Kubernetes Native Java and
Eclipse MicroProfile (plus other things)

Mark Little, VP Engineering, Red Hat

Who am I?

® Research into fault-tolerant distributed systems since 1986
o Arjuna, Argus, Isis/Horus, Emerald, Xerox, ...
o DCE, DCOM, CORBA, HTTP, Web Services, ...

e Implemented world’s first 100% Java transaction service in 1995
o Yes, we're still using it today!

e Active in OMG, OASIS, W3C, JCP, GGF and others

o Co-author of a number of specifications and standards
e \Visiting Professor at Newcastle and Lyon

e Industry ...

o Various startups
o Bluestone Distinguished Engineer, HP Distinguished Engineer
o JBoss CTO in 2009

e These days spend far too much time on conference calls, meetings etc!

e Why Java in the age of Kubernetes and Linux Containers?
o Javais dead, right?

e Why did Enterprise Java need to change?
o Kubernetes and Immutability
o Incompatibilities with Java and Application Containers

e Eclipse MicroProfile
o Eclipse Jakarta EE

e Quarkus and principles behind it may be a game changer
o Optimised for immutable architectures
o Can work in constrained environments, e.g., low memory footprint

Why is Java still important?

e Still a de-facto language for enterprise developers*
e Large skills base (7-10 million Java devs.)**
e Large and diverse ecosystem

o Amazon, Fujitsu, Google, IBM, Microsoft, Netflix, Oracle, Pivotal, Red Hat, ...

e Large, resilient community
e Much more than just the language!

e The innovation continues
o Eclipse MicroProfile
o Eclipse Jakarta EE
o Java SE faster schedule
o SubstrateVM

Sources:

*Tiobe Index : https://www.tiobe.com/tiobe-index/

* |EEE Spectrum : https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
I** SlashData - 7.6 million active Java developers (State of Developer Nation, 16th Edition, Q4 2018)

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

Historical Enterprise Java Stack

Architecture: Monoliths

Deployment: multi-app,
appserver

App Lifecycle: Months
Memory: 1GB+ RAM

Startup Time: 10s of sec

App App App App App
Dynamic Application Frameworks

Application Server

Java Virtual Machine (Hotspot)

Operating System + Hardware/VM

And then along came ...

A monolithic application puts all its -’
functionality into a single process... ®
oV
... and scales by replicating the
monolith on multiple servers
, \
(== P =) o
oV oV
\ 9
=] P = P
oV LB 4

A microservices architecture puts ’
each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.

49

(=l =]l [[w

[=]le]) [[=]]e

Monoliths are Evil? Microservices ..?

e0c00 3 4G 14:04 7 67% .
< Tweet A
| stacks machine @cemerick -05/01/2015
B Uh, microservices. So, people are
e hooking minute bits of computation

together via unmanaged pipes carrying
opaque chunks of encoded data?

- X2 v o

€3 Christian Posta Retweeted

¢ stacks machine
 , @cemerick

Replying to @cemerick

Microservices, because designing,
implementing, deploying, monitoring,
managing, and supporting network
APls is so fucking easy.

05/01/2015, 20:40
12 RETWEETS 109 LIKES

- A oo v

Tweet your reply

° Q 4° 4

ke - 2+ Follow
@natewave

Finally, thanks to microservices, my dream of
peing a detective has come true. Every bug is
more like a murder mystery.

a6 AEbD2SBsee

1:18 PM - 11 Jun 2016

<= L3 4 ¥ 6

Jamison Dance o/
Py @jamison_dance

microservices vs monoliths is the "would you rather fight
50 duck-sized horses or one horse-sized duck" of
software development

3:41 AM - Sep 28, 2019 - Twitter Web App

1.3K Retweets 4.9K Likes

Followed closely by ...

