Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

file 407 lines (316 sloc) 8.306 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
Ddoc

$(SPEC_S Interfacing to C,

$(P D is designed to fit comfortably with a C compiler for the target
system. D makes up for not having its own VM by relying on the
target environment's C runtime library. It would be senseless to
attempt to port to D or write D wrappers for the vast array of C APIs
available. How much easier it is to just call them directly.
)

$(P This is done by matching the C compiler's data types, layouts,
and function call/return sequences.
)

<h2>Calling C Functions</h2>

$(P C functions can be called directly from D. There is no need for
wrapper functions, argument swizzling, and the C functions do not
need to be put into a separate DLL.
)

$(P The C function must be declared and given a calling convention,
most likely the "C" calling convention, for example:
)

------
extern (C) int strcmp(char* string1, char* string2);
------

$(P and then it can be called within D code in the obvious way:)

------
import std.string;
int myDfunction(char[] s)
{
    return strcmp(std.string.toStringz(s), "foo");
}
------

$(P There are several things going on here:)

$(UL
$(LI D understands how C function names are "mangled" and the
correct C function call/return sequence.)

$(LI C functions cannot be overloaded with another C function
with the same name.)

$(LI There are no __cdecl, __far, __stdcall, __declspec, or other
such C type modifiers in D. These are handled by attributes, such
as $(TT extern (C)).)

$(LI There are no const or volatile type modifiers in D. To declare
a C function that uses those type modifiers, just drop those
keywords from the declaration.)

$(LI Strings are not 0 terminated in D. See "Data Type Compatibility"
for more information about this. However, string literals in D are
0 terminated.)

)

$(P C code can correspondingly call D functions, if the D functions
use an attribute that is compatible with the C compiler, most likely
the extern (C):)

------
// myfunc() can be called from any C function
extern (C)
{
    void myfunc(int a, int b)
    {
...
    }
}
------

<h2>Storage Allocation</h2>

$(P C code explicitly manages memory with calls to malloc() and
free(). D allocates memory using the D garbage collector,
so no explicit free's are necessary.
)

$(P D can still explicitly allocate memory using std.c.stdlib.malloc()
and std.c.stdlib.free(), these are useful for connecting to C
functions that expect malloc'd buffers, etc.
)

$(P If pointers to D garbage collector allocated memory are passed to
C functions, it's critical to ensure that that memory will not
be collected by the garbage collector before the C function is
done with it. This is accomplished by:
)

$(UL

$(LI Making a copy of the data using std.c.stdlib.malloc() and passing
the copy instead.)

$(LI Leaving a pointer to it on the stack (as a parameter or
automatic variable), as the garbage collector will scan the stack.)

$(LI Leaving a pointer to it in the static data segment, as the
garbage collector will scan the static data segment.)

$(LI Registering the pointer with the garbage collector with the
std.gc.addRoot() or std.gc.addRange() calls.)

)

$(P An interior pointer to the allocated memory block is sufficient
to let the GC
know the object is in use; i.e. it is not necessary to maintain
a pointer to the beginning of the allocated memory.
)

$(P The garbage collector does not scan the stacks of threads not
created by the D Thread interface. Nor does it scan the data
segments of other DLL's, etc.
)

<h2>Data Type Compatibility</h2>

$(TABLE1
<caption>D And C Type Equivalence</caption>

$(TR
$(TH D type)
$(TH C type)
)

$(TR
$(TD $(B void))
$(TD $(B void))
)

$(TR
$(TD $(B byte))
$(TD $(B signed char))
)

$(TR
$(TD $(B ubyte))
$(TD $(B unsigned char))
)

$(TR
$(TD $(B char))
$(TD $(B char) (chars are unsigned in D))
)

$(TR
$(TD $(B wchar))
$(TD $(B wchar_t) (when sizeof(wchar_t) is 2))
)

$(TR
$(TD $(B dchar))
$(TD $(B wchar_t) (when sizeof(wchar_t) is 4))
)

$(TR
$(TD $(B short))
$(TD $(B short))
)

$(TR
$(TD $(B ushort))
$(TD $(B unsigned short))
)

$(TR
$(TD $(B int))
$(TD $(B int))
)

$(TR
$(TD $(B uint))
$(TD $(B unsigned))
)

$(TR
$(TD $(B long))
$(TD $(B long long))
)

$(TR
$(TD $(B ulong))
$(TD $(B unsigned long long))
)

$(TR
$(TD $(B float))
$(TD $(B float))
)

$(TR
$(TD $(B double))
$(TD $(B double))
)

$(TR
$(TD $(B real))
$(TD $(B long double))
)

