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Who am I?
● Research into fault-tolerant distributed systems since 1986

○ Arjuna, Argus, Isis/Horus, Emerald, Xerox, …
○ DCE, DCOM, CORBA, HTTP, Web Services, …

● Implemented world’s first 100% Java transaction service in 1995
○ Yes, we’re still using it today!

● Active in OMG, OASIS, W3C, JCP, GGF and others
○ Co-author of a number of specifications and standards

● Visiting Professor at Newcastle and Lyon
● Industry ...

○ Various startups
○ Bluestone Distinguished Engineer, HP Distinguished Engineer
○ JBoss CTO in 2009

● These days spend far too much time on conference calls, meetings etc!
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Overview
● Why Java in the age of Kubernetes and Linux Containers?

○ Java is dead, right?

● Why did Enterprise Java need to change?
○ Kubernetes and Immutability
○ Incompatibilities with Java and Application Containers

● Eclipse MicroProfile
○ Eclipse Jakarta EE

● Quarkus and principles behind it may be a game changer
○ Optimised for immutable architectures
○ Can work in constrained environments, e.g., low memory footprint

3



Why is Java still important?
● Still a de-facto language for enterprise developers*
● Large skills base (7-10 million Java devs.)**
● Large and diverse ecosystem

○ Amazon, Fujitsu, Google, IBM, Microsoft, Netflix, Oracle, Pivotal, Red Hat, …

● Large, resilient community
● Much more than just the language!
● The innovation continues

○ Eclipse MicroProfile
○ Eclipse Jakarta EE
○ Java SE faster schedule
○ SubstrateVM
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Sources:
*Tiobe Index : https://www.tiobe.com/tiobe-index/
* IEEE Spectrum : https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
I** SlashData - 7.6 million active Java developers  (State of Developer Nation, 16th Edition, Q4 2018)

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018


Historical Enterprise Java Stack
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Operating System + Hardware/VM

Java Virtual Machine (Hotspot)

Application Server

App App App App App

Dynamic Application Frameworks

Architecture: Monoliths 

Deployment: multi-app, 
                         appserver

App Lifecycle:  Months

Memory:         1GB+ RAM

Startup Time: 10s of sec     



And then along came ...
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Monoliths are Evil? Microservices ..?
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Followed closely by ...
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And then … Kubernetes
● Open source project from Google

● The de facto standard for cluster management for Linux containers

● Packages Orchestration, service discovery, load balancing

○ All behind a simple REST API

● Immutable architectures
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The “Java Problem”
● Designed for throughput at the expense of footprint

● Intended to be long running, less focus on startup speed 

● Rich dynamic behavior built around mutable bare-metal systems

○ … yet Linux containers are primarily immutable

○ … frameworks and stacks built to leverage key Java capabilities such as dynamism

● Java is trying to pivot (JPMS, AOT, Graal, etc)

○ … but architectural changes to frameworks are required to truly benefit
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Why footprint matters in the cloud
● Memory is more important than throughput on containers

○ It’s more expensive (requires permanence), unlike CPU cycles

● Microservices multiply overhead cost

○ One app becomes N microservices (e.g. 20 microservices ~= 20GB today!)

● If we do nothing Java alternatives will take over (eventually)

○ Go, Python, Node, PHP, Rust etc. do not have this problem
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What we really want ...
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● 1 monolith ≈ 20 microservices ≈ 200 functions
● Scale to 1 vs scale to 0
● Start up time
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We need a Kubernetes native stack
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Monolith Cloud Native Microservices Serverless Event-Driven
Architecture

Istio Knative



It starts with the JVM
● Linux container aware JVM efforts

○ Memory utilisation
○ Processor utilisation

● OpenJDK evolved to work better with Linux Containers
○ Shenandoah GC

● Eclipse OpenJ9 performance improvements
○ JIT-as-a-Service

● Compiled Java?
○ gcj
○ … Dalvik?
○ Avian
○ Excelsior JET
○ GraalVM

● JVM improvements are necessary but not sufficient
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APPLICATION SERVER TRANSITION
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Traditional Application 
Development