VIRTUALIZATION

/
APP = APP : APP
A . A - 5]
= < Bins, B Binsy B BINS/
- LIBS = LIBS » LIBS
GUEST [GUEST GUEST
os . os os
\ -

HOST OS

CONTAINERS

LI

El

BINS/LIBS BINS/LIBS

CONTAINER

HOST OS, SHARED SERVICES

HARDWARE

HARDWARE

And then .. Kubernetes

e Open source project from Google
e The de facto standard for cluster management for Linux containers

e Packages Orchestration, service discovery, load balancing

o All behind a simple REST API

e Immutable architectures

OPENSHIFT

by Red Hat’

The “Java Problem”

Designed for throughput at the expense of footprint

Intended to be long running, less focus on startup speed

Rich dynamic behavior built around mutable bare-metal systems

O

(@)

... yet Linux containers are primarily immutable

... frameworks and stacks built to leverage key Java capabilities such as dynamism

Java is trying to pivot (JPMS, AOT, Graal, etc)

©)

... but architectural changes to frameworks are required to truly benefit

10

HotSpot

HotSpot

HotSpot

HotSpot

Node

Container platform

"

Why footprint matters in the cloud

e Memory is more important than throughput on containers

O It's more expensive (requires permanence), unlike CPU cycles
e Microservices multiply overhead cost

O One app becomes N microservices (e.g. 20 microservices ~= 20GB today!)
e If we do nothing Java alternatives will take over (eventually)

O Go, Python, Node, PHP, Rust etc. do not have this problem

12

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MONOLITH

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

What we really want ...

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

1 monolith = 20 microservices = 200 functions

Scaleto 1 vsscaleto 0O
Start up time

FlrfrRrlrdrfrfrfrdrirfrfrfrfrfrfrfrfrfr
FFlrRrledrlrRrfrdrlrfrfrfrirfrfrfrirfr
FlrirRrRrdrfrRrlrdrirfrfrfrirfrfrfrfrfr
AAdAAOOAGOOEAGOOEGAA
AAAAOEGOOEGOGEGAA

FlrfrRrlrdrfrfrfrdrirfrfrfrfrfrfrfrfrfr
FFlrRrledrlrRrfrdrlrfrfrfrirfrfrfrirfr
FlrirRrRrdrfrfrlrdrirfrfrfrirfrfrfrfrfr
AAdAAOOAGOOEAGOOEGAA

13

We need a Kubernetes native stack

of}): . P

Event-Driven
Architecture

Cloud Native Microservices Serverless

@ A @

kubernetes Istio Knative

14

14

It starts with the JUM

Linux container aware JVM efforts
o Memory utilisation
o Processor utilisation

OpendDK evolved to work better with Linux Containers
o Shenandoah GC

Eclipse OpenJ9 performance improvements
o JIT-as-a-Service

Compiled Java?

© gq

o .. Dalvik?

o Avian

o Excelsior JET
o GraalVM

JVM improvements are necessary but not sufficient

15

APPLICATION SERVER TRANSITION

| |
ang q q 1 |
Traditional Application : Traditional Middleware + Java Application Server :
Development : .
| I
I I
1 I
| = 1
I
. i I
Hybrid Cloud App ! Kubernetes Optimized SEMEETRIAEE I
Devel t : Middleware Runtimes & !
ke : Frameworks |
B e
: | Caching API Mgmt Rulo 1
UL : :
AR i S 5 | : 5
I 1 integration . Messaging Al::tz)or;g:ison : Security Transaction : : | Failover 5:(;2?25 Ball-::cc:ng :
b e P — T LSRR S RPN TR r
11 R o |
1 | Dependency Injection 0 |
LRSS AP I LA S : __________________]
|
I RED HAT ! RED HAT
I Application Services : OPENSHIFT
! for OpenShift |

Eclipse MicroProfile

I I
. I Open Rest Client I
® Open Source community . il !
I 1
ifi i i Fault JWT
specifications for Enterprise Java I T i
: 20 1 ,
I I
I I
I I
I I

microservices

® Oreleasesin 3 years

e b5 specifications in the pipeline 1 ________ = = = == ==
r— - ————— = 1 mFrm === 1
§owr FUITSU Tomitribe
J—— ® EE)
E:_-;—:E_f:: ‘ Red Hat d i; > ‘-(e THORNTAIL m‘ @

HAMMOCK

BY Microsoft [hazelcast

______ Community e

rrrrrrrrrrrrrrrrrrrrr

|

|

|

|

I LIe* H Sdajava = Lightbend
I socedade de usuanos java 1

|

|

M M | C R 0 P R O FI I_ E. Projects Presentations FAQ Blog Contributors Join The Discussion -
IMIZING ENTER £ JAVA

