluated using multiple metrics. One metric is
the mean per vertex position error (MPVE), which measures the Euclidean distance in millime-
ters between the estimated and groundtruth vertex coordinates. Similarly, the mean per keypoint
position error (MPJE) measures the Euclidean distance between the estimated and groundtruth
joint coordinates, which correspond to our 21 defined hand keypoints. Following the 3D pose

1https://github.com/michaelseeber/realistic-hands
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estimation literature, we also report the area under curve (AUC) of the percentage of correct
keypoints (PCK) by computing the percentage of predicted vertices/joints lying within a spher-
ical threshold ρ around the target vertex/joint position p, i.e.

PCK (x, x̂, ρ) =
1

K

∑
k

I [‖pk − p̂k‖2 ≤ ρ]

where K is the amount of vertices/keypoints and k corresponds to a specific index. The
function I[·] returns 1 if its input is true and 0 otherwise.

We also report F-scores which - given a distance threshold - define the harmonic mean be-
tween recall and precision between two sets of points [53].

For evaluation of the segmentation performance, we use two metrics, namely pixel accuracy
and mean intersection over union. The first corresponds to the percentage of correctly classified
pixels. The second, which is also known as Jaccard Index, is defined as the area of overlap
between predicted segmentation and groundtruth, divided by the area of the union of both. The
mean IoU is calculated by taking the mean of both classes "hand" and "background". For TP =
true positives, FN = false negatives and FP = false positives this yields:

IoU(x, x̂) =
TP

TP + FN + FP

5.3. MANO Regression

In this section, we report and discuss experiments related to the HandNet component of our
method which regressed MANO parameters from monocular RGB images. The HandNet was
trained for a total of 500 epochs that were distributed between the different training stages as
listed in Table 5.1. Moreover, the table lists the amount of epochs used at the end of each stage
for linearly decaying the learning rate towards 0. The Adam optimizer [54] was used with an
initial learning rate of 0.0002 at each stage and β1 = 0.9 and β2 = 0.99.

Stage number of epochs epochs used for decay

Image 120 20

Keypoint 100 20

Fusion 100 20

Finalize 180 100

Table 5.1.: Number of epochs for each training stage and amount of epochs used at end of each stage for
linear learning rate decay.
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Figure 5.1.: Training loss of the HandNet component.

5.3.1. Comparison

We compared the monocular HandNet component to other related, state of the art work using
the FreiHAND test set, for which no groundtruth was published and evaluation is carried out
through an online challenge 2. As some methods only predict relative coordinates, Zimmerman
et al. [45] provide an "aligned" metric, which performs a 3D alignment of the predicted vertices
using Procrustes analysis (PA). This also copes with unfair comparison between methods that
utilize the reference bone length, which is provided at test time and defined as the phalangal
proximal bone of the middle finger (i.e. distance between keypoints 9 and 10).

Methods MPVE (PA) F @ 5mm (PA) F@15mm (PA)

Mean shape 1.64 0.336 0.837

Inverse Kinematics [45] 1.37 0.439 0.892

Hasson et al. [34] 1.33 0.429 0.907

Boukhayma et al. [30] 1.32 0.427 0.894

Mano CNN [45] 1.09 0.516 0.934

Ours 0.97 0.568 0.946

Table 5.2.: Comparison of our approach with other methods on the task of monocular hand pose and
shape estimation. Our method outperforms the others in all three evaluation metrics, where
small values for MPVE (PA) and large values for the F-scores are better.

2https://competitions.codalab.org/competitions/21238
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Table 5.2 shows, that our approach outperforms baselines, such as the mean shape and in-
verse kinematic fits of the MANO model by quite a margin. Moreover, our method ranks higher
than other learning based approaches, such as [34, 30, 45]. It is important to acknowledge that
we rely on an extremely lightweight hand detector for real-time performance reasons with Me-
diaPipe Hands [8] as opposed to other methods utilizing more sophisticated hand detectors,
which could further boost the performance.

The PCK curve based on vertices is visible in Figure 5.2(a) and the PCK curve based on the
21 joint keypoints is shown in Figure 5.2(b)
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(a) PCK plot based on vertex positions using PA.
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(b) PCK plot based on 3D joint position using PA.

Figure 5.2.: PCK plots comparing various state of the art methods and baselines on the test set of Frei-
HAND.

5.3.2. Modality Fusion

For the following experiments on the modality fusion, we use a local validation set that was
created by randomly splitting 30% of the FreiHand samples into a validation dataset and the
remaining 70% are used for training the HandNet component. As the FreiHAND dataset comes
with only 32560 unique samples that get quadrupled through different color-hallucination-
techniques, we made sure to base the training and test splits on unique samples and include
the augmented versions in the respective sets.