Standardized 
Runtimes & 
Frameworks

Kubernetes Optimized 
Middleware

Application Services
for OpenShift

Hybrid Cloud App 
Development Container Platform

Caching API Mgmt Business 
Rules

HTTP/
REST Persistence

Process 
AutomationIntegration Messaging TransactionSecurity

Dependency Injection

Domains DevOps Clustering

Load 
BalancingFailover Rolling 

Updates

Traditional Middleware               +              Java Application Server



Eclipse MicroProfile
● Open Source community 

specifications for Enterprise Java 
microservices

● 9 releases in 3 years
● 5 specifications in the pipeline
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Eclipse MicroProfile 3.1 (Oct 2019)
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Roadmap items
● Long Running Actions (yes, transactions for microservices!)
● GraphQL
● Reactive Relational Database Access
● Event Data
● Service meshes
● start.microprofile.io
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Eclipse Vert.x
● Responsive: fast, is able to handle a large number of events / connections 
● Elastic: scale up and down by just starting and stopping nodes, 

round-robin 
● Resilient: failure as first-class citizen, self-healing
● Asynchronous message-passing: asynchronous non-blocking 

development model
● 2014 JAX Innovations Award Winner
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WHAT IS QUARKUS?
QUARK: elementary particle / US: hardest thing in computer science



Moving to Compile-Time Boot
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What does a framework do at startup time?

● Parse config files
● Classpath & classes scanning

○ for annotations, getters or other metadata
● Build framework metamodel objects
● Prepare reflection and build proxies
● Start and open IO, threads etc

● Moved as much as possible to build phase
● Minimized runtime dependencies
● Maximize dead code elimination
● Introduced clear metadata contracts
● Spectrum of optimization levels

(all → some → no runtime reflection)

Framework Optimizations



What about MicroProfile?
● Quarkus implements MicroProfile
● We all know the benefits of open standards …

○ No vendor lock-in so applications can be ported across implementations
○ Don’t like something then come in and help evolve it

● MicroProfile in Quarkus enables skills to be immediately brought to the 
problem
○ And applications from other implementations too!

● Aim to feed more innovations back to MicroProfile and beyond
○ Remember … the JVM needs love too, not just frameworks
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JVM CI

Sulong (LLVM)

Truffle 

Graal Compiler

Substrate VM

Java HotSpot VM



Benefit No. 1: Developer Joy
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A cohesive platform for optimized developer joy:

● Based on standards (e.g., MicroProfile), but not 

limited

● Unified configuration

● Zero config, live reload in the blink of an eye

● Streamlined code for the 80% common usages, 

flexible for the 20%

● No hassle native executable generation

● Unifies imperative and reactive programming

○ Vert.x FTW!

● Re-architected many projects

○ Hibernate, Narayana, Netty, Infinispan, ...



Benefit No. 2: Supersonic Subatomic Java

31

Quarkus + SubstrateVM
13 MB

Quarkus + OpenJDK Hotspot
74 MB

Traditional Cloud Native Stack 
+ OpenJDK Hotspot

140 MB

REST



Benefit No. 2: Supersonic Subatomic Java
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REST + CRUD

Quarkus + SubstrateVM
35 MB

Quarkus + OpenJDK Hotspot
130 MB

Traditional Cloud Native Stack 
+ OpenJDK Hotspot

218 MB



Benefit No. 2: Supersonic Subatomic Java

3333Boot + First Response Time (in seconds)

Quarkus + GraalVM 0.014 Seconds

REST

REST + CRUD

Quarkus + OpenJDK 0.75 Seconds

Quarkus + SubstrateVM 0.055 Seconds

Quarkus + OpenJDK 2.5 Seconds

Traditional Cloud Native Stack 9.5 Seconds

Traditional Cloud Native Stack 4.3 Seconds

Time to first response



The New Truth about Java + Containers
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CONTAINER ORCHESTRATION
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Conclusions: rethinking the problem
● Our problems are not the same as they were 10 years ago

○ We can’t expect the same solutions to make sense!

○ Containers are small and primarily immutable

● To adapt, we must truly understand conditions and make different trade-offs

○ Eclipse MicroProfile offers a standard way to trim down services

○ But there’s still a lot more work to do across the entire stack

● Enable millions of Java developers to become truly cloud native
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