Eclipse MicroProfile

Optimizing Enterprise Java
for a Microservices Architecture

Duke’s Choice
Award

2018 Winner

MicroProfile 3.1 (Oct 2019)

M | C R 0 P R 0 F | |_ E. MicroProfile 2.2 (Feb 2019) MicroProfile 3.0

MicroProfile 2.1 Metrics 2.1
Fault Tolerance 2.0 Health 2.1

MicroProfile 1.4 (June 2018) Spealilil .1'1 ‘
MicroProfile 1.3 Openlitacing 1.2 /
: ; REST Client 1.2 :
Config 1.3 =
Fault Tolerance 1.1 B MicroProfile 3.0 (June 2019)
JWT 1.1 MicroProfile 2.2
OpenTracing 1.1 Health 2.0
REST Client 1.1 . Metrics 2.0

REST Client 1.3

MicroProfile 1.1 (August 2017) MicroProfile 2-’11 (005201 8)
MicroProfile 1.0 MicroProfile 2.

Config 1.0 : OpenTracing 1.2

; . MicroProfile 2.0 (July 2018
MicroProfile 1.2 (Sept 2017) MicroProfile 1.3 (Dec 2017) MicroProfiIfe 1.3{)

el MicroProfile 1.2
2017 MireRrene 4 oz JAX-RS 2.1 // Java EE 8
Vi onfig 1. ki CDI20 I/ JavaEE 8

Fault Tolerance 1.0 OpenApi 1.0 JSON-P 1.1 // Java EE 8

MicroProfile 1.0 (Fall 2016) Health 1.0 _
JAX-RS 2.0 Metrics 1.0 OpenTracing 1.0
CDI 1.2 JWT 1.0 REST Client 1.0

JSON-P 1.0

JSON-B 1.0 // Java EE 8

Eclipse MicroProfile 3.1 (Oct 2019)

= e e e e e e e e e e e e e e e e e = r- Standalone - -

Reactive
Messaging
1.0

Open Rest Client)
Tracing 1.3 Open API 11 Config 1.3
Fault JWT
Tolerance Metrics 2.1 Propagation Health 21
2.0 11

Reactive

I

I

|

I

[Streams
| Operators 1.0
I

|

I

Context
1.0
__________ MicroProfile 31 - — = = = = = = | Qutside umbrella
Bl =New
Bl - Updated

I =No change from last release (MicroProfile 3.0)

20

Roadmap items

e Long Running Actions (yes, transactions for microservices!)

e GraphQL

e Reactive Relational Database Access

e FEvent Data MicroProfile Starter "Beta"
. Generate MicroProfile Maven Project with Examples

® Service meshes

e start.microprofile.io

Project Options

MicroProfile Server * Examples for specifications

21

22

About Members Connect More~ Q ~

4’ JAKARTA EE

Jakarta EE

The New Home of Cloud Native Java

Powered by participation, Jakarta EE is focused on enabling community-
driven collaboration and open innovation for the cloud.

Strategic Members

OoRACLE gf-af:\uaro M rcdhat Tomitribe

(e®)
FUJITSU

Participating Members

.
CI°Udbees @) DOCDOKU 22 Genuitec l B Liferoy LICS
IncQuerylLabs
BE® Microsoft MIZWHO Pivotal O RcPVisior w 5 uscoren vaadin}>

[webtide

Eclipse Vert.x

® Responsive: fast, is able to handle a large number of events / connections

e [Elastic: scale up and down by just starting and stopping nodes,
round-robin

e Resilient: failure as first-class citizen, self-healing

e Asynchronous message-passing: asynchronous non-blocking
development model heacris

A software showing

e 2014 JAX Innovations Award Winner / responses to stimuli
Reactive Reactive Prfer‘;fffily‘:sn
Systems Streams g g
Responsive Back-Pressure ’LZ!{/ Z 7:"' :nne On“ts
ey
distributed Erotocol &L_-mode 7

systems
——

Centurions Créatifs

APIS|LABS

@software'

& | DATASCIENCE

Procurement
Indonesia

(3 GENTICS

Eg HotSchedules

1Clarit

ActiVeos

BOSCH

Invented for life

Credittone

DEUTSCHE BORSE
GROUP

exent

y *
(GRAVITEE.IO

hulu

J JDriven

vmware
airwatch

bounday
ISl NS A

7777 W
‘izgvéihll
A\

fluxon

Infiverve

noint.