To explore the impact of the additional keypoint heatmap modality we replaced the keypoint
input with a zero tensor. It should be noted that during training we feed a zero tensor as heatmap
with a probability of 30%, in order to make our method more robust and resilient during test
time, in case the 2D keypoint detector is failing to provide any predictions. The similar results in
Figure 5.3(a) and Figure 5.3(b) show that our SSMA network component successfully learned
to suppress the keypoint modality when no meaningful information is provided by this input
branch while using PA.
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(a) PCK plot based on vertex positions.
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(b) PCK plot based on 3D joint position.

Figure 5.3.: PCK plots on the validation set with and without keypoint heatmaps provided using PA.

In contrast, when we inspect the non-aligned results in Figure 5.4(a) and Figure 5.4(b), it
becomes apparent that the keypoint heatmap provides valuable and meaningful information
for localizing the exact hand position and alignment. This proofs that the modality fusion is
indeed helpful for our method, especially because good initial alignments are crucial for the
fine grained optimization to succeed.
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(a) PCK plot based on vertex positions without PA.
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(b) PCK plot based on 3D joint positions without PA.

Figure 5.4.: PCK plots on the validation set with and without keypoint heatmaps provided.

5.3.3. Keypoint Encoding

Furthermore, we explored different heatmap encodings of the 2D keypoints, namely various
kernel sizes as visualized in previous section’s Figure 4.14. Table 5.3 as well as Figure 5.5(a)
and Figure 5.5(b) show that our method performs very similarly for both kernel sizes k = 49
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and k = 127, with only a slight edge for k = 127. This is consistent with qualitative real world
tests.

Kernel size MVE (A) F @ 5mm (A) F @ 15mm (A) MKE F @ 5mm F@15mm

K = 49 0.81 0.656 0.964 6.60 0.123 0.408

K = 127 0.77 0.673 0.967 7.33 0.119 0.393

Table 5.3.: Results of different heatmap kernel sizes on the FreiHAND validation set.
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(a) PCK plot based on vertex positions with PA.
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(b) PCK plot based on 3D joint positions without PA.

Figure 5.5.: PCK plots based on vertex positions comparing different kernel sizes on the validation set.

5.3.4. Qualitative results

Qualitative results on the test dataset, for which no groundtruth information is available are vis-
ible in Figure 5.6. The two last examples in the third column show failure cases. In the first
failure case, the position is wrongly predicted, due to the hand being cut off. In the second ex-
ample, the scale is wrongly predicted, due to severe occlusion. Noteworthy is that the hand pose
itself resembles a very likely pose, also in these failure cases, which explains the discrepancies
in accuracy when using PA.

5.4. Segmentation

In this section, we report and discuss experiments related to the segmentation decoder of our
proposed method, which provides the segmentation masks that are used as optimization targets
by the differential renderer. The segmentation decoder was trained for 10 epochs, with linearly
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Figure 5.6.: Qualitative results on the FreiHAND test set. Visualization of predictions on the Frei-
HAND test set, where no groundtruth is available. The last two examples in the third col-
umn show failure cases, due to cutoff and occlusion, however the overall hand pose still
correctly predicted.

decaying the learning rate during the last 6 epochs. Furthermore, the Adam optimizer [54] was
used with an initial learning rate of 0.0002 and β1 = 0.9 and β2 = 0.99.

For the segmentation experiments both FreiHAND and our synthetic dataset were used.
More specifically, we use 70% of the data from each dataset for training and 30% for vali-
dation. Due to the chosen size of the synthetic dataset, the corresponding amounts of samples
from the two datasets are also balanced as listed in Table 5.4.

Splits Total FreiHAND Synth

Training 43911 22795 21116

Validation 18813 9765 9048

Table 5.4.: Number of samples in the training and validation set for the segmentation experiments.