$(TR
$(TD $(B ifloat))
$(TD $(B float _Imaginary))
)

$(TR
$(TD $(B idouble))
$(TD $(B double _Imaginary))
)

$(TR
$(TD $(B ireal))
$(TD $(B long double _Imaginary))
)

$(TR
$(TD $(B cfloat))
$(TD $(B float _Complex))
)

$(TR
$(TD $(B cdouble))
$(TD $(B double _Complex))
)

$(TR
$(TD $(B creal))
$(TD $(B long double _Complex))
)

$(TR
$(TD $(B struct))
$(TD $(B struct))
)

$(TR
$(TD $(B union))
$(TD $(B union))
)

$(TR
$(TD $(B enum))
$(TD $(B enum))
)

$(TR
$(TD $(B class))
$(TD no equivalent)
)

$(TR
$(TD $(I type)$(B *))
$(TD $(I type) $(B *))
)

$(TR
$(TD $(I type)$(B [)$(I dim)$(B ]))
$(TD $(I type)$(B [)$(I dim)$(B ]))
)

$(TR
$(TD $(I type)$(B [)$(I dim)$(B ]*))
$(TD $(I type)$(B (*)[)$(I dim)$(B ]))
)

$(TR
$(TD $(I type)$(B []))
$(TD no equivalent)
)

$(TR
$(TD $(I type)$(B [)$(I type)$(B ]))
$(TD no equivalent)
)

$(TR
$(TD $(I type) $(B function)$(B $(LPAREN))$(I parameters)$(B $(RPAREN)))
$(TD $(I type)$(B (*))$(B $(LPAREN))$(I parameters)$(B $(RPAREN)))
)

$(TR
$(TD $(I type) $(B delegate)$(B $(LPAREN))$(I parameters)$(B $(RPAREN)))
$(TD no equivalent)
)

)

$(P These equivalents hold for most 32 bit C compilers. The C standard
does not pin down the sizes of the types, so some care is needed.
)

$(V2
<h2>Passing D Array Arguments to C Functions</h2>

$(P In C, arrays are passed to functions as pointers even if the function
prototype says its an array. In D, static arrays are passed by value,
not by reference. Thus, the function prototype must be adjusted to match
what C expects.)

$(TABLE1
<caption>D And C Function Prototype Equivalence</caption>

$(TR
$(TH D type)
$(TH C type)
)

$(TR
$(TD $(I T)$(B *))
$(TD $(I T)$(B []))
)

$(TR
$(TD $(B ref) $(I T)$(B [)$(I dim)$(B ]))
$(TD $(I T)$(B [)$(I dim)$(B ]))
)

)

$(P For example:)

$(CCODE
void foo(int a[3]) { ... } // C code
)
---
extern (C)
{
  void foo(ref int[3] a); // D prototype
}
---
)

<h2>Calling printf()</h2>

$(P This mostly means checking that the printf format specifier
matches the corresponding D data type.
Although printf is designed to handle 0 terminated strings,
not D dynamic arrays of chars, it turns out that since D
dynamic arrays are a length followed by a pointer to the data,
the $(TT %.*s) format works perfectly:
)

------
void foo(char[] string)
{
    printf("my string is: %.*s\n", string);
}
------

$(P The $(CODE printf) format string literal
in the example doesn't end with $(CODE '\0').
This is because string literals,
when they are not part of an initializer to a larger data structure,
have a $(CODE '\0') character helpfully stored after the end of them.
)

$(P An improved D function for formatted output is
$(CODE std.stdio.writef()).
)

<h2>Structs and Unions</h2>

$(P D structs and unions are analogous to C's.
)

$(P C code often adjusts the alignment and packing of struct members
with a command line switch or with various implementation specific
#pragma's. D supports explicit alignment attributes that correspond
to the C compiler's rules. Check what alignment the C code is using,
and explicitly set it for the D struct declaration.
)

$(P D does not support bit fields. If needed, they can be emulated
with shift and mask operations.
$(LINK2 htod.html, htod) will convert bit fields to inline functions that
do the right shift and masks.
)

$(V1
<hr>
<h1>Interfacing to C++</h1>

$(P D does not provide an interface to C++, other than
through $(LINK2 ../COM.html, COM programming). Since D, however,
interfaces directly to C, it can interface directly to
C++ code if it is declared as having C linkage.
)

$(P D class objects are incompatible with C++ class objects.
)
)

)

Macros:
TITLE=Interfacing to C
WIKI=InterfaceToC
CATEGORY_SPEC=$0

Something went wrong with that request. Please try again.