SN

Media

CAMPUDUS

DEVELOPERS
&
#§DataBerries

O =ik

Za Fraunhofer
IGD

F\opscoTcF\

INSTANA

lastminute.com

WHAT IS QUARKUS?

QUARK: elementary particle / US: hardest thing in computer science

26

Moving to Compile-Time Boot 8

What does a framework do at startup time?

e Parse config files
e (lasspath & classes scanning
o for annotations, getters or other metadata
e Build framework metamodel objects
e Prepare reflection and build proxies
e Startand open IO, threads etc

<@

4

Framework Optimizations

Moved as much as possible to build phase
Minimized runtime dependencies
Maximize dead code elimination
Introduced clear metadata contracts
Spectrum of optimization levels

(all - some — no runtime reflection)

27

What about MicroProfile?

Quarkus implements MicroProfile

We all know the benefits of open standards ...

o No vendor lock-in so applications can be ported across implementations
o Don't like something then come in and help evolve it

MicroProfile in Quarkus enables skills to be immediately brought to the
problem
o And applications from other implementations too!

Aim to feed more innovations back to MicroProfile and beyond
o Remember ... the JVM needs love too, not just frameworks

28

JavaScript

|

C 3

Graal Compiler

Java HotSpot VM

Sulong (LLVM)

Truffle

Substrate VM

29

Benefit No. 1: Developer Joy

A cohesive platform for optimized developer joy:

Based on standards (e.g., MicroProfile), but not
limited
Unified configuration
Zero config, live reload in the blink of an eye
Streamlined code for the 80% common usages,
flexible for the 20%
No hassle native executable generation
Unifies imperative and reactive programming

o Vertx FTW!
Re-architected many projects

o Hibernate, Narayana, Netty, Infinispan, ...

WAIT

30 YOU JUST SAVE IT,

AND YOUR CODE IS RUNNING?
AND IT'S JAVAYL

\ | KNOW, RIGHT?
SUPERSONIC J/AVA, FTWI

| T

30

Benefit No. 2: Supersonic Subatomic Java

Quarkus + SubstrateVM
13 MB

REST

Quarkus + OpenJDK Hotspot

74 MB

Traditional Cloud Native Stack
+ OpenJDK Hotspot
140 MB

31

Benefit No. 2: Supersonic Subatomic Java

Quarkus + SubstrateVM
35 MB

REST + CRUD

Quarkus + Open)DK Hotspot Traditional Cloud Native Stack
130 MB + OpenJDK Hotspot
218 MB

32

Benefit No. 2: Supersonic Subatomic Java
REST

Quarkus + GraalvM 0.014 Seconds

- Quarkus + Open)DK 0.75 Seconds

REST + CRUD

I Quarkus + SubstrateVM 0.055 Seconds

_ Quarkus + OpenJDK 2.5 Seconds
Traditional Cloud Native Stack 9.5 Seconds

Time to first response

33

The New Truth about Java + Gontainers

Node

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Node
NodeJS
NodeJS
NodeJS
NodeJS
NodeJS
NodeJS
NodeJS

Quarkus
Quarkus
Quarkus
Quarkus
Quarkus
Quarkus

Quarkus

Node
Quarkus
Quarkus
Quarkus
Quarkus
Quarkus
Quarkus

Quarkus

CONTAINER ORCHESTRATION

34

Conclusions: rethinking the problem

e Our problems are not the same as they were 10 years ago
O We can’t expect the same solutions to make sense!
O Containers are small and primarily immutable

e To adapt, we must truly understand conditions and make different trade-offs
o Eclipse MicroProfile offers a standard way to trim down services

o Butthere’s still a lot more work to do across the entire stack

e Enable millions of Java developers to become truly cloud native

35