We compared the segmentation performance to a trivial color thresholding baseline (HSV)
and a recently introduced method [55] for egocentric hand segmentation (CNN and UMA). For
the color thresholding baseline, we converted the image to the HSV color space and applied
color thresholding based on sensible values for skin color [56]. Cai et al. [55] proposed in their
work a bayesian CNN that is based on RefineNet [57]. As segmentations tend to not generalize
well to other domains, they further introduced an iterative self training method, that adapts the
pretrained model to a new domain. The process is self-supervised and based on the uncertainty
estimates of the bayesian CNN. We retrained the bayesian CNN using our training dataset and
for the UMA baseline we further ran the uncertainty-guided model adaption on the validation
dataset. The performance of the CNN and the UMA is almost similar, which stems from the fact
that training and validation dataset are from the same data distribution and the domain adaption
is, therefore, fundamentally limited. The results are recorded in Table 5.5.
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Combined FreiHAND Synth

Mean IoU Accuracy Mean IoU Accuracy Mean IoU Accuracy

HSV 0.26 0.81 0.33 0.90 0.18 0.72

CNN [55] 0.85 0.98 0.77 0.97 0.93 0.99

UMA [55] 0.85 0.98 0.77 0.97 0.93 0.99

Ours 0.88 0.99 0.80 0.98 0.95 0.99

Table 5.5.: Segmentation Results

Figure 5.7.: Qualitative segmentation comparison. Visualization of obtained segmentation masks by
different methods. HSV corresponds to thresholding on skin color in the HSV color space.
CNN corresponds to the bayesian CNN that serves as starting point for the uncertainty-
guided model adaptation (UMA) introduced by Cai et al. [55].

We further evaluated the segmentation quality on captured real data. In contrast to before,
the uncertainty-guided model adaption is based on the obtained video frames. Figure 5.7 visu-
alizes input image crops and the respective predicted segmentation masks from each method.
Contrasting with the color thresholding, all data driven methods correctly learned to differenti-
ate between hand and arm. Furthermore, they are not impacted by similarly colored objects like
the world map or floor. Our method stands out when it comes to segmenting fingers, as both the
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5.5. Fine grained optimization

CNN and UMA method fail to segment them in detail.

5.5. Fine grained optimization

Results from our iterative fine grained optimization are visualized in Figure 5.8. More specif-
ically, it shows the target silhouette from the segmentation decoder as well as the rendered
silhouette of the predicted mesh. Furthermore, to better understand the impact of the vertex
offsets, we encoded them as color-coded heatmaps, ranging from blue (smallest offset) to red
(largest offset).

Figure 5.8.: Offsets obtained from fine grained optimization. Visualization of obtained offsets by our
iterative fine grained optimization based on differential rendering. Light blue corresponds
to a very small vertex offset, while dark red indicates a larger one.

5.6. Stereo extension

In this section, we report and discuss experiments related to the stereo extension of our proposed
method. The training consists of 2 epochs of synthetic adaption and 8 epochs of learning the
stereo weights, where we linearly decay the learning rate over the last 4 epochs as denoted
in Table 5.6. The Adam optimizer [54] was used with an initial learning rate of 0.0002 and
β1 = 0.9 and β2 = 0.99. For evaluation we use the original HandNet that was not adapted to
the synthetic data.

Stage number of epochs epochs used for decay

Synthetic adaption 2 0

Keypoint 8 4

Table 5.6.: Number of epochs for each stage of training the stereo extension.
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5. Results

To better understand the stereo fusion, we provide qualitative results in Figure 5.9. Moreover,
the fusion weights w are color-coded into a heatmap, where each joint corresponds to a row and
small weights are represented by blue, while large values are indicated by red.

Figure 5.9.: Qualitative results of the stereo fusion. Depicted are the left and right input images, as
well as the fused prediction overlaid in the right view. Furthermore, the fusion weights are
visualized as heatmaps, where each row corresponds to a joint. Light blue corresponds to
small weights, whereas dark red represents large weights.
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5.7. Texture

5.7. Texture

To assess the performance of our proposed texture projection, we provide qualitative examples
of the obtained texture maps as well as the rendered output hand mesh in Figure 5.10. There
tends to be some noise around the borders, however, these parts are self occluded most of the
time and therefore also not visible in the rendered output mesh.

Figure 5.10.: Texture mapping results. Visualization of obtained texture maps and the rendered output
hand mesh.

Additionally, we show that our projection based approach allows special skin characteristics
such as tattoos to be transferred to the digital hand replication in Figure 5.11.

Figure 5.11.: Texture map with skin characteristic. The captured hand has a smiley face drawn on the
palm, which also gets replicated in the texture map and therefore transferred to the digital
hand replication.
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5. Results

5.8. Realistic Hands

To give a summarized overview of our method, we provide qualitative results of the important
architectural components of our proposed method in Figure 5.12.

