Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Paul Thompson Added Python code fa2757a May 9, 2016
0 contributors

Users who have contributed to this file

83 lines (64 sloc) 3.64 KB
__author__ = 'paulthompson'
import pandas as pd, numpy as np, matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
tags_file ='/Users/paulthompson/Documents/MSAN_Files/Spr2_Distributed/HW1/movies/tags.txt'
ratings_file = '/Users/paulthompson/Documents/MSAN_Files/Spr2_Distributed/HW1/movies/ratings.txt'
movies_file = '/Users/paulthompson/Documents/MSAN_Files/Spr2_Distributed/HW1/movies/movies.txt'
def getInitialMatrix():
'''
Gets data from files and creates user-item matrices
:return: A, R user-item matrices
'''
tags = pd.read_table(tags_file, sep=':', header=None, names=['user_id', 'movie_id', 'tag', 'timestamp'])
ratings = pd.read_table(ratings_file, sep=':', header=None, names=['user_id', 'movie_id', 'rating', 'timestamp'])
movies = pd.read_table(movies_file, sep=':', header=None, names=['movie_id', 'title', 'genres'])
print "Join movies, ratings, and tags data frames together..."
combined_df = ratings.join(movies, on=['movie_id'], rsuffix='_r').join(tags, on=['movie_id'], rsuffix='_t')
del combined_df['movie_id_r']; del combined_df['user_id_t']; del combined_df['movie_id_t']; del combined_df['timestamp_t']
combined_df = combined_df[0:5054]
print "Getting 'A' matrix with rows: user and columns: movies..."
A = combined_df.pivot_table(columns=['movie_id'], index=['user_id'], values='rating').fillna(0).values
print " 'A' matrix shape is", A.shape
print "Getting 'R' Binary Matrix of rating or no rating..."
R = A>0.5; R[R == True] = 1; R[R == False] = 0; R = R.astype(np.float64, copy=False)
return A, R
def runALS(A, R, n_factors, n_iterations, lambda_):
'''
Runs Alternating Least Squares algorithm in order to calculate matrix.
:param A: User-Item Matrix with ratings
:param R: User-Item Matrix with 1 if there is a rating or 0 if not
:param n_factors: How many factors each of user and item matrix will consider
:param n_iterations: How many times to run algorithm
:param lambda_: Regularization parameter
:return:
'''
print "Initiating "
lambda_ = 0.1; n_factors = 3; n, m = A.shape; n_iterations = 20
Users = 5 * np.random.rand(n, n_factors)
Items = 5 * np.random.rand(n_factors, m)
def get_error(A, Users, Items, R):
# This calculates the MSE of nonzero elements
return np.sum((R * (A - np.dot(Users, Items))) ** 2) / np.sum(R)
MSE_List = []
print "Starting Iterations"
for iter in range(n_iterations):
for i, Ri in enumerate(R):
Users[i] = np.linalg.solve(np.dot(Items, np.dot(np.diag(Ri), Items.T)) + lambda_ * np.eye(n_factors),
np.dot(Items, np.dot(np.diag(Ri), A[i].T))).T
print "Error after solving for User Matrix:", get_error(A, Users, Items, R)
for j, Rj in enumerate(R.T):
Items[:,j] = np.linalg.solve(np.dot(Users.T, np.dot(np.diag(Rj), Users)) + lambda_ * np.eye(n_factors),
np.dot(Users.T, np.dot(np.diag(Rj), A[:, j])))
print "Error after solving for Item Matrix:", get_error(A, Users, Items, R)
MSE_List.append(get_error(A, Users, Items, R))
print '%sth iteration is complete...' % iter
print MSE_List
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(range(1, len(MSE_List) + 1), MSE_List); plt.ylabel('Error'); plt.xlabel('Iteration')
plt.title('Python Implementation MSE by Iteration \n with %d users and %d movies' % A.shape);
plt.savefig('Python MSE Graph.pdf', format='pdf')
plt.show()
if __name__ == '__main__':
A, R = getInitialMatrix()
runALS(A, R, n_factors = 3, n_iterations = 20, lambda_ = .1)
You can’t perform that action at this time.