
RED HAT

Kubernetes Native Java and
Eclipse MicroProfile (plus other things)

Mark Little, VP Engineering, Red Hat

Who am I?
● Research into fault-tolerant distributed systems since 1986

○ Arjuna, Argus, Isis/Horus, Emerald, Xerox, …
○ DCE, DCOM, CORBA, HTTP, Web Services, …

● Implemented world’s first 100% Java transaction service in 1995
○ Yes, we’re still using it today!

● Active in OMG, OASIS, W3C, JCP, GGF and others
○ Co-author of a number of specifications and standards

● Visiting Professor at Newcastle and Lyon
● Industry ...

○ Various startups
○ Bluestone Distinguished Engineer, HP Distinguished Engineer
○ JBoss CTO in 2009

● These days spend far too much time on conference calls, meetings etc!
2

Overview
● Why Java in the age of Kubernetes and Linux Containers?

○ Java is dead, right?

● Why did Enterprise Java need to change?
○ Kubernetes and Immutability
○ Incompatibilities with Java and Application Containers

● Eclipse MicroProfile
○ Eclipse Jakarta EE

● Quarkus and principles behind it may be a game changer
○ Optimised for immutable architectures
○ Can work in constrained environments, e.g., low memory footprint

3

Why is Java still important?
● Still a de-facto language for enterprise developers*
● Large skills base (7-10 million Java devs.)**
● Large and diverse ecosystem

○ Amazon, Fujitsu, Google, IBM, Microsoft, Netflix, Oracle, Pivotal, Red Hat, …

● Large, resilient community
● Much more than just the language!
● The innovation continues

○ Eclipse MicroProfile
○ Eclipse Jakarta EE
○ Java SE faster schedule
○ SubstrateVM

4

Sources:
*Tiobe Index : https://www.tiobe.com/tiobe-index/
* IEEE Spectrum : https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
I** SlashData - 7.6 million active Java developers (State of Developer Nation, 16th Edition, Q4 2018)

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

Historical Enterprise Java Stack

5

Operating System + Hardware/VM

Java Virtual Machine (Hotspot)

Application Server

App App App App App

Dynamic Application Frameworks

Architecture: Monoliths

Deployment: multi-app,
 appserver

App Lifecycle: Months

Memory: 1GB+ RAM

Startup Time: 10s of sec

And then along came ...

6

Monoliths are Evil? Microservices ..?

7

Followed closely by ...

8

And then … Kubernetes
● Open source project from Google

● The de facto standard for cluster management for Linux containers

● Packages Orchestration, service discovery, load balancing

○ All behind a simple REST API

● Immutable architectures

9

The “Java Problem”
● Designed for throughput at the expense of footprint

● Intended to be long running, less focus on startup speed

● Rich dynamic behavior built around mutable bare-metal systems

○ … yet Linux containers are primarily immutable

○ … frameworks and stacks built to leverage key Java capabilities such as dynamism

● Java is trying to pivot (JPMS, AOT, Graal, etc)

○ … but architectural changes to frameworks are required to truly benefit

10

11

Container platform

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Node

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Node

HotSpot Heap

HotSpot Heap

HotSpot Heap

HotSpot Heap

Why footprint matters in the cloud
● Memory is more important than throughput on containers

○ It’s more expensive (requires permanence), unlike CPU cycles

● Microservices multiply overhead cost

○ One app becomes N microservices (e.g. 20 microservices ~= 20GB today!)

● If we do nothing Java alternatives will take over (eventually)

○ Go, Python, Node, PHP, Rust etc. do not have this problem

12

What we really want ...

13

● 1 monolith ≈ 20 microservices ≈ 200 functions
● Scale to 1 vs scale to 0
● Start up time

MONOLITH

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

We need a Kubernetes native stack

14
14

Monolith Cloud Native Microservices Serverless Event-Driven
Architecture

Istio Knative

It starts with the JVM
● Linux container aware JVM efforts

○ Memory utilisation
○ Processor utilisation

● OpenJDK evolved to work better with Linux Containers
○ Shenandoah GC

● Eclipse OpenJ9 performance improvements
○ JIT-as-a-Service

● Compiled Java?
○ gcj
○ … Dalvik?
○ Avian
○ Excelsior JET
○ GraalVM

● JVM improvements are necessary but not sufficient
15

APPLICATION SERVER TRANSITION

16

Traditional Application
Development

Standardized
Runtimes &
Frameworks

Kubernetes Optimized
Middleware

Application Services
for OpenShift

Hybrid Cloud App
Development Container Platform

Caching API Mgmt Business
Rules

HTTP/
REST Persistence

Process
AutomationIntegration Messaging TransactionSecurity

Dependency Injection

Domains DevOps Clustering

Load
BalancingFailover Rolling

Updates

Traditional Middleware + Java Application Server

Eclipse MicroProfile
● Open Source community

specifications for Enterprise Java
microservices

● 9 releases in 3 years
● 5 specifications in the pipeline

17
Community

19

Eclipse MicroProfile 3.1 (Oct 2019)

20

Roadmap items
● Long Running Actions (yes, transactions for microservices!)
● GraphQL
● Reactive Relational Database Access
● Event Data
● Service meshes
● start.microprofile.io

21

22

Eclipse Vert.x
● Responsive: fast, is able to handle a large number of events / connections
● Elastic: scale up and down by just starting and stopping nodes,

round-robin
● Resilient: failure as first-class citizen, self-healing
● Asynchronous message-passing: asynchronous non-blocking

development model
● 2014 JAX Innovations Award Winner

24

25

26

WHAT IS QUARKUS?
QUARK: elementary particle / US: hardest thing in computer science

Moving to Compile-Time Boot

27

What does a framework do at startup time?

● Parse config files
● Classpath & classes scanning

○ for annotations, getters or other metadata
● Build framework metamodel objects
● Prepare reflection and build proxies
● Start and open IO, threads etc

● Moved as much as possible to build phase
● Minimized runtime dependencies
● Maximize dead code elimination
● Introduced clear metadata contracts
● Spectrum of optimization levels

(all → some → no runtime reflection)

Framework Optimizations

What about MicroProfile?
● Quarkus implements MicroProfile
● We all know the benefits of open standards …

○ No vendor lock-in so applications can be ported across implementations
○ Don’t like something then come in and help evolve it

● MicroProfile in Quarkus enables skills to be immediately brought to the
problem
○ And applications from other implementations too!

● Aim to feed more innovations back to MicroProfile and beyond
○ Remember … the JVM needs love too, not just frameworks

28

29

JVM CI

Sulong (LLVM)

Truffle

Graal Compiler

Substrate VM

Java HotSpot VM

Benefit No. 1: Developer Joy

30

A cohesive platform for optimized developer joy:

● Based on standards (e.g., MicroProfile), but not

limited

● Unified configuration

● Zero config, live reload in the blink of an eye

● Streamlined code for the 80% common usages,

flexible for the 20%

● No hassle native executable generation

● Unifies imperative and reactive programming

○ Vert.x FTW!

● Re-architected many projects

○ Hibernate, Narayana, Netty, Infinispan, ...

Benefit No. 2: Supersonic Subatomic Java

31

Quarkus + SubstrateVM
13 MB

Quarkus + OpenJDK Hotspot
74 MB

Traditional Cloud Native Stack
+ OpenJDK Hotspot

140 MB

REST

Benefit No. 2: Supersonic Subatomic Java

32

REST + CRUD

Quarkus + SubstrateVM
35 MB

Quarkus + OpenJDK Hotspot
130 MB

Traditional Cloud Native Stack
+ OpenJDK Hotspot

218 MB

Benefit No. 2: Supersonic Subatomic Java

3333Boot + First Response Time (in seconds)

Quarkus + GraalVM 0.014 Seconds

REST

REST + CRUD

Quarkus + OpenJDK 0.75 Seconds

Quarkus + SubstrateVM 0.055 Seconds

Quarkus + OpenJDK 2.5 Seconds

Traditional Cloud Native Stack 9.5 Seconds

Traditional Cloud Native Stack 4.3 Seconds

Time to first response

The New Truth about Java + Containers

34

CONTAINER ORCHESTRATION

NodeNode

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Traditional Cloud-Native
Java Stack

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go
Node

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Quarkus

Conclusions: rethinking the problem
● Our problems are not the same as they were 10 years ago

○ We can’t expect the same solutions to make sense!

○ Containers are small and primarily immutable

● To adapt, we must truly understand conditions and make different trade-offs

○ Eclipse MicroProfile offers a standard way to trim down services

○ But there’s still a lot more work to do across the entire stack

● Enable millions of Java developers to become truly cloud native

35