Figure 5.12.: Full result visualization of our method Realistic Hands. The figure contains both input
images, the stereo fusion weights, the predicted segmentation masks, the heatmap encoded
offsets from the optimization as well as the texture map. Additionally, the predicted mesh
is overlaid on the right input image and the obtained textured mesh is rendered as output.
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6
Conclusion and Future Work

6.1. Conclusion

In this thesis, we proposed and implemented a real-time capable method that is able to predict
MANO parameters to obtain 3D hand reconstruction from monocular RGB images by fusing
different input modalities. Moreover, we elaborated on how to extend the architecture towards
a stereo setting, which is prevalent in VR headsets and helps to further improve the resilience
and accuracy of our method. Unfortunately, such one-shot predictions of poses yield only
mediocre mesh-image alignments when projected onto the original image. We proposed to
mitigate this problem by introducing a test time optimization strategy based on differential
rendering. The idea behind this more fine grained optimization step is to iteratively refine
the vertex positions based on a jointly predicted segmentation mask, so that we obtain a truly
personalized hand mesh that aligns accurately with the input image. This further enabled the
generation of a matching realistic texture which comprises personal skin characteristics to yield
a textured output mesh that can replace generic hand models of current VR systems to increase
the user’s immersion by providing a less artificial feel.

The experiments showed that our approach outperforms other state of the art methods in
monocular RGB hand pose and shape estimation. Moreover, the integrated hand segmentation
network exhibits state of the art performance, which enabled qualitative improvements through
the proposed fine grained test time optimization. Furthermore, the accurate mesh-image align-
ments allowed for texturing, which yields visually pleasing personalized hand meshes as a re-
sult. Additionally, we demonstrated the usefulness of the stereo extension for increased robust-
ness. Due to low computational requirements, our method allows for real-time deployment.

To summarize, our hybrid approach is more expressive and personalized than work relying
on the MANO hand model and also more efficient and robust than methods that directly try to
infer a mesh. Additionally, we are one of the first to explore texturing based on camera input,
yielding a truly unique and personalized hand mesh for use in VR.
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6. Conclusion and Future Work

6.2. Future Work

There are several directions of research that could be explored further. On the one hand, the
monocular and stereo hand mesh estimation could be improved. This includes the creation of
new and better real datasets, as they appear to be a limiting factor especially for the challeng-
ing egocentric perspective. Also, methodological improvements on the deep neural network
architecture could lead to better results. On the other hand, the realistic appearance component
could be studied further and in more detail. Due to the fine grained optimization, we were able
to project the texture map, but generative approaches for the texture map creation could also
be studied and lead to fruitful results. Further, the decomposition of texture maps in intrinsic
components to allow for scene adaptive relighting could be explored.
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A
Appendix

A.1. Architecture

Layer Output Size Input Channels Output Channels

ImgHead Down1 [112,112] 3 64

Down2 [56,56] 64 256

Down3 [28,28] 256 512

KpHead Down1 [112,112] 3 64

Down2 [56,56] 64 256

Down3 [28,28] 256 512

Fusion Conv2d [28,28] 1024 128

Conv2d [28,28] 128 1024

Conv2d [28,28] 1024 512

Tail Down4 [14,14] 512 1024

Down5 [7,7] 1024 2048

Segment Up1 [14,14] 2048 1024

Up2 [28,28] 1024 512

Up3 [56,56] 512 256

Up4 [112,112] 256 128

Up5 [224,224] 128 64

Conv2d [224,224] 64 1

Table A.1.: Output size and input/output channels of our HandNet architecture.
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A. Appendix

A.2. Stereo results

Figure A.1.: More qualitative results of the stereo fusion. Depicted are the left and right input images,
as well as the fused prediction overlaid in the right view. Furthermore, the fusion weights
are visualized as heatmaps, where each row corresponds to a joint. Light blue corresponds
to small weights, whereas dark red represents large weights.
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A.3. OpenCV camera to PyTorch3D

A.3. OpenCV camera to PyTorch3D

Figure A.2.: PyTorch3D camera system.

OpenCV coordinate system is X-right, Y-down, Z-out, while PyTorch3D uses X-left, Y-up, Z-
out. Instead of flipping X and Y axes we input negative focal length to the PyTorch3D camera
which is equal:

xndc = (fx ∗ 2/W ) ∗X/Z − (px−W/2) ∗ 2/W

yndc = (fy ∗ 2/H) ∗ Y/Z − (py −H/2) ∗ 2/H

xscreen = (W − 1)/2 ∗ (1− xndc)
yscreen = (H − 1)/2 ∗ (1− yndc)

Substituting xndc and yndc:

xscreen = (−fx ∗ (W − 1)/W ) ∗X/Z + (W − 1)/W ∗ px
yscreen = (−fy ∗ (H − 1)/H) ∗ Y/Z + (H − 1)/H ∗ py